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Transient solution for radial two-zone flow in unconfined
aquifers under constant-head tests
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Abstract:

The constant-head test (CHT) is commonly employed to determine the aquifer parameters. This test is also applied to many
environmental problems such as recovering light nonaqueous phase liquids (LNAPL) and controlling off-site migration of
contaminated groundwater in low-transmissivity aquifers. A well skin near the wellbore may be produced due to the well
construction or development and its formation properties are significantly different from the original ones. A more appropriate
description for the skin effect on the aquifer system should treat the well skin as a different formation instead of using a skin
factor. Thus, the aquifer system becomes a two-zone formation including the skin and formation zones. This study presents a
mathematical model developed for analyzing a two-zone unconfined aquifer system and the associated solution for CHTs at
partially penetrating wells under transient state. The solution of the model may be used either to identify the in situ aquifer
parameters or to investigate the effects of the wellbore storage and well skin on the head changes in unconfined aquifers under
constant-head pumping. Copyright  2010 John Wiley & Sons, Ltd.
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INTRODUCTION

A constant-head test (CHT) is carried out to main-
tain a fixed water depth inside the well and measure
the transient flow rate at the wellbore. Different from
constant-rate test (CRT), CHT is mainly applied to
low-transmissivity aquifers for determining the hydraulic
parameters. Rice (1998) mentioned some merits in CHTs.
The early time drawdown behaviour at pumping well
and observation wells is commonly influenced by the
wellbore storage at the pumping well in CRT. On the
other hand, the wellbore storage effect is reduced in
CHT and a part of transient data allowing characteri-
zation of the aquifer occurs earlier than that in CRT
(Renard, 2005). The wellbore storage can be neglected
under field conditions if a constant head is established
in a short period time. This situation can be achieved if
the aquifer has low transmissivity and the well radius is
small (Chen and Chang, 2003). In recent years, owing to
some important issues in the low-permeability aquifers,
there has been an increasing interest in the study of CHTs.
Jones et al. (1992) and Jones (1993) discussed the prac-
ticality of CHTs on wells completed in low-conductivity
glacial till deposits. Mishra and Guyonnet (1992) indi-
cated that the operational benefit of CHTs in situations
where the total available drawdown is limited by well
construction and aquifer characteristics. They developed
a method for analyzing observation-well response to a
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CHT. For other environmental applications, light non-
aqueous phase liquids (LNAPL) are recovered by wells
held at a constant drawdown (Abdul, 1992; Murdoch and
Franco, 1994) and a constant-head pumping is also used
to control off-site migration of contaminated groundwater
(Hiller and Levy, 1994). Up to now, the theories of well
hydraulics for CHT have been limited to radial flow prob-
lems in confined or leaky aquifers. The basic transient
model for CHT is the well-known Jacob and Lohman’s
(1952) solution. They presented the solution of flow rate
at the well and used their solution to estimate the storage
coefficient and transmissivity. Hantush (1964) provided
the drawdown solution for confined and leaky aquifers
under a CHT. Issues involving CHT can be found in
literatures [e.g. Wilkinson, 1968; Uraiet and Raghaven,
1980; Hiller and Levy, 1994; Chen and Chang, 2002;
Singh, 2007].

A finite thickness of well skin may be produced
due to the well construction as a result of drilling
through a mud or extensive well development. The skin
thickness may range from a few millimeters to several
meters and thus should be considered in the aquifer
tests (Novakowski, 1989). The effect of skin on the
response of pumping tests has been recognized for a
long time in the petroleum industry. In the past, the
skin effect was investigated for two types of skin, i.e.
infinitesimal and finite-thickness skins. van Everdingen
(1953) defined a skin factor caused by the additional
resistance around the well resulting from the drilling and
completion and then presented a method to compute the
pressure drop due to the reduction of the permeability
of the formation near the well. Hawkins (1956) further
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defined a skin effect which was related to external and
altered permeability. Streltsova and McKinley (1984)
considered an infinitesimal skin and used a skin factor
to represent the skin effect.

As in reality the hydrogeologic properties of the skin
zone may significantly differ from those of the formation
zone, a more appropriate description for such a formation
system should treat the skin zone as a different formation
instead of using a skin factor. Novakowski (1993) derived
a Laplace-domain solution for dimensionless flow rate
at the wellbore. Curves of dimensionless flow rate
versus dimensionless time illustrated the influences of
finite-thickness skin. Markle et al. (1995) developed a
model with a finite-thickness skin for CHT conducted
in vertically fractured media. Their results indicate that
the finite-thickness can have influence on transient flow
rate along the wellbore. Yang and Yeh (2002) and
Yeh et al. (2003) provided closed-form solutions for
transient flow rate across the wellbore in a confined
aquifer with a finite-thickness skin and a fully penetrating
well in CHT and in CRT, respectively. Yang and Yeh
(2005) presented a Laplace-domain solution for the
hydraulic head in a radially confined aquifer considering
a finite-thickness skin and a partially penetrating well
in CHT. Perina and Lee (2006) presented a general
well function for groundwater flow with a partially
penetrating well in a confined, leaky or unconfined
aquifer. They took a non-uniform radial flux along the
screen and a finite-thickness well skin into account.
Pasandi et al. (2008) presented an analytical solution
for CRT conducted in a partially penetrating well in an
unconfined aquifer. A finite thickness of well skin is
considered in their solution and the influence of the skin
is also investigated.

Some literatures have addressed the issues of the effect
of partially penetrating well (e.g. Rudd and Kabala, 1997;
Cassiani and Kabala, 1998; Cassiani et al., 1999; Chang
and Chen, 2003; Yang and Yeh, 2005). Cassiani and
Kabala (1998) and Cassiani et al. (1999) have devel-
oped the Laplace-domain solutions for CRT and CHT in
confined aquifers, respectively, where the tests are con-
ducted at partially penetrating wells and based on the
infinite aquifer thickness assumption. Yang et al. (2006)
presented an analytical solution for constant-flux pump-
ing in a well under partial penetration condition in con-
fined aquifers. Chang and Yeh (2009) developed a new
solution to the CHT performed at a partially penetrat-
ing well in a confined aquifer with a finite thickness.
Instead of using numerical approach, the mathemati-
cal model with the mixed boundary condition specified
along the wellbore is directly solved via the methods
of dual series equations and perturbation method. For
interpreting the pumping tests in unconfined aquifers,
models commonly used in groundwater were based on
the assumptions of Dagan (1967) and Neuman (1972,
1974) that the drainage above the water table occurs
instantaneously. Contrary to Neuman’s assumption, some
literatures indicated that the drainage above the water
table in unconfined aquifer is transient and both the radial

and vertical flow components occur in saturated thickness
(e.g. Akindunni and Gillham, 1992; Nwankwor et al.,
1992; Narasimhan and Zhu, 1993; Moench, 1994, 2004,
2008). The solutions for flow to a well in unconfined
aquifers with considering the effect of unsaturated zone
are also presented (e.g. Mathias and Butler, 2006; Tar-
takovsky and Neuman, 2007). For mathematical simplic-
ity, Chen and Chang (2003) developed a well hydraulic
theory for CHT in unconfined aquifer with fully pen-
etrating well based on Neuman’s approach. However,
solutions for hydraulic head for CHT performed at par-
tially penetrating wells in unconfined aquifers are barely
developed.

This study extends the work of Yang and Yeh (2005) to
develop a mathematical model for an unconfined aquifer
system with treating the skin as a finite thickness zone
and the associated solution for the CHT at a partially
penetrating well. A numerical approach including roots
finding and Shanks’ transform is used to evaluate the
newly derived solution. The solution may be used either
to identify the in situ aquifer parameters or to investigate
the effects of the wellbore storage and well skin on
the head changes in unconfined aquifers with partially
penetrating wells.

MATHEMATICAL MODEL

Figure 1 shows a cross-sectional view of an unconfined
aquifer system with a partially penetrating well and a
finite thickness of well skin under study. The governing
equations for hydraulic head in the skin and formation
zones can respectively be written as (Novakowski, 1989)

Kr1

(
∂2h1

∂r2 C 1

r

∂h1

∂r

)
C Kz1

∂2h1

∂z2 D Ss1
∂h1

∂t
,

rw � r � rs �1�

Figure 1. The representation of cross-sectional configuration of the well
and aquifer
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and

Kr2

(
∂2h2

∂r2 C 1

r

∂h2

∂r

)
C Kz2

∂2h2

∂z2 D Ss2
∂h2

∂t
,

rs � r < 1 �2�

The subscripts 1 and 2 denote the skin and formation
zones, respectively. The hydraulic head at a distance r
from the centre of the well and a distance z from the
bottom of the aquifer at time t is denoted as h�r, z, t�.
The well screen extends from z D B1 to z D B2 with a
length of l. The aquifer has the hydraulic parameters of
horizontal hydraulic conductivity Kr , vertical hydraulic
conductivity Kz, and specific storage Ss. An effective well
radius and the radial distance from the well centreline
to the outer skin envelope are denoted by rw and rs,
respectively, in this system.

The hydraulic heads are assumed to be zero initially
within the well as well as in the skin and formation zones,
that is

h1�r, z, 0� D h2�r, z, 0� D 0, r ½ rw �3�

The hydraulic head represents the well water level
when r D rw if the well loss is negligible. The outer
boundary condition for the formation zone is

h2�1, z, t� D 0 �4�

The no-flow boundary condition at the bottom of the
aquifer can be written as:

∂h1�r, z, t�

∂z

∣∣∣∣
zD0

D ∂h2�r, z, t�

∂z

∣∣∣∣
zD0

D 0, r ½ rw �5�

Assume that the drainage process is instantaneous and
the drawdown everywhere of the aquifer is small in
comparison to the initial saturated thickness L. Based
on Neuman’s approach that neglecting the second-order
terms of the hydraulic gradient in the classic equation
describing the free surface for the unconfined aquifer
(Batu, 1998, p. 107), the top boundaries of the skin and
formation zones are, respectively, described as

Kz1
∂h1�r, z, t�

∂z

∣∣∣∣
zDL

D �Sy1
∂h1�r, z, t�

∂t

∣∣∣∣
zDL

,

rw � r � rs �6�

and

Kz2
∂h2�r, z, t�

∂z

∣∣∣∣
zDL

D �Sy2
∂h2�r, z, t�

∂t

∣∣∣∣
zDL

,

rs � r < 1 �7�

where Sy1 and Sy2 represent the specific yields of the
skin and formation zones, respectively. At the interface
between skin and formation zones, the continuities of the
hydraulic head and flow rate must be satisfied:

h1�rs, z, t� D h2�rs, z, t�, t > 0 �8�

Table I. Notations

� Kr2t/Ss2r2
w

rD r/rw

rDs rs/rw

LD L/rw

H1 h1/h0

H2 h2/h0

zD z/rw

b1 B1/rw

b2 B2/rw

˛1 Kz1/Kr1

˛2 Kz2/Kr2

� Kr2/Kr1

˛y1 �Sy1Kr2�/�Ss2Kz1rw�
˛y2 �Sy2Kr2�/�Ss2Kz2rw�
� Ss1/Ss2

qD��� q�t�/[2��B2 � B1�Kr1h0]
�m1

√
��p C ˛1ω2

m1

�m2

√
p C ˛2ω2

m2
�1

p
��p

�2
p

p
ˇ1 ��m1K1��m1rDs�K0��m2rDs� C ��m2K0��m1rDs�K1��m2rDs�
ˇ2 �m1I1��m1rDs�K0��m2rDs� C ��m2I0��m1rDs�K1��m2rDs�
ˇ3 ��1K1��1rDs�K0��2rDs� C ��2K0��1rDs�K1��2rDs�
ˇ4 �1I1��1rDs�K0��2rDs� C ��2I0��1rDs�K1��2rDs�

W1m
LD
2 C sin�2ωm1LD�

4ωm1

W2m
LD
2 C sin�2ωm2LD�

4ωm2
ϕ0 ˇ1I1��m1� C ˇ2K1��m1�
� �b2 � b1�/LD

and

Kr1
∂h1�r, z, t�

∂r

∣∣∣∣
rDrs

D Kr2
∂h2�r, z, t�

∂r

∣∣∣∣
rDrs

, t > 0

�9�
The inner boundary condition specified in the well is

h1�rw, z, t� D h0 �10�

where h0 is a constant water level in the well at any time.
The flow rate along the screen is assumed to be (Yang
and Yeh, 2005)

�Kr1
∂h1�rw, z, t�

∂r
D q�t�, B1 � z � B2 �11�

and the no-flow boundary condition along the well casing
is

�Kr1
∂h1�rw, z, t�

∂r
D 0, z < B1, z < B2 �12�

where q�t� is the flow rate per unit area and assumed
to be constant along the well screen. The dimensionless
parameters used in this study are defined in Table I
and the detailed derivations of dimensionless hydraulic
head solutions for skin and formation zones are listed in
Appendix. The dimensionless hydraulic head solutions in
Laplace domain are

Qh1�rD, zD, p� D QqD�p�
1∑

m1D1

[�ˇ1I0��m1rD� C ˇ2K0��m1rD�]�

W1m�m1ϕ0
cos�ωm1zD�,

1 � rD � rDs, �13�
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and

Qh2�rD, zD, p� D QqD�p�
1∑

m2D1

K0��m2rD��

rDsW2m�m2ϕ0
cos�ωm1zD�,

rDs � rD < 1 �14�

with

QqD�p� D �b2 � b1�

p

{ 1∑
m1D1

[�ˇ1I0��m1� C ˇ2K0��m1�]
�2

W1m�m1ϕ0

}�1

�15�

� D
∫ b2

b1

cos�ωm1zD� dzD �16�

W1m D
∫ LD

0
cos2�ωm1zD� dzD �17�

and

W2m D
∫ LD

0
cos2�ωm2zD� dzD �18�

where p is the Laplace variable, and variables b1,
b2, rD, rDs, zD, ˛1, ˛2, ˇ1, ˇ2, �m1, �m2, ωm1, ωm2,
W1m and W2m are defined in Table I. The functions
I0�Ð� and I1�Ð� are the modified Bessel functions of
the first kinds of order zero and one, respectively; and
K0�Ð� and K1�Ð� are the modified Bessel functions of
the second kinds of order zero and one, respectively
(Abramowitz and Stegun, 1970). The Stehfest method
(Stehfest, 1970) is used to evaluate the solutions in time-
domain and the Shanks method (Shanks, 1955) is applied
to accelerate convergence for the infinite summations
in Equations (13) and (14) (Chang and Yeh, 2009). In
addition, the Newton method is employed to search the
roots in Equations (A38) and (A39). Letting ˛y1 D ˛y2 D
0 and ωm1 D ωm2 D m�/LD in Equations (13)–(15), the
Laplace-domain solutions for drawdown in skin and
formation zones in a partially penetrating well in a
confined aquifer are exactly the same as those solutions
given in Yang and Yeh (2005, Equations (33) and (34))
after some algebraic manipulations.

RESULTS AND DISCUSSION

In the no skin case (� D 1), the temporal distribu-
tions of the dimensionless hydraulic head are plotted in
Figure 2 to demonstrate the influence of vertical flow
from delayed gravity drainage on the hydraulic head at
different dimensionless distance r/rw (rD). The aquifer
parameters used in this figure are as follows: rw D
0Ð1 m, L D 10 m, Kr1 D Kr2 D 10�4 m/s, Kz1 D Kz2 D
10�4 m/s, Sy1 D Sy2 D 0Ð1, Ss1 D Ss2 D 10�4 1/m, B1 D
0 m, B2 D 10 m and � D 1 (full penetration). As shown
in the figure, the vertical flows at a shorter distance
(e.g. rD D 10 or 100) are observed significantly in mod-
erate times but not obviously in early and late times.
In addition, the effect of vertical flow vanishes when

Figure 2. The temporal distributions of dimensionless hydraulic head at
rD D 10, 100, 200 and 500 for various dimensionless vertical distance zD

Figure 3. The effect of skin properties on the temporal distribution of
dimensionless hydraulic head for rD D 5, 10 and 15

rD is larger than 500. At the bottom of the aquifer the
vertical flow is observed at � D 103 which is the latest
time among the various depths when rD D 10. Figure 3
exhibits the behaviour of dimensionless hydraulic head
versus dimensionless time � and illustrates the effect of
hydraulic conductivities of skin and formation zones on
the hydraulic head response, where the skin thickness
rs is 1 m, the vertical distance z D 5 m and � D 0Ð1
(B1 D 4Ð5 m and B2 D 5Ð5 m) at r D 0Ð5, 1 and 1Ð5 m
when Kr1 ranges from 10�5 –10�3 m/s (i.e. � D 0Ð1,
1Ð0 and 10). This figure indicates that the dimension-
less hydraulic heads increase with decreasing � . Since
� < 1 (negative skin) represents the hydraulic conduc-
tivity of skin zone larger than that of the formation
zone, the skin produces a larger flow rate toward the
formation during the well test period and results in a
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Figure 4. The effect of dimensionless specific yield on the dimensionless
hydraulic head at rD D 50 for � D 0Ð1, � D 1 and � D 10

Figure 5. The effect of skin thickness on the dimensionless hydraulic
head at rD D 50 for � D 0Ð1 and � D 10

higher dimensionless hydraulic head. Figure 4 is plotted
to examine the effect of specific yields of skin and for-
mation zones on the dimensionless hydraulic head during
CHT. This figure displays the response of dimensionless
hydraulic head at r D 5 m and z D 0 m with rs D 1 m
for specific yields Sy1 and Sy2 ranging from 10�1 ¾ 10�3

for � < 1, � D 1 and � > 1 (positive skin). The dimen-
sionless hydraulic heads decrease with increasing dimen-
sionless specific yield. The typical three-stage drawdown
patterns are shown in this figure. The early time stor-
age releases from the elastic behaviour of the aquifer
formation and water. At the moderate times (also called
as delayed yield stage), the vertical flow happened near
the water table causes drainage of the porous matrix.
Finally the effect of vertical flow decreases with time
and flow becomes horizontal at late times. Larger specific

Figure 6. The effect of skin properties on the temporal distribution of
dimensionless flow rate for Sy D 0 and Sy D 0Ð1

yields supply more water from the drainage and thus the
period of moderate times increases with dimensionless
specific yield for the cases of the positive, no and negative
skins. In order to explore the response of dimension-
less hydraulic head for various skin thicknesses, Figure 5
is plotted for rs D 0Ð11, 0Ð5 and 1 m at r D 5 m and
z D 0 m for both negative and positive skins. The dimen-
sionless hydraulic head increases with the thickness for
negative skin (Kr1 D 10�3 m/s) and decreases with the
increasing thickness for positive skin (Kr1 D 10�5 m/s).
This result demonstrates that the skin thickness has sig-
nificant effect upon the distribution of hydraulic head in
CHT. In reality, the behaviour of curves is similar to those
of hydraulic head for different skin thicknesses in CHT in
Yang and Yeh (2006), except in the delayed yield stage.
Figure 6 shows the curves of the dimensionless flow rate
at wellbore versus dimensionless time for different values
of specific yield. The dimensionless flow rate decreases
rapidly with increasing dimensionless time. The dimen-
sionless flow rate increases with � for both Sy1 D Sy2 D 0
and Sy1 D Sy2 D 0Ð1 at the same dimensionless time indi-
cating that the dimensionless flow rate is significantly
influenced by the conductivity ratio, � .

CONCLUDING REMARKS

The solution for transient hydraulic head distribution is
developed for CHT performed in a two-zone unconfined
aquifer with a partially penetrating well. The transient
hydraulic head distribution in Laplace domain for CHT
is developed via Laplace transforms and the method of
separation of variables. The Stehfest algorithm is used
for numerical Laplace inversion and the Shanks method
is adopted to accelerate convergence in calculating the
infinite summation solutions. In addition, the solutions of
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this study reduce to the solutions for the cases of fully and
partially penetrating well in confined aquifers in CHT.

For the CHT in an unconfined aquifer, the present
solution can be used for describing the transient hydraulic
head distribution and investigating the effects of vertical
flow from delayed gravity drainage, thickness of skin
zone and specific yield on the hydraulic head distribution.
As the distance from the well increases, the effect of
vertical flow is negligible. For negative skin thickness,
the hydraulic head increases with decreasing �; however,
the hydraulic head increases with � for positive skin.
An aquifer with a higher specific yield will have longer
delayed yield stage in the hydraulic head curve for all
the positive- and negative-skin cases. In addition, the
skin thickness has great effect on the hydraulic head
distribution in both negative- and positive-skin cases. The
thicker skin zone gives higher hydraulic head for negative
skin and lower hydraulic head for positive skin case.
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APPENDIX

Equations (1) and (12) can be expressed in terms of
dimensionless forms as

∂2H1

∂r2
D

C 1

rD

∂H1

∂rD
C ˛1

∂2H1

∂z2
D

D ��
∂H1

∂�
,

1 � rD � rDs �A1�

∂2H2

∂r2
D

C 1

rD

∂H2

∂rD
C ˛2

∂2H2

∂z2
D

D ∂H2

∂�
,

rDs � rD < 1 �A2�

H1�rD, zD, 0� D H2�rD, zD, 0� D 0, rD ½ 1 �A3�

H2�1, zD, �� D 0 �A4�

∂H1�rD, zD, ��

∂zD

∣∣∣∣
zDD0

D ∂H2�rD, zD, ��

∂zD

∣∣∣∣
zDD0

D 0 �A5�

∂H1�rD, zD, ��

∂zD

∣∣∣∣
zDDLD

D �˛y1
∂H1�rD, zD, ��

∂�

∣∣∣∣
zDDLD

,

1 � rD � rDs �A6�

∂H2�rD, zD, ��

∂zD

∣∣∣∣
zDDLD

D �˛y2
∂H2�rD, zD, ��

∂�

∣∣∣∣
zDDLD

,

rDs � rD < 1 �A7�

H1�rDs, zD, �� D H2�rDs, zD, ��, � > 0 �A8�

∂H1�rD, zD, ��

∂rD

∣∣∣∣
rDrs

D �
∂H2�rD, zD, ��

∂rD

∣∣∣∣
rDrs

,

� > 0 �A9�

H1�1, zD, �� D 1 �A10�

� ∂H1�1, zD, ��

∂rD
D qD���, b1 � zD � b2 �A11�

and

�∂H1�1, zD, ��

∂rD
D 0, zD < b1, zD < b2 �A12�

If the Laplace transforms (Sneddon, 1972) is applied
to Equations (A1)–(A12), the results will be

∂2 QH1

∂r2
D

C 1

rD

∂ QH1

∂rD
C ˛1

∂2 QH1

∂z2
D

D ��p QH1,

1 � rD � rDs �A13�

∂2 QH2

∂r2
D

C 1

rD

∂ QH2

∂rD
C ˛2

∂2 QH2

∂z2
D

D p QH2,

rDs � rD < 1 �A14�

QH2�1, zD, p� D 0 �A15�
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∂zD

∣∣∣∣∣
zDD0

D ∂ QH2�rD, zD, p�

∂zD

∣∣∣∣∣
zDD0

D 0 �A16�

∂ QH1�rD, zD, p�

∂zD

∣∣∣∣∣
zDDLD

D �p˛y1 QH1,

1 � rD � rDs �A17�

∂ QH2�rD, zD, ��

∂zD

∣∣∣∣∣
zDDLD

D �p˛y2 QH2,

rDs � rD < 1 �A18�

QH1�rDs, zD, p� D QH2�rDs, zD, p� �A19�

∂ QH1�rD, zD, p�

∂rD

∣∣∣∣∣
rDrs

D �
∂ QH2�rD, zD, p�

∂rD

∣∣∣∣∣
rDrs

�A20�

QH1�1, zD, p� D 1

p
�A21�

� ∂ QH1�1, zD, p�

∂rD
D QqD�p�, b1 � zD � b2 �A22�

and

�∂H1�1, zD, p�

∂rD
D 0, zD < b1, zD < b2 �A23�

Assuming that QH1 and QH2 are the product of two dis-
tinct functions, i.e. QH1�rD, zD, p� D F1�rD, p�G1�zD, p�
and QH2�rD, zD, p� D F2�rD, p�G2�zD, p�, respectively,
one can transform Equations (13) and (14) to

G1
∂2F1

∂r2
D

C G1
1

rD

∂F1

∂rD
C F1˛1

∂2G1

∂z2
D

D ��pF1G1,

1 � rD � rDs �A24�

and

G2
∂2F2

∂r2
D

C G2
1

rD

∂F2

∂rD
C F2˛2

∂2G2

∂z2
D

D pF2G2,

rDs � rD < 1 �A25�

Equations (A24) and (A25) can be separated into the
following two systems of equations

˛1
∂2G1

∂z2
D

C ω2
m1˛1G1 D 0 �A26�

∂2F1

∂r2
D

C 1

rD

∂F1

∂rD
� [

��p C ω2
m1˛1

]
F1 D 0,

1 � rD � rDs �A27�

and

˛2
∂2G2

∂z2
D

C ω2
m2˛2G2 D 0 �A28�

∂2F2

∂r2
D

C 1

rD

∂F2

∂rD
� [

p C ω2
m2˛2

]
F2 D 0,

rDs � rD < 1 �A29�
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The solutions of Equations (A26) and (A28) subject to
the boundary in Equation (A16) are respectively

G1�zD, p� D am1�p� cos�ωm1zD� �A30�

and
G2�zD, p� D am2�p� cos�ωm2zD� �A31�

where am1�p� and am2�p� are constants. In addition,
substituting Equation (A30) into Equation (A17) yields
the root ωm1 of

ωm1 tan�ωm1LD� D p˛y1 �A32�

Similarly, substituting Equation (A31) into Eq-
uation (A18) results in the root ωm2 of

ωm2 tan�ωm2LD� D p˛y2 �A33�

The solutions of Equations (A27) and (A29) then are
respectively

F1�rD, p� D bm1�p�I0��m1rD� C cm1�p�K0��m1rD�,

1 � rD � rDs �A34�

and

F2�rD, p� D bm2�p�K0��m2rD� C cm2�p�K0��m2rD�,

rDs � rD < 1 �A35�

where bm1�p�, bm2�p� and cm1�p� are constants, and

�m2 D
√

p C ω2
m2˛2. The cm2�p� equals zero when using

the boundary of Equation (A15).
The product of Equations (A30) and (A34) for the m

1-root gives

QHm1�rD, zD, p� D Am1I0��m1rD� cos�ωm1zD�

C Bm1K0��m1rD� cos�ωm1zD�, 1 � rD � rDs

�A36�

where Am1 equals the product of am1�p� and bm1�p� and
Bm1 denotes the product of am1�p� and cm1�p�. On the
other hand, the product of Equations (A31) and (A35) for
the m2-root yields

QHm2�rD, zD, p� D Bm2K0��m2rD� cos�ωm2zD�,

rDs � rD < 1 �A37�

where Am2 is the product of am2�p� and bm2�p�. There
are infinite number of the roots in Equations (A32)
and (A33). Accordingly, based on Equations (A36) and
(A37), the complete solution for QH1 and QH2 can be,
respectively, obtained as

QH1�rD, zD, p� D
1∑

m1D1

QHm1 D
1∑

m1D1

[Am1I0��m1rD� cos

�ωm1zD� C Bm1K0��m1rD� cos�ωm1zD�],

1 � rD � rDs �A38�

and

QH2�rD, zD, p� D
1∑

m2D1

QHm2 D
1∑

m2D1

Bm2K0��m2rD� cos

�ωm2zD�, rDs � rD < 1 �A39�

The coefficients in Equations (A38) and (A39) can be
obtained simultaneously from Equations (A19), (A20),
(A22) and (A23) as

Am1 D � QqD�p�

W1m

ˇ1�

�m1ϕ0
�A40�

Bm1 D QqD�p�

W1m

ˇ2�

�m1ϕ0
�A41�

Bm2 D QqD�p�

W2m

�

�m1rDsϕ0
�A42�

Note that the dimensionless flow rate QqD�p� is
still unknown at present stage, and can be obtained
by substituting Equation (A38) into Equation (A21) as
Equation (24).
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