國立交通大學

光電工程研究所

碩士論文

利用 Fabry-Pérot 雷射二極體產生波長可調脈衝雷射

Wavelength-Tunable Optical Pulses Generation Using Fabry-Pérot Laser Diode

40000

研 究 生:林加和

指導教授:祁 甡教授

中華民國九十三年六月

利用 Fabry-Pérot 雷射二極體產生波長可調脈衝雷射

Wavelength-Tunable Optical Pulses Generation Using Fabry-Pérot Laser Diode

研 究 生:林加和

指導教授:祁 甡 教授

Student : Jia-He Lin Advisor : Prof. Sien Chi

A Thesis

Submitted to Institute of Electro-Optical Engineering College of Electrical Engineering and Computer Science

National Chiao Tung University in partial Fulfillment of the Requirements for the Degree of Master in Electro-Optical Engineering

> June 2004 Hsinchu, Taiwan, Republic of China

利用 Fabry-Pérot 雷射二極體產生波長可調脈衝 雷射

研究生:林加和 指導教授:祁 甡 教授

國立交通大學光電工程研究所

中文摘要

本論文的第一部份首先提出 Fabry-Pérot 雷射二極體自我注入之線性共振腔架構。利用在共振腔加入可調帶通濾波器,可以輕易產生波長可調脈衝雷射。由於共振腔長與雷射調變頻率有關,固定的共振腔長使得系統的可調範圍無法再提升。為了在不同波長維持固定的調變頻率以及脈衝寬度,我們提出 Fabry-Pérot 雷射二極體自我注入之環狀共振腔架構。利用在共振腔內加入光延遲器來控制共振腔長。在2000MHz 的調變下,系統的可調波長達到 46nm、旁模抑制比超過33.5dB,脈衝寬度也可以維持在 45ps 附近。

在本論文第二部份提出非常簡單之架構。利用 Pabry-Pérot 雷射 二極體、可調濾波器以及摻鉺光纖放大器等三個元件產生脈衝訊號。 利用可調濾波器作為系統波長選擇。而摻鉺光纖放大器的放大器自發 輻射作為外部光源注入 Fabry-Pérot 雷射二極體,同時 Fabry-Pérot 雷 射二極體產生的脈衝訊號還可以利用摻鉺光纖放大器進行放大。在 2000 MHz 的調變下,系統的可調波長達到 34.5nm、旁模抑制比超過 32dB,脈衝寬度則介於 49.3ps-65.3ps。

i

Wavelength-Tunable Optical Pulses Generation Using Fabry-Pérot Laser Diode

Student: Jia-He Lin

Advisor: Prof. Sien Chi

Institute of Electro-Optical Engineering

National Chiao Tung University

Abstract

In the first part of the thesis, a self-seeded Fabry-Pérot laser diode (FP-LD) using a linear-cavity scheme is demonstrated. By adding a tunable filter within the linear-cavity, the wavelength-tunable laser is easy to be tuned flexibly. Because the repetition frequency of self-seeded FP-LD is determined by the cavity length, this scheme is difficult to have widely wavelength-tunable range. Moreover, in order to maintain a constant repetition frequency and pulsewidth at different wavelengths, a self-seeded FP-LD using a ring-cavity scheme with a variable optical delay line is also presented. The wavelength-tunable range of this ring-cavity scheme is over 46 nm with SMSR up to 33.5dB. Furthermore, the pulsewidth maintain around 45ps at a constant repetition frequency of 2000MHz.

In the second part, an external injection scheme to generate wavelength-tunable optical pulses using a FP-LD is proposed and demonstrated. An Erbium doped fiber amplifier is used as both an external injection light source and an amplifier for the FP-LD. The wavelength-tunable range is over 34.5nm with SMSR up to 32dB. Furthermore, the pulsewidth is between 49.3ps-65.3ps at a constant repetition frequency of 2000MHz.

誌 謝

本論文的完成,首先要感謝指導老師 祁甡教授,在兩年碩士班的學生生涯 中,不厭其煩的給我啟發與教誨,使我在學術領域中不斷的精進。老師嚴謹的治 學態度以及理直氣和的學者風範,更是使我學習到做學問應有的學習態度與方 法。而彭朋群學長在實驗中給我的指導與幫助、訓練我獨立思考的能力,以解決 實驗上所遭遇的問題。同時在生活上的指引、照顧與提攜,點點滴滴更是讓我銘 記在心,沒有學長的幫助,我必定無法完成本論文。

同時也非常感謝口試委員賴暎杰老師、陳智弘老師與馮開明老師不吝於提供 多年來研究的寶貴經驗,豐富了本論文的內涵而使得本論文因而增色許多。諸位 口試委員都可以稱得上為最佳的研究典範。

也由衷感謝曾弘毅學長、葉建弘學長、錢鴻章學長、周森益學長、彭煒仁學 長、黃明芳學姊、鄭翰陽學長、葉信宏學長以及粘芳芳學姊在研究與生活上的熱 心指導與分享,創造實驗室和協的氣氛,使我更能融入與此一研究團隊中。

另外也感謝盈傑、至揚、坤錫以及淑玲在這兩年與我共同努力,使我在研究 的路途上不曾感覺到孤獨。學弟妹玉婷、小強與重佑,由於你們的加入,使得實 驗室更充滿著生氣,而讓我可以在愉快的環境中從事研究。

而在我身旁不斷給我鼓舞的女友鈺棋,感謝你在這一路上的扶持,在失落時 能給予我支持以及溫暖的安慰。而一路上與你分享生活之中的點點滴滴,使我總 是可以擺脫低潮而帶著愉悅的心情迎接新的挑戰。

而我摯愛的家人們,從小至今你們不斷的給我關懷。在我不如意的時候,總 是給我鼓勵。然而一路走來,卻增添了許多你們的辛勞,在此由衷感謝你們的付 出,我才有前進的動力,沒有你們的犧牲,則必定沒有今日的我。

要感謝的人很多,在此向所有曾經給我幫助的人,致上我最真摯的敬意,謝 謝你們。

謹以此論文,獻給我最摯愛的家人。

iii

中文摘要····· 英文摘要···· 誌謝····· 目錄··· 圖目錄···	i ii ii iv vi
第一章、 序論	···· 01
1.1 研究動機····· 1.2 文獻回顧····· 1.3 論文架構·····	···· 01 ···· 02 ···· 03
第二章、 Fabry-Pérot 雷射二極體自我注入之線性共振腔架構	···· 05
 2.1 實驗簡介 2.2 實驗架構 2.3 實驗結果 2.4 結論	···· 05 ···· 07 ···· 09 ···· 20 ···· 21
 3.1 實驗簡介····· 3.2 實驗架構····· 3.3 實驗結果···· 3.4 結論··· 	···· 21 ···· 21 ···· 24 ···· 34
第四章、 Fabry-Pérot 雷射二極體外部注入之架構	35
 4.1 實驗簡介····· 4.2 實驗架構····· 4.3 實驗結果···· 4.4 結論···· 	···· 35 ···· 37 ···· 39 ···· 52

第五	章	`	結論…	•••••	• • • • • • • • • • •		•••••	•••••	•••••	•••••		••••	53
5 5 5	. 1 . 2 . 3	Fabr Fabr 自我	y-Pérot y-Pérot 注入與	雷射二; 雷射二; 外部注,	極體自: 極體外: 入的比:	我注入。 部注入。 較	之架構 之架構						53 54 55
參考	穴	獻…		•••••	•••••	•••••		•••••		•••••	•••••	•••••	57

圖目錄

圖2.1	S. Yang 提出之波長可調脈衝雷射架構	06
圖2.2	Fabry-Pérot 雷射二極體自我注入之線性共振腔實驗架構	08
圖2.3	FP-LD 在調變頻率 908.38MHz 以及驅動電流 11.4mA 時的增益頻	
	譜	11
圖2.4	不同波長系統輸出的 SMSR 以及脈衝寬度	12
圖2.5	系統在不同波長時的輸出頻譜	14
圖2.6	(a)波長在 1534.04nm 時的輸出脈衝波形	14
圖2.6	(b)波長在 1537.08nm 時的輸出脈衝波形 ······	15
圖2.6	(c)波長在 1540.20nm 時的輸出脈衝波形	15
圖2.6	(d)波長在 1542.52nm 時的輸出脈衝波形 ······	16
圖2.6	(e)波長在 1544.92nm 時的輸出脈衝波形	16
圖2.6	(f)波長在 1548.04nm 時的輸出脈衝波形	17
圖2.6	(g)波長在 1552.00nm 時的輸出脈衝波形 ······	17
圖2.6	(h)波長在 1555.12nm 時的輸出脈衝波形 ······	18
圖2.6	(i)波長在 1558.28nm 時的輸出脈衝波形	18
圖2.6	(j)波長在 1561.48nm 時的輸出脈衝波形 ······	19

1896

圖3.1	Fabry-Pérot 雷射二極體自我注入之環狀共振腔實驗架構	22
圖3.2	FP-LD 在調變頻率 2000MHz 以及驅動電流 15.6mA 時的增益頻	
	譜	25
圖3.3	不同波長時系統輸出的 SMSR 以及脈衝寬度	26
圖3.4	系統在不同波長時的輸出頻譜	28
圖3.5	(a)波長在 1523.42nm 時的輸出脈衝波形	28
圖3.5	(b)波長在 1528.04nm 時的輸出脈衝波形 ······	29
圖3.5	(c)波長在 1532.72nm 時的輸出脈衝波形	29
圖3.5	(d)波長在 1537.40nm 時的輸出脈衝波形 ······	30
圖3.5	(e)波長在 1542.08nm 時的輸出脈衝波形 ······	30
圖3.5	(f)波長在 1546.76nm 時的輸出脈衝波形	31
圖3.5	(g)波長在 1551.50nm 時的輸出脈衝波形 ······	31
圖3.5	(h)波長在 1556.42nm 時的輸出脈衝波形 ······	32
圖3.5	(i)波長在 1561.22nm 時的輸出脈衝波形	32
圖3.5	(j)波長在 1565.30nm 時的輸出脈衝波形	33
圖3.5	(k)波長在 1570.16nm 時的輸出脈衝波形	33

圖4.1	D. N. Wang 提出之波長可調外部注入脈衝雷射架構 36
圖4.2	Fabry-Pérot 雷射二極體外部注入之實驗架構
圖4.3	EDFA 的 backward ASE 以及其經過可調濾波器的頻譜 40
圖4.4	(a)FP-LD 在調變頻率 2000MHz 以及驅動電流 15.8mA 時的增益頻
	譜
圖4.4	(b)FP-LD 經過濾波器後的輸出訊號41
圖4.4	(c)在 ASE 外部注入情況下,系統的輸出頻譜41
圖4.5	(a)加入光隔離器阻絕 ASE 外部注入的系統架構43
圖4.5	(b)加入光隔離器阻絕 ASE 外部注入後,系統的輸出頻譜43
圖4.6	不同波長時系統輸出的 SMSR 以及脈衝寬度 44
圖4.7	系統在不同波長時的輸出頻譜 45
圖4.8	(a)波長在1527.125nm時的輸出脈衝波形46
圖4.8	(b)波長在1531.000nm時的輸出脈衝波形46
圖4.8	(c)波長在1534.900nm時的輸出脈衝波形 ······47
圖4.8	(d)波長在1537.975nm時的輸出脈衝波形 ························47
圖4.8	(e)波長在1541.100nm時的輸出脈衝波形 ·······48
圖4.8	(f)波長在 1545.050nm 時的輸出脈衝波形 ·······48
圖4.8	(g)波長在1548.225nm時的輸出脈衝波形 ·······49
圖4.8	(h)波長在1551.400nm時的輸出脈衝波形49
圖4.8	(i)波長在 1554.600nm 時的輸出脈衝波形
圖4.8	(j)波長在 1557.800nm 時的輸出脈衝波形
圖4.8	(k)波長在1561.775nm時的輸出脈衝波形

第一章、序論

1.1 研究動機

光纖通訊的發展源自於 1966 年華裔科學家高錕博士提出利用低 損耗的介質波導作為光的傳輸媒介[1]。而後在 1979 年由美國康寧公 司(Corning Inc.)成功研發出可供光纖通訊使用的光纖,其在波長 1550nm 的光訊號傳輸損耗大約為 0.2dB/km,開啟後來光纖通訊發展 的大門。隨後在 1985 年由 Pools 以及 Mears 提出並製造出第一部掺 鉺光纖放大器(Erbium Doped Fiber Amplifier),解決了以往在長距離傳 輸時,使用電放大器需要光電、電光訊號的轉換而造成光纖通訊上傳 輸速率的問題,使得光纖通訊的傳輸速率大幅提升[2-3]。而光纖光柵 (Fiber Bragg Grating)等其他光纖通訊元件的發明,使得光纖通訊系統 的效能與用途大幅提升[4-5]。而由於光纖通訊系統具低耗損、高容 量、高傳輸速率、不受電磁波干擾、質量輕、體積小、保密性佳等優 異特性,自 1970 年代以來便一直快速逢勃的發展。

在發展遠距離與高速光纖通訊系統上,會使用短脈衝的雷射光源 來傳送資訊,利用主動或被動鎖模雷射技術來產生短脈衝是一種簡單 與普遍的方法。主動鎖模技術主要是利用電子調變、電光或聲光效 應,直接對光作振幅或相位的調變來產生短脈衝。被動鎖模則是利用 被動元件的非線性效應來產生短脈衝。

1.2 文獻回顧

本論文在脈衝雷射的實驗主要包含兩大部分,即利用 Fabry-Perot 雷射二極體(Fabry-Perot Laser Diode,以下簡稱 FP-LD)自我注入 (Self-Seeded)的架構以及外部注入(External-Injection)的架構產生脈衝 雷射。Fabry-Perot 雷射二極體自我注入的架構,系統中必須存在一個 共振腔,使得訊號可以利用共振腔再注入回 Fabry-Perot 雷射二極體, 產生訊號品質較佳的脈衝光。而在最近幾年,利用低成本的 FP-LD 加以調變再搭配可調濾波器的環型光纖雷射來產生波長可調的脈衝 雷射技術已經被提出,其可調範圍可以達到為 4.8nm[6-22]。另外也 有提出使用可調變的 FP-LD 以及高雙折射係數的光纖所組成的光纖 反射迴路(Fiber Loop Mirror)作為可調雷射脈衝的濾波器,進而產生主 動鎖模的脈衝雷射脈衝雷射。此架構可以調整的波長大約為 10nm, 而脈衝寬度則介於 60ps-70ps 之間[23]。

而外部注入脈衝雷射,則是利用外部的連續光來注入到雷射光源 內,使得光源產生更理想的脈衝訊號。早期的做法是使用可調雷射作 為外部連續光注入[24-29]。然而因為可調雷射價格非常昂貴,因此有 文獻提出較經濟的做法,即是以FP-LD 經過濾波器或光纖光柵,選 出所要的波長,作為外部注入的訊號[30-32]。雖然 FP-LD 的價格便 宜,然而因為有模態限制進而影響可調的範圍,因此實際應用上會有 很大的限制。

1.3 論文架構

本論文中將首先在第二章內提出利用 Fabry-Pérot 雷射二極體來 架設一波長可調的鎖模線性共振腔光纖雷射。利用在共振腔內加入一 個可調帶通濾波器(Tunable Filter),使得此光纖雷射可以很容易地調 整波長。同時此線性共振腔架構可以產生非常好的輸出表現,其具有 超過 30dB 的旁模抑制比(Side-Mode Suppression Ratio,以下簡稱 SMSR),可調範圍達到 27nm;在雷射在 908.39MHz 的調變頻率下, 雷射輸出的脈衝寬度則介於 53.2ps-80.4ps 之間。

在第三章提出一新型架構,而針對第三章架構的缺點進行改善。 系統包含一個被調變的 Fabry-Pérot 雷射二極體、一組掺鉺波導放大 器(Erbium Doped Waveguide Amplifier)用於雷射光源的放大。同時在 不改變雷射調變頻率的條件下,為了控制脈衝光在不同波長下的 SMSR 與脈衝寬度,我們在環型的共振腔內加入了一個可調的光延遲 器(Varibale Optical Delay Line)。在此系統架構下,輸出脈衝的 SMSR 將達到 33.5dB 以上,同時可調範圍可以達到 46 nm。

在第四章我們提出一個新型且簡單的架構來完成外部注入的脈 衝雷射。本系統主要只有利用3個元件,包含:經調變的Fabry-Pérot 雷射二極體、可調濾波器以及摻鉺光纖放大器。其中摻鉺光纖放大器 的放大器自發輻射(Amplified Spontaneous Emission,以下簡稱 ASE) 可以作為外部連續光訊號注入到雷射。除此之外,雷射所發射出的脈 衝訊號仍然可以經由掺鉺光纖放大器進行放大。在雷射的調變頻率固 定在 2000MHz 的條件之下,系統的可調頻寬達到 34.5nm,同時 SMSR 也達到 32dB 以上,輸出訊號的脈衝寬度則介於 49.3ps-65.3ps 之間。

第二章、Fabry-Pérot 雷射二極體 自我注入之線性共振腔架構

2.1 實驗簡介

在分波多工(Wavelength Division Multiplexing)或分時多工(Time Division Multiplexing)的光纖通訊系統或是高速光交換器(high-speed optical switching)與光纖感測系統(optical fiber sensor systems)上,已經 有愈來越多的研究專注於波長可調的脈衝雷射上。在實現此一脈衝光 源的研究上,主動鎖模的光纖雷射則是其中最引人注意的。而目前有 幾種架構用來實現使環型主動鎖模光纖雷射,包含利用 Mach-Zehnder 調變器或是電吸收調變器等。而近幾年來,許多研究提出利用經調變 40000 的 Fabry-Pérot 雷射二極體或回饋分配式(Distributed FeedBack)雷射配 合可調濾波器來製作波長可調的光纖雷射[16-22]。此類系統波長可調 範圍目前可以達到 4.8nm。而目前提出主動鎖模脈衝雷射中,其效能 表現較為優異者,其架構如圖 2.1 所示,利用 FP-LD 光源搭配可調 濾波器組成的環型共振腔雷射架構[23],此架構中的濾波器是由壓電 (piezoelectric)陶瓷以及高雙折射係數(high birefringence)光纖組成的 光纖反射迴路作為濾波器所構成,為一壓控的濾波元件。

其實驗架構的主要原理為 FP-LD 的輸出,經過光循環器(Optical Circulator)的 port2 到 port3,利用掺鉺光纖放大器放大,再經過波長 可調帶通濾波器的濾波後,主要的脈衝訊號將只包含濾波器與 FP-LD 相對應的波長,再經過光循環器的 port1 到 port2 注入回 FP-LD,藉 由共振腔腔長以及 FP-LD 的調變頻率的調整,使系統輸出脈衝光源。 而系統輸出脈衝的波長可調範圍大約為 10nm,而系統輸出脈衝光源。 先纖雷射的研究方面,我們提出一個的新架構。在光源部份,使用的 仍然是 FP-LD。利用 FP-LD 以及光纖反射迴路來架設線性共振腔。 另外使用可調濾波器使得脈衝雷射輸出的波長選擇可以獲得相當大 的彈性。相較於其他研究團隊所提出的架構,我們所以出的架構不僅 比較容易架設,同時擁有更大的波長調整範圍。

2.2 實驗架構

圖 2.2 為我們所提出的波長可調的主動鎖模線性共振腔光纖脈 衝雷射的架構。在此實驗架構中,共振腔部份包含有以下幾個元件: 一個經過調變的 Fabry-Pérot 雷射二極體(FP-LD)、一組摻鉺光纖放大 器(EDFA)作為光訊號放大之用、一個波長可調帶通濾波器(TF)作為系 統波長選擇之用、一個由偏極化控制器(PC)以及 2X2 的光偶合器 (Optical Coupler, C1)組成的光纖反射迴路。其中光偶合器(C1)的分光 比例為 30:70。

掺鉺光纖放大器是由波長在1480nm輸出功率為70mW的泵激雷射、9m 長的掺鉺光纖(Erbium Doped Fiber, EDF)以及 1480/1550 的WDM 光偶合器所組成。

在光纖反射迴路中的偏極化控制器(PC)的作用則是控制光纖反 射迴路的反射率,調整光纖反射迴路可以使系統達到最佳的輸出效 能。

圖 2.2 Fabry-Pérot 雷射二極體自我注入之線性共振腔實驗架構

- -

可調帶通濾波器是由 JDS Uniphase 所製造,波長可調的範圍為 1527nm-1562nm,而平均 3dB 損耗的頻寬則為 0.4nm。而光訊號在 1530nm、1545nm、1560nm 等不同波長通過此濾波器所造成插入損耗 則分別為 5.51dB、4.38dB、2.49dB,此元件之特性在長波長時的插入 損耗會小於短波長的插入損耗。

而本系統的 Fabry-Pérot 雷射二極體在操作溫度為 24°C 的環境 下,其臨界電流(threshold current)大約為 18mA、中心波長約為 1550nm、而模態間距(Mode Spacing)大約為 0.78nm。而驅動 FP-LD 的射頻(Radio Frequency)訊號為弦波訊號,此射頻訊號經過一偏壓電 路後,直接對 FP-LD 進行增益開闢(gain switching)操作。

因此實驗架構的主要原理為 Fabry-Pérot 雷射二極體的輸出經過 可調濾波器後後,主要訊號將會只包含濾波器與 FP-LD 對應的波長, 此訊號在經過 EDFA 的放大,再經由光纖反射迴路後循原路徑注入回 FP-LD,藉由共振腔腔長以及 FP-LD 的調變頻率的調整,使得系統輸 出脈衝光源。

2.3 實驗結果

在實驗中,為了同時量測系統輸出在頻域(Frequency Domain)以 及時域(Time Domain)的訊號,我們在光纖反射迴路的一端接上一個 分光比率為 25:75 的 2X2 光偶合器(C2),其輸出端分別接到光譜分析 儀 (Optical Spectrum Analysis, OSA) 以及快速取樣示波器 (Oscilloscope)。而 FP-LD 的驅動電流則控制在略低於臨界電流 6.6mA。如同先前所述, FP-LD 的中心波長在 1550nm,因此我們在 選取調變頻率時,先將可調濾波器的中心波長調整到 1550nm,調整 FP-LD 的調變頻率,同時觀察 OSA 以及 Oscilloscope 的訊號,使得 FP-LD 的調變頻率以及系統的共振腔長達到最佳的自我注入狀態 時,設定此頻率為系統的調變頻率,此時調變頻率設定為 908.39MHz。

圖 2.3 則是 FP-LD 在此調變頻率以及驅動電流的條件下所產生 的輸出頻譜。在此線性共振腔的系統架構中,系統的基本頻率 (Fundamental Frequency)為 3.74MHz。而可調濾波器置於線性共振腔 內,用來選擇雷射的輸出波長。當可調濾波器的中心波長接近在 FP-LD 的輸出的任何一個模態時,則 FP-LD 的輸出訊號經過可調濾波 器後,則會被限制在此一特定的波長,因此我們所提出的雷射架構目 前只能作為單一波長輸出的脈衝雷射。而因為此線性共振腔架構可以 結合 FP-LD 的自我注入機制與可調濾波器,因此系統的輸出將可以 產生很穩定的短脈衝訊號,同時藉由可調濾波器可以很容易的改變系 統輸出的脈衝波長。

圖 2.3 FP-LD 在調變頻率 908.38MHz 以及驅動電流 11.4mA 時的增益頻譜

圖 2.4 顯示在可調濾波器的中心波長與不同的 FP-LD 模態對應 時,系統輸出的脈衝訊號的 SMSR 以及脈衝寬度。其中最短的脈衝寬 度為 53.2ps,其對應的 SMSR 為 34.5dB。而我們所提出的線性共振 腔的光纖脈衝雷射系統輸出的可調範圍在 1534.04nm-1561.48nm,達 到 27nm 以上。在圖 2.4 中我們可以觀察到脈衝寬度在中心波長比較 短,而在短波長以及較長波長的部分脈衝寬度會增加,主要原因是因 為我們系統的共振腔腔長固定,而調變頻率的選擇是以中心波長調整

圖 2.4 不同波長時系統輸出的 SMSR 以及脈衝寬度

在 1550nm 的條件之下所選擇,而由於各波長的光訊號由於群速 (Group Velocity)不同的影響,因此在光纖的行進速度並不一致,導致 在非中心波長部分光訊號經過共振腔自我注入 FP-LD 時,與 FP-LD 的調變頻率產生了不匹配的狀況,使得訊號品質下降,進而影響到脈 衝寬度以及 SMSR。而此效應在越遠離中心波長時影響越明顯,因此 我們可以看到圖 2.4 中脈衝寬度變化的趨勢。當然此影響可以由改變 調變頻率來解決,然而由於在應用上希望系統的調變頻率固定,因此 並無法在如此寬的波長範圍內改善其鎖模機制。然而我們可以利用在 共振腔內加入一可調的光延遲器,藉此控制不同波長的共振腔長,如 此波長可調範圍以及調變頻率將不再被鎖模機制所限制[33]。

至於圖 2.4 中的 SMSR 變化,除了上述共振腔與調變頻率的不匹 配造成的影響之外,EDFA 在 ASE 的頻譜分布也會造成影響,我們都 知道 EDFA 的 ASE 在 1530nm 附近會產生一個 peak,此效應也會造 成 1530nm 附近的光輸出訊號的 SMSR 降低。另外如前面所說,可調 帶通濾波器的插入損耗在 1530nm、1545nm、1560nm 等不同波長分 別為 5.51dB、4.38dB、2.49dB,因此插入損耗的差異也是影響到系統 SMSR 的因素。綜合以上幾個因素,SMSR 分布的趨勢則是在長波長 優於短波長。然而此架構在可調範圍 27nm 內,其 SMSR 都仍然在 30dB 以上。

圖2.5以及圖2.6分別為可調濾波器的中心波長與不同的FP-LD 模態對應時,在光譜分析儀以及快速取樣示波器上所觀察到頻譜分布 以及脈衝波形。

圖 2.6(a) 波長在 1534.04nm 時的輸出脈衝波形

圖 2.6(c) 波長在 1540.20nm 時的輸出脈衝波形

圖 2.6(e) 波長在 1544.92nm 時的輸出脈衝波形

圖 2.6(g) 波長在 1552.00nm 時的輸出脈衝波形

圖 2.6(i) 波長在 1558.28nm 時的輸出脈衝波形

2.4 結論

我們提出一個新型的架構來完成主動鎖模線性共振腔的可調雷 射。其脈衝輸出主要是利用外部共振腔來完成 FP-LD 的自我注入機 制。系統的可調範圍達到 27nm 以上同時 SMSR 亦超 30dB 以上。在 頻率 908.39MHz 的調變下,不同波長的脈衝寬度則介於 53.2ps-80.4ps。雖然我們提出一個可調範圍相當寬的可調脈衝雷射, 然而因為共振腔腔長與調變頻率的不匹配,造成了系統在非中心波長 部分輸出脈衝寬度的不一致以及導致 SMSR 下降,使得此系統架構的 可調範圍無法再延伸。為了解決此一問題,我們將在下一章提出一個 共振腔腔長可調的新架構,嘗試來解決先前所討論的問題。

第三章、Fabry-Pérot 雷射二極體

自我注入之環狀共振腔架構

3.1 實驗簡介

在第二章所提出的架構中,由於系統的共振腔腔長無法控制,在 不改變 FP-LD 的調變頻率的情況下。各波長的光訊號由於群速的影 響,因此在光纖的行進速度並不一致,導致在非中心波長部分光訊號 經過共振腔自我注入 FP-LD 時,與 FP-LD 的調變頻率產生了不匹配 的狀況,使得訊號品質下降,進而影響到脈衝寬度以及 SMSR。而此 效應在越遠離中心波長影響越明顯,使得此系統架構的可調範圍無法 再延伸。因此在此架構中,我們提出利用可調共振腔的架構來架設一 波長可調的主動鎖模環狀光纖雷射。

3.2 實驗架構

圖 3.1 為我們所提出的波長可調的主動鎖模環型共振腔光纖脈 衝雷射的架構。在此實驗架構中,共振腔部份包含有以下幾個元件: 一個經過調變的 Fabry-Pérot 雷射二極體(FP-LD)、一個偏極化控制器 (PC)、一個光循環器(OC)、一組摻鉺波導放大器(EDWA)作為光訊號 放大之用、一個波長可調的帶通濾波器(TF)作為系統波長選擇之用、 一個分光比例為 50:50 的 1X2 的光偶合器(C1),使得部分光訊號作為

圖 3.1 Fabry-Pérot 雷射二極體自我注入之環狀共振腔實驗架構

-

系統的輸出,部分的光訊號作為自我注入的訊號。另外我們在環型共振腔內增加了一個可調的光延遲器(VODL),作為調整環型共振腔的腔長之用。

掺鉺波導放大器是由 Teem Photonics 所製造,其最高的輸出功率約為 12dBm。

可調帶通濾波器則是一個 Fabry-Pérot 濾波器,其插入損耗大約為 1.9dB,自由頻譜範圍(Free Spectral Range)以及 3dB 損耗的頻寬分別約為 48.7nm 以及 0.53nm。

而FP-LD 則是由 Appointech, Inc.所生產的,為一 InGaAsP 元件 且雷射並無抗反射渡膜(antireflection coating),中心波長 1550nm,臨 界電流在 25°C 時為 18mA,模態間距約為 0.8nm。而驅動 FP-LD 的 射頻訊號為弦波訊號,此射頻訊號經過一偏壓電路後,直接對 FP-LD 進行增益開闢操作。而偏極化控制器則是使得輸出脈衝產生最佳的 SMSR,因為脈衝經過共振腔回到偏極化控制器再重新注入 FP-LD 時,由於偏極化控制器使得脈衝光可以維持在同一個偏振方向注入 FP-LD,進而使 FP-LD 的輸出達到最佳的效率。

手調的光延遲器是由 General Photonics Corp.所生產,在系統中用來控制共振腔的腔長,其插入損耗約為 1.2dB。

因此實驗架構的主要原理為 FP-LD 的輸出經過偏極化控制器,

-23-

經過光循環器的 port2 到 port3,經過可調濾波器後的濾波後,訊號將 主要只包含濾波器與 FP-LD 對應的波長,此訊號在經過 EDWA 的放 大後,利用 1X2 的光偶合器將部分訊號作為系統輸出,部分訊號在 經過光延遲器經由光循環器的 port1 到 port2,經過偏極化控制器後再 注入 FP-LD,藉由共振腔腔長以及 FP-LD 的調變頻率的調整,使得 系統輸出脈衝光源。

3.3 實驗結果

在實驗中,為了同時量測系統輸出在頻域以及時域的訊號,我們 在光偶合器(C1)的一端接上一個分光比率為 50:50 的 1X2 光偶合器 (C2),其輸出端分別接到光譜分析儀(OSA)以及快速取樣示波器 (Oscilloscope)。而 FP-LD 的驅動電流則控制在略低於臨界電流 2.4mA。由於我們在環型共振腔內加入了一個可調的光延遲器,使得 系統的共振腔的腔長可調,因此直接將 FP-LD 的調變頻率固定,而 在此實驗中我們將調變頻率設定為 2000MHz。藉由改變共振腔的腔 長使得在不同波長的脈衝訊號都可以與 FP-LD 的調變頻率匹配,產 生最佳的脈衝輸出。圖 3.2 則是 FP-LD 在此調變頻率以及驅動電流 的條件下所產生的輸出頻譜。而可調的 Fabry-Pérot 濾波器則是用來 選擇輸出波長,當濾波器的中心波長被調整到與 FP-LD 的任何一個模 態相同的時候,則 FP-LD 的機制會限制電射的輸出功率幾乎集中在此

-24-

一波長。

圖 3.2 FP-LD 在調變頻率 2000MHz 以及驅動電流 15.6mA 時的增益頻譜

圖 3.3 顯示在可調濾波器的中心波長與不同的 FP-LD 模態對應 時,系統輸出的脈衝訊號的 SMSR 以及脈衝寬度。首先我們來觀察 不同波長的輸出脈衝的脈衝寬度,我們可以發現即使的調變頻率都固 定為 2000MHz 的條件之下,系統的可調範圍在 1523.42nm-1570.16nm 之間,達到了 46.6nm,同時脈衝寬度也都可以維持在 45ps 附近。這 是由於不同波長的光訊號即使因為群速不同的影響,使得光訊號行進

圖 3.3 不同波長時系統輸出的 SMSR 以及脈衝寬度

速度不一致,然而我們利用可調的光延遲器調整共振腔的腔長,使得 在不同波長的光脈衝,仍然可以在時序上很理想的自我注入到 FP-LD,使得在不同波長中,系統的注入效率都可以達到很理想的效 果。加入可調光延遲器的系統不僅解決在不同波長間共振腔長與調變 頻率的不匹配,同時也改善了訊號的 SMSR,如圖 3.3 所示,在系統 可調的範圍內, SMSR 都可以達到 33.5dB 以上,也較第二章提出的 架構為高。同時原本因為 SMSR 降低以及脈衝寬度變寬而被侷限的波 長可調範圍,也因此提升了。我們可以注意到系統可調的範圍高達了 46.6nm,幾乎與可調濾波器的可調範圍 48.7nm 相當接近,因此可以 證明事實上系統的可調範圍事實上是被可調濾波器的可調範圍所限 制,如果我們可以找到一個波長可調範圍更寬廣的濾波器配合適當的 光放大器以及 FP-LD,我們仍然可以使得波長的可調範圍更進一步提 升。

至於觀察在不同波長的 SMSR 分佈狀態,可以觀察到在 1545nm 附近輸出脈衝的 SMSR 要優於 1520nm 以及 1560nm 部份,主要的原 因是由於 FP-LD 的中心波長在 1545nm,使得系統的注入的增益較 佳。另外 EDWA 的 ASE 在 1530nm 附近會產生 peak,因此 EDWA 的 增益頻譜同樣的也會影響到系統的 SMSR。

圖 3.4 以及圖 3.5 分別為可調濾波器的中心波長與不同的 FP-LD 模態對應時,在光譜分析儀以及快速取樣示波器上所觀察到頻譜分布 以及脈衝波形。

圖 3.5(a) 波長在 1523.42nm 時的輸出脈衝波形

圖 3.5(c) 波長在 1532.72nm 時的輸出脈衝波形

圖 3.5(e) 波長在 1542.08nm 時的輸出脈衝波形

圖 3.5(g) 波長在 1551.50nm 時的輸出脈衝波形

圖 3.5(i) 波長在 1561.22nm 時的輸出脈衝波形

圖 3.5(k) 波長在 1570.16nm 時的輸出脈衝波形

3.4 結論

我們提出一個環狀共振腔的架構來完成主動鎖模的可調雷射。無 論是可調範圍以及脈衝訊號的表現上,都是目前文獻上最為優異的架 構。其脈衝輸出主要是利用外部共振腔來完成 FP-LD 的自我注入機 制。而為了解決前一個架構的缺點,我們利用在共振腔內加入一個可 調的光延遲器,有效的解決了前一個架構中共振腔腔長與調變頻率的 不匹配的問題,使得系統的可調範圍達到了 46.6nm 以上,同時 SMSR 介於 33.5dB-39dB 之間,在調變頻率為 2000MHz 的條件之下,不同 波長的脈衝寬度都可以被控制在 45ps 附近。

理論上此架構的可調範圍應該可以再延伸,然而受限於可調濾波器的限制,因此目前只能調整到46.6nm。如果我們可以找到一個波 長可調範圍更寬廣的濾波器配合適當的光放大器以及 FP-LD,系統仍 然可以再更進一步提高波長的可調範圍。

第四章、Fabry-Pérot 雷射二極體 外部注入之架構

4.1 實驗簡介

在分波多工與分時多工的光纖通訊系統或是光纖感測系統的發 展上,波長可調的雷射脈衝模組都佔有非常高的重要性。而利用低價 的 FP-LD 調變後使其發出脈衝訊號是相當簡單而且經濟的做法。為 了改善波長可調系統的脈衝特性,使用外部訊號注入 FP-LD 的架構 已經被提出[24-32]。注入的外部訊號一般而言都是連續光的可調雷射 光源。當注入的外部訊號與調變過的 FP-LD 的輸出頻中任何一個模 態波長一致, FP-LD 即可以發射出脈衝訊號。但是有鑑於連續光的可 411111 調雷射光源價格居高不下,近年來有人提出使用直流驅動的 FP-LD 搭配布拉格光栅最為外部注入光源[31]。在此架構中,其輸出訊號的 SMSR 大約為 20dB。也有研究提出使用直流驅動的 FP-LD,配合可 調濾波器以及 EDFA 做為外部注入的光源[32]。如圖 4.1 所示,其架 構是利用兩個波長對應的 FP-LD, 一個直流驅動作為外部注入的連續 光(FP2);一個經過調變,受到外部注入後產生脈衝訊號(FP1)。工作 原理是由直流的 FP2 發送連續光訊號,經過可調濾波器後利用 EDFA 放大,此時即為單一波長的連續光注入到受調變的 FP1,

-35-

圖 4.1 D.N. Wang 提出之波長可調外部注入脈衝雷射架構

FP1 因而產生出脈衝訊號。雖然此架構避免使用昂貴的可調雷射作為 外部注入的光源,然而 FP-LD 並不是一個寬頻的光源,因此利用 FP-LD 作為外部注入的光源,可以選擇的波長將相當有限。同時系統 使用兩個 FP-LD,然而每一個 FP-LD 的模態間距以及波長分布都不 盡相同,因此也影響到系統的注入效率。儘管如此,本系統架構的 SMSR 仍可以高於 25dB,但可調範圍只達到 9nm。而不論是何種架 構,其系統中都放置有兩個 FP-LD,可調範圍也將會被兩個 FP-LD 的模態限制住而難以產生寬頻的脈衝訊號。

4.2 實驗架構

而本論文中提出一個非常簡單的架構如圖 4.2 所示,利用外部的 訊號注入到被調變的 FP-LD。在此實驗架構中總共包含了以下元件: 一個經過調變的 Fabry-Pérot 雷射二極體(FP-LD)、一組摻鉺光纖放大 器(EDFA)作為光訊號放大以及外部訊號住入之連續光、一個波長可 調帶通濾波器(TF)作為系統波長選擇之用。

掺鉺光纖放大器是由波長在 980nm 輸出功率為 50mW 的泵激雷射、14m 長的掺鉺光纖(EDF)以及 980/1550 的 WDM 光偶合器所組成。

可調帶通濾波器是由 JDS Uniphase 所製造,波長可調的範圍為 1527nm-1562nm,而平均 3dB 損耗的頻寬則為 0.4nm。而光訊號在 1530nm、1545nm、1560nm 等不同波長通過此濾波器所造成插入損耗 則分別為 5.51dB、4.38dB、2.49dB,此元件之特性在長波長時的插入 損耗會小於短波長的插入損耗。

而 FP-LD 則是由 Appointech, Inc.所生產的,為一 InGaAsP 元件 且雷射並無抗反射渡膜,中心波長 1550nm,臨界電流在 25°C 時為 18mA,模態間距為 0.8nm。而驅動 FP-LD 的射頻訊號為弦波訊號, 此射頻訊號經過一偏壓電路後,直接對 FP-LD 進行增益開關操作。

圖 4.2 Fabry-Pérot 雷射二極體外部注入之實驗架構

- -

因此實驗架構的主要原理為利用 EDFA 的 backward ASE 作為外 部注入的連續光訊號。當濾波器的中心波長被調整到與 FP-LD 的任 何一個模態相同的時候,backward ASE 經過可調濾波器後注入到經 調變過後的 FP-LD 時,可以鎖住 FP-LD 的模態。此時 FP-LD 所發出 的脈衝訊號經過可調濾波後,還可以經由 EDFA 再度的放大。因此在 此架構中,EDFA 同時具有外部連續光訊號注入以及系統輸出訊號的 放大之用。

4.3 實驗結果

在實驗中,為了同時量測系統輸出在頻域以及時域的訊號,我們 在 EDFA 之後接上一個分光比率為 50:50 的 1X2 光偶合器(C),其輸 出端分別接到光譜分析儀(OSA)以及快速取樣示波器(Oscilloscope)。

圖 4.3 分別為 EDFA 的 backward ASE 以及其經過可調濾波器的頻 譜,此時濾波器中心波長設定在 1545nm 附近。可以看到插入損耗大 約為 4dB,距離中心波長一個模態間距(約 0.8nm)的部分插入損耗大 約為 21.5dB,此時 SMSR 大約為 17.5dB。而圖 4.4(a)則是在沒有 EDFA 的 ASE 注入時,在圖 4.1 中的 A 點量測的訊號,即為調變後 FP-LD 的輸出訊號。而系統 FP-LD 的驅動電流則控制在略低於臨界電流 2.2mA,在實驗中我們將調變頻率設定為 2000MHz,中心波長大約為 1545nm。而圖 4.4(b)則是在沒有 EDFA 的 ASE 注入時,在圖 4.2

圖 4.3 EDFA 的 backward ASE 以及其經過可調濾波器的頻譜

中的B點所量測的訊號,即為調變後FP-LD的輸出訊號經過可調濾 波器的訊號,此時可以觀察到此時訊號的SMSR大約為17.5dB。而 圖4.4(c)則是在有EDFA的ASE注入時,在圖4.2中的C點所量測 的訊號,即為經過EDFA的backwardASE經過可調濾波器再注入到 調變後FP-LD,而FP-LD的輸出訊號經過可調濾波器的訊號在利用 EDFA放大後的訊號,即為此系統設計所要得到的訊號。此時可以觀 察到此時系統加入了EDFA的ASE之後,輸出訊號的功率以及SMSR

- (a) FP-LD 在調變頻率 2000MHz 以及驅動電流 15.8mA 時的增益頻譜
- (b) FP-LD 經過濾波器後的輸出訊號
- (c) 在 ASE 外部注入情況下,系統的輸出頻譜

分別提高了為 34.3dB 以及 19dB, SMSR 因而達到了 36.5dB。

為了證明 EDFA 的 backward ASE 的確可以提高系統的 SMSR, 我們在圖 4.2 的 B 點放入了一個光隔離器(Isolator)。此隔離器的插入 損耗為 1dB, 而隔離的訊號損失為 48dB。加入了隔離器使得 EDFA 的 backward ASE 無法注入到 FP-LD, 然而 FP-LD 輸出的脈衝訊號仍 然可以經由 EDFA 放大,來量測圖 4.2 中 C 點的輸出訊號,如圖 4.5(a) 所示。在圖 4.5(b)中,我們可以觀察到在沒有 EDFA 的 backward ASE 的外部注入條件下,系統的輸出訊號 SMSR 大約只與 FP-LD 經過濾 波器所造成的效果差不多,因此我們可以發現外部注入的 ASE 的確 是可以有效抑制 FP-LD 其他的模態,進而提高系統的 SMSR。而至 於 ASE 的注入功率的高低則取決於系統輸出的 SMSR。我們慢慢增 411111 加 980nm 泵激雷射的功率調整 ASE 的輸出功率,直到 SMSR 不在增 加時,即為系統最佳之 SMSR,此時雷射的輸出功率大約為 50mW。 因為即使此時即使再增加 980nm 泵激雷射的功率, SMSR 亦不會再 增加,而維持在36.5dB。

-42-

圖 4.5(a) 加入光隔離器阻絕 ASE 外部注入的系統架構

圖 4.5(b) 加入光隔離器阻絕 ASE 外部注入後,系統的輸出頻譜

圖 4.6 顯示在可調濾波器的中心波長與不同的 FP-LD 模態對應 時,系統輸出的脈衝訊號的 SMSR 以及脈衝寬度。當 FP-LD 的調變 頻率固定在 2000MHz 時,系統輸出脈衝的寬度則介於

49.3ps-65.3ps。其中我們可以觀察到在短波長的脈衝寬度相較於長波長會比較短,

圖 4.6 不同波長時系統輸出的 SMSR 以及脈衝寬度

至於圖 4.6 中的 SMSR 變化,其中原因之一是由於 EDFA 在 ASE 的頻譜分布會造成影響,我們都知道 EDFA 的 ASE 在 1530nm 附近 會產生一個 peak,此效應也會造成 1530nm 附近的光輸出訊號的

SMSR 降低。另外如前面所說,可調帶通濾波器的插入損益在短波長 造成的損耗在 1530nm、1545nm、1560nm 等不同波長分別為 5.51dB、 4.38dB、2.49dB,也是影響到 SMSR 的因素。綜合以上幾個因素,SMSR 分布的趨勢則是在長波長優於短波長。然而此系統架構的輸出可調範 圍在 1527.12nm 至 1561.76nm,達到 34.5nm,同時其 SMSR 都仍然 在 30dB 以上。

圖 4.7 系統在不同波長時的輸出頻譜

圖 4.8(b) 波長在 1531.000nm 時的輸出脈衝波形

圖 4.8(d) 波長在 1537.975nm 時的輸出脈衝波形

圖 4.8(f) 波長在 1545.050nm 時的輸出脈衝波形

圖 4.8(h) 波長在 1551.400nm 時的輸出脈衝波形

圖 4.8(j) 波長在 1557.800nm 時的輸出脈衝波形

4.4 結論

我們提出一個新型、經濟且非常簡單的架構來完成外部注入的脈 衝雷射。本系統主要只有利用3個元件,包含:經調變的FP-LD、可 調濾波器以及EDFA。其中EDFA的backwardASE可以作為外部連 續光訊號注入到FP-LD。除此之外,FP-LD所發射出的脈衝訊號仍 然可以經由EDFA進行放大。同時我們也驗證了利用EDFA的外部注 入,的確可以使脈衝訊號的功率提高34.3dB以及SMSR提高19dB。 在FP-LD的調變頻率固定在2000MHz的條件之下,系統的可調範圍 因而提升至34.5nm,同時SMSR也超過32dB,輸出訊號的脈衝寬度 則介於49.3ps-65.3ps。相較於其他架構的外部注入可調雷射,本系統 無論是可調範圍以及脈衝訊號的表現上,仍然都具有相當優異的表現。

第五章、結論

5.1 Fabry-Pérot 雷射二極體自我注入之架構

本論文首先針對自我注入脈衝雷射的架構提出波長可調的主動 鎖模線性共振腔光纖脈衝雷射的架構。利用 Fabry-Pérot 雷射來架設 一波長可調的鎖模線性共振腔光纖雷射。利用在共振腔內加入一個可 調帶通濾波器,使得此光纖雷射可以很容易地動態調整波長。同時此 線性共振腔架構可以產生非常好的輸出表現,其具有超過 30dB 的 SMSR,同時可調範圍達到 27nm;而在系統以 908.39MHz 的調變頻 率下,雷射輸出的脈衝寬度則介於 53.2ps-80.4ps。

然而在此系統中,由於系統的共振腔腔長無法控制,在不改變 FP-LD 的調變頻率的情況下,由於不同波長的光訊號由於群速不同的 影響,因此在光纖的行進速度並不一致,導致在非中心波長部分光訊 號經過共振腔自我注入 FP-LD 時,與 FP-LD 的調變頻率產生了不匹 配的狀況,使得訊號品質下降,進而影響到脈衝寬度以及 SMSR。而 此效應在越遠離中心波長影響越明顯,使得此系統架構的可調範圍無 法再延伸。因此在第三章的架構中,我們在提出利用 FP-LD 來架設 一波長可調的主動鎖模環狀光纖雷射。包含一個被調變的 FP-LD,一 組 EDWA 用於雷射光源的放大。同時在不改變 FP-LD 的調變頻率 下,為了控制脈衝光在不同波長下的 SMSR 與脈衝寬度,我們在環 型的共振腔內加入了一個可調的光延遲器。我們利用可調的光延遲器 調整共振腔的腔長,使得在不同波長的光脈衝,仍然可以在時序上很 理想的自我注入到 FP-LD,使得在不同波長中,系統的注入效率都可 以達到很理想的效果。因為解決不同波長間共振腔長與調變頻率的不 匹配,在此系統架構下,輸出脈衝的 SMSR 將達到 33.5dB 以上,脈 衝寬度也可以控制在 45ps 附近,同時可調範圍可以達到 46nm。

理論上此架構的可調範圍應該可以再延伸,然而受限於可調濾波器的限制,因此目前只能調整到46.6nm。如果我們可以找到一個波 長可調範圍更寬廣的濾波器配合適當的光放大器以及 FP-LD,我們仍 然可以使得波長的可調範圍更進一步提高。

5.2 Fabry-Pérot 雷射二極體外部注入之架構

由於自我注入脈衝雷射都需要一個共振腔,使得 FP-LD 所發出 的脈衝光源得以經由共振腔在注入回 FP-LD,完成自我注入的機制。 而且共振腔的腔長與 FP-LD 的調變頻率也必須匹配良好,才能產生 效率較佳的脈衝輸出,因此在系統架構上顯得較為複雜。為了解決此 一問題,我們提出使用 EDFA 的 backward ASE 作為外部注入的連續 光訊號。當濾波器的中心波長被調整到與 FP-LD 的任何一個模態相 同的時候,backward ASE 經過可調濾波器後注入到經調變過後的 FP-LD 時,可以鎖住 FP-LD 的模態。此時 FP-LD 所發出的脈衝訊號

-54-

經過可調濾波後,還可以再度利用 EDFA 放大訊號。因此在此架構中,EDFA 同時具有外部連續光訊號注入以及系統輸出訊號的放大的效果。

利用 EDFA 的外部注入,可以提升脈衝訊號的功率 34.3dB 以及 SMSR 分別提高 19dB。在 FP-LD 的調變頻率固定在 2000MHz 的條 件之下,系統的可調頻寬因而提升至 34.5nm 同時 SMSR 也提高至 32dB,輸出訊號的脈衝寬度則介於 49.3ps-65.3ps。相較於先前其他的 系統,我們的確提出了一個較簡單可以實現外部注入可調雷射的架 構。

5.3 自我注入與外部注入的比較

首先,對於自我注入的系統而言,由於系統中具有一個共振腔, 使得系統架構相當複雜,使用元件較多使得系統的價格也相對昂貴。 其次,自我注入的注入光源也是脈衝訊號,因此注入的脈衝必須要與 FP-LD 的調變頻率匹配,否則注入效率將會降低,影響系統的效能。 縱然我們可以在系統中加入一個可調光遲延器來解決此一問題,然而 要微調光延遲器來對應不同波長的訊號,在系統操作上也是比較困難 的部分。然而由於加入了光延遲器,不論是在可調範圍、輸出脈衝的 脈衝寬度以及 SMSR 都有相當好的表現。

對於本論文所提出的外部注入的系統而言,系統架構非常簡單,

-55-

主要只有使用三個元件,包含:FP-LD、可調濾波器以及 EDFA。架 構非常的簡單,使得系統的成本相當低廉。而 EDFA 的 ASE 是一連 續的寬頻光源,因此不會有注入不匹配的問題,使得系統操作難度降 低許多。然而 ASE 不同波長具有不同的功率,使得系統輸出的脈衝 訊號也會隨著 ASE 功率變化而變動,無法如自我注入的脈衝雷射獲 得良好的控制。因此不論是在可調範圍、輸出脈衝的脈衝寬度以及 SMSR 的表現上不如前述的共振腔雷射出色。

參考文獻:

- [1] K.C. Kao and G.A. Hackham, "Dielectric-fibre surface waveguide for optical frequencies," *IEEE Proc.*, vol. 133, pp. 191, 1966.
- [2] S.B. Poole, D.N. Payne and M.E. Fermann, "Fabrication of low loss optical fibres containing rare-earth ions," *Electron. Lett.*, vol. 21, pp. 737, 1985.
- [3] R.J. Mears, L. Reekie, I.M. Jauncey, and D.N. Payne, "High gain rare-earth doped fibre amplifier operating at 1.55µm," *Proc. OFC*, Reno, NV, 1987.
- [4] K.O. Hill, Y. Fujii, D.C. Johnson, and B.S. Kawasaki,
 "Photosensitivity in optical fiber fabrication," *Appl. Phys. Lett.*, vol. 32, pp. 647, 1978.
- [5] B.S. Kawasaki, K.O. Hill, D.C. Johnson, and Y. Fujii, "Narrow-band Bragg reflectors in optical fibers," *Opt. Lett.*, vol. 3, pp. 66, 1978.
- [6] J. Shan Wey, J. Goldhar, and G.L. Burdge, "Active harmonic modelocking of an erbium fiber laser with intracavity Fabry–Perot filters," *IEEE J. Quantum Electron.*, vol. 15, pp. 1171, 1997.
- [7] M.J. Guy, J.R. Taylor, and K. Wakita, "10GHz 1.9ps actively modelocked fibre integrated ring laser at 1.3μm," *Electron. Lett.*, vol 33, 1630, 1997.
- [8] C.R.O. Cochlain, R.J. Mears, and G. Sherlock, in Conference on Optical Fiber Communication/International Conference on Integrated Optics and Optical Fiber Communication, 1993 OSA Technical Digest Series ,Optical Society of America, Washinton DC, Vol. 4, pp. 239, 1993.
- [9] E. M. Dianov, T. R. Maritrosian, O. G. Okhotnikov, V. M. Paramonov, and A. M. Prokhorov, in Conference on Optical Fiber Communication/ International Conference on Integrated Optics and Optical Fiber Communication, 1993 OSA Technical Digest Series, Optical Society of America, 1993.
- [10] C.R. Cochlain, R.J. Mears, and G. Sherlock, "Low threshold tunable soliton source," *IEEE Photon. Technol. Lett.*, vol. 5, pp. 25, 1993.
- [11] K. Chan and C. Shu, "Electrical switching of wavelength in actively modelocked fiber laser incorporating fiber bragg gratings," *Electron. Lett.*, vol. 36, pp. 42, 2000.
- [12] K. Tamura and M. Nakazawa, "Dispersion-tuned harmonically mode-locked fiber ring laser for self-synchronization to an external

clock," Opt. Lett., vol.21, pp. 1984, 1996.

- [13] S.P. Li and K.T. Chan, "Electrical wavelength-tunable actively mode-locked fiber ring laser with a linearly chirped fiber bragg grating," *IEEE Photon. Technol. Lett.*, 10, pp. 799, 1998.
- [14] S.P. Li and K.T. Chan, "Electrical wavelength tunable and multiwavelength actively mode-locked fiber ring laser," *Appl. Phys. Lett.*, vol. 72, pp. 1954, 1998.
- [15] X.P. Dong, S. Li, K.S. Chiang, M.N. Ng, and B.C.B. Chu, "Multiwavelength erbium-doped fiber laser based on a high-birefringence fiber loop mirror," *Electron. Lett.*, vol. 36, pp. 1609, 2000.
- [16] D. Huhse, M. Schell, J. Kaessner, D. Bimberg, I.S. Tarasov, A.V. Gorbachov, and D.Z. Garbuzov, "Generation of electrically wavelength tunable ($\Delta\lambda$ = 40nm) singlemode laser pulses from a 1.3 µm Fabry–Pérot laser by self-seeding in a fiber-optic configuration," *Electron. Lett.*, vol. 30, pp. 157, 1994.
- [17] Y.C. Lee, and C. Shu, "Optimized operation of self-seeded gainswitched laser diode for electrically wavelength-tunable singlemode pulses," *IEEE Photon. Technol. Lett.*, vol. 7, pp. 275, 1995.
- [18] D.N. Wang and C.Shu, "Tunable dual-wavelength picosecond pulse generation using multiple-optical-path self-seeding approach," *IEEE Photon. Technol. Lett.*, vol. 9, pp. 1211, 1997.
- [19] D. Zhao, K.T. Chan, Y. Liu, L. Zhang, and I. Bennion,
 "Wavelengthswitched optical pulse generation in a fiber ring laser with a Fabry–Pérot semiconductor modulator and a sampled fiber Bragg grating," *IEEE Photon. Technol. Lett.*, vol. 13, pp. 191, 2001.
- [20] S. Li and K.T. Chan, "Actively mode-locked erbium fiber ring laser using a Fabry–Pérot semiconductor modulator as mode locker and tunable filter," *Appl. Phys. Lett.*, vol. 74, pp. 2737, 1999.
- [21] S. Li and K.T. Chan, "Wavelength-tunable actively mode-locked erbium-doped fiber ring laser using a distributed feedback semiconductor laser as mode locker and tunable filter," *Appl. Phys. Lett.*, vol. 75, pp. 313, 1999.
- [22] S. Li, K. S. Chiang, and W. A. Gambling, "Generation of wavelength-tunable single-mode picosecond pulses from a self-seeded gain-switched Fabry-Perot laser diode with a high-birefrigence fiber loop mirror," *Appl. Phys. Lett.*, vol. 76, pp.

3676, 2000.

- [23] S. Yang, Z. Li, X. Dong, S. Yuan, G. Kai, and Q. Zhao, "Generation of wavelength-switched optical pulse from a fiber ring laser with an F-P semiconductor modulator and a HiBi fiber loop mirror," *IEEE Photon. Technol. Lett.*, vol. 14, pp. 774, June 2002.
- [24] G.M. Carter and L. Zheng, "Pulse compression of CW injection seeded gain-switched diode laser," *IEEE J. Quantum Electron.*, vol. 28, pp. 1751, 1992.
- [25] D.S. Seo, H.F. Liu, D.Y. Kim, and D.D. Sampson, "Injection power and wavelength dependence of an external-seeded gain-switched Fabry-Perot laser," *Appl. Phys. Lett.*, vol. 67, pp. 1503, 1995.
- [26] Y. Matsui, S. Kutsuzawa, S. Arahira, and Y. Ogawa, "Generation of wavelength tunable gain-switched pulses from FP MQW lasers with external injection seeding," *IEEE Photon. Technol. Lett.*, vol. 9, pp. 1087, 1997.
- [27] Y. Matsui, S. Kutsuzawa, S. Arahira, Y. Ogawa, and A. Suzuki,
 "Bifurcation in 20 GHz gain-switched 1.55-mm MQW lasers and its control by CW injection seeding," *IEEE J. Quantum Electron.*, vol. 34, pp. 1213, 1998.
- [28] K.K. Chow, C. Shu, and H.F. Liu, "Low power optical control of period doubling in injection-seeded Fabry-Perot laser diode," *Electron. Lett.*, vol. 37, pp. 429, 2001.
- [29] L.P. Barry, P. Anandarajah, and A. Kaszubowska, "Optical pulse generation at frequencies up to 20 GHz using external-injection seeding of a gain-switched commercial Fabry-Perot laser," *IEEE Photon. Technol. Lett.*, vol. 13, pp. 1014, 2001.
- [30] M. Zhang, D.N. Wang, H. Li, W. Jin, and M.S. Demokan, "Tunable dual-wavelength picosecond pulse generation by the use of two Fabry-Perot laser diodes in an External injection seeding scheme," *IEEE Photon. Technol. Lett.*, 14, pp. 92, 2002.
- [31] D.N. Wang and X. Fang, "Generation of electrically wavelength-tunable optical short pulses using a Fabry-Perot laser diode in an external-injection seeding scheme with improved sidemode suppression ratio," *IEEE Photon. Technol. Lett.*, vol. 15, pp. 123, 2003.
- [32] X. Fang and D.N. Wang, "Mutual pulse injection seeding by the use of two Fabry–Pérot laser diodes to produce wavelength-tunable optical short pulses," *IEEE Photon. Technol. Lett.*, vol. 15, pp. 855,

June 2003.

- [33] X. Fang and D.N. Wang, "Mutual pulse injection seeding by the use of two Fabry–Pérot laser diodes to produce wavelength-tunable optical short pulses," *IEEE Photon. Technol. Lett.*, vol. 15, pp. 855, June 2003.
- [34] P.C. Peng, J.H. Lin, and S. Chi, "Generation of wavelength-tunable optical pulses using a linear-cavity fiber laser scheme with a Fabry-Perot laser diode," *IEEE Photon. Technol. Lett.*, vol. 16, pp. 1023, 2004.

