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Abstract—A novel recurrent neural network-based (RNN-based) front- |
end preclassification scheme for fast continuous Mandarin speech recog- FSM
nition is proposed in this paper. First, an RNN is employed to discriminate
each input frame for the three broad classes of initial, final, and silence.

A finite state machine (FSM) is then used to classify the input frame — -
into four states including three stable states of Initial (1), Final (F), and ,; RNN 1 Silence 100 39
Silence (S), and a Transient (T) state. The decision is made based on Initials ~ Finals
examining whether the RNN discriminates well between classes. We then
restrict the search space for the three stable states in the following DP
search to speed up the recognition process. Efficiency of the proposed
scheme was examined by simulations in which we incorporate it with Fig. 1. Block diagram of the proposed fast COHMM continuous Mandarin
a hidden Markov model-based (HMM-based) continuous 411 Mandarin syllable recognizer.

base-syllables recognizer. Experimental results showed that it can be used

in conjunction with the beam search to greatly reduce the computational

complexity of the HMM recognizer while keeping the recognition rate Input features

almost undegraded.

front-end 411 base-syllable HMM
processor models

X, (n) X,(N) +ev X (N) Input layer

|. INTRODUCTION () C) """ () <> C) T

The recognition process of continuous speech recognition is essen-
tially a search procedure to determine the optimal matching path
that maps the testing utterance to a string of reference word (or L 71 E
subword) models. A basic problem is that there is typically a huge —
number of possible paths, so that intensive computations are needed. — - T
Usually, the path pruning approach is used to solve the problem. [ ) .eevunnsn -

It uses a mechanism to prune some unlikely paths for reducing the T Hidden layer
computational complexity. The beam search andAfiesearch with

a tree-based lexicon [1]-[4] are two well-known methods. Recently,
some phoneme level pruning techniques, which utilize the local
probability estimates generated by the detailed recognizers themselves
for path pruning, have also been studied. The phoneme look-ahead

@ O

Output layer

method [3] estimates the likelihood of each phoneme ahead of the I(n) F(n) S(n)
current time frame. Only the succeeding phonemes with likelihood
falling within the preset envelope remain to survive in the following Fig. 2. Structure of the recurrent neural network.

search. The phone deactivation method [4] first estimates the local
posteriori probabilities of phonemes by using a recurrent neur

network (RNN), and then prunes all words containing those unllke§/earch procedure to seriously degrade the recognition performance.

phonemes with lowposteriori probabilities. . o
. ) In this correspondence, a novel preclassification scheme for fast
An alternative approach uses a simple front-end processor to .. . L
. . ontinuous Mandarin speech recognition is proposed. A small RNN
preclassify the current frame or to presegment the input speech for

. ; o classifier is firstly used to discriminate each input frame into several
reducing the search space of the following recognition process.

method of this approach is to classify each input frame into voicetc)llmad classes of speech signal. Then a finite state machine (FSM)

unvoiced, or silence [5], [6] and then to compress the search spacer%lecung the domain of knowledge” is used to examine whet_her
responses of the RNN are good enough to make a reliable

restricting the frame to stay on some legal states. But this approé? ficati Wh he RNN discrimi I b |
is rarely used in the current existing continuous speech recogniti RSS! ication. en the Iscriminates well between classes,

systems. A fundamental problem comes from the fact that any erf g FSM will make a firm classification to label the input frame

into the corresponding stable state associated with the class with best
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Fig. 3. Typical example showing the three responses of the front-end processor to the input utteshirceny /b-a/ /j-e/ /l-an/ /t-u/ /tz/ /s-u-engd

/tz-ou”. (a) Waveform and the segmentation positions determined by the baseline CDHMM base-syllable recognizer (solid line: syllable beginning; dotted

line: I-F boundary; dashed line: syllable ending). (b) Three responses of the RNN (solidl{imkashed line:F'; dotted line: S). (c) Output of the
FSM with THy = 0.9 and TH;, = 0.1.

search to degrade the recognition rate. In other words, we can sptede stable states or a transient state based on examining whether
up the DP search while still keeping the recognition performandee three responses of the RNN are good enough to make a reliable
almost undegraded. It is noted that the preclassification in the FSi\ssification.
is a partial-hard-decision-and-partial-soft-decision scheme from theThe RNN is a three-layer network with all outputs of the hidden
viewpoint of the DP search. Several advantages of the method carldyer feeding back to the input layer (see Fig. 2). An RNN of this
found as compared with the above-mentioned fast speech recognitigre is a dynamic system with the outputs of its hidden layer at
methods. First, it is more robust to the preclassification errors thany time depending on a complex aggregate of all previous inputs.
the previous front-end processor-based methods. Second, in addifenit can easily catch dynamic information of the input speech
to making the DP search more efficient like the phoneme levsignal for discriminating some speech patterns [4], [8]-[10]. Here, the
pruning methods, the computations of the likelihood orghsteriori RNN is chosen to provide the frame-synchronized preclassification
probabilities for some unlikely reference word (or subword) modefsores with low overhead. The RNN is first trained by the “output
can also be eliminated. Third, it can be used in conjunction with sordelayed” backpropagation (BP) algorithm [9] with all targets being
path pruning techniques, such as the beam search, to further impregeaccording to the delayed segmentation positions of the training
the recognition efficiency. utterances determined by using an initial-final based continuous
density hidden Markov model (CDHMM) recognizer [7]. A typical
example of the three responses of the RNN is shown in Fig. 3. It
Il. THE PROPOSEDPRECLASSIFICATION SCHEME can be seen from the figure that the RNN responds very well to
Fig. 1 shows the proposed preclassification scheme for fast continake reliable classifications for most parts of the input speech (see
uous Mandarin speech recognition. The front-end processor consB8estion 1V for quantitative information). In fact, only some short
of two main parts: an RNN classifier and an FSM. The function dfitials surrounded by two vowel finals may cause the RNN fail to
the RNN is to discriminate each input frame for the three classesrespond quickly and correctly. This is mainly owing to the suffering
silence, initial, and final. It is noted that the last two classes are chos#ncontextual coarticulation on those short initials.
because initials and finals are commonly used as the basic recognitioBased on the three responses of the RNN, a four-state FSM
units in Mandarin speech recognition for taking advantages of tie constructed (Fig. 4). The FSM is designed to conform to the
simple initial-final structure of Mandarin syllables (see Table I) [7]initial-final structure of Mandarin base-syllables. When the RNN
The function of the FSM is to label each input frame into one dfiscriminates well between classes, we make a hard-decision to move
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TABLE I
CONFUSION MATRIX OF THE CLASSIFICATION BY THE RNN

Result/Desired I F S

47685 | 7027 726

(/é\KK i?VY\) F 4915 | 89014 524
C\F >/ T ‘
A
- &/ S 564 629 | 32705
Fig. 4. State diagram of the FSM.
TABLE I

TABLE | CONFUSION MATRIX OF THE CLASSIFICATION BY THE FSM
PHONETIC STRUCTURE OF MANDARIN SYLLABLES. THERE ARE IN
ToTaL 22 INmiALS (INCLUDING A DummY) AND 39 FNALS Result/Desired 1 F g T
TONE I 33579 | 1235 | 178 | 20446
INITIAL FINAL F 636 | 70340 18 | 23429
(Consonant) | (Medial) | Vowel | (Nasal ending) S 106 41 | 29435 | 4316

the FSM into one of the three stable states of Initial (1), Final (F), anglate, unrestricted search is used. By this method, the recognition
Silence (S). Otherwise, we make a soft-decision to let the FSM stpyocess can be greatly speeded up with almost no degradation on
in the Transient (T) state in order to tolerate the classification erratge recognition rate. In practical implementation, we may slightly
of the RNN. To realize the FSM, two threshold8H; andTH,, relax the search space for frames of F state to include HMM states
are first empirically determined. We then compare the outputs of tbe25 short initials for compensating the previously mentioned weak
RNN with these two thresholds. When one output of the RNN igsponses of the RNN to them.

higher thanT H; and the other two outputs are all lower tHA# .,

we move the FSM into the corresponding stable state. Otherwise, the

FSM stays at the T state. A typical example of the responses of the___. . . . .
FSM is shown in Fig. 3(c). Efficiency of the proposed method was examined by simulations

using a continuous Mandarin speech data base uttered by a single
male speaker. The database contains in total 35231 syllables includ-
ing 28197 training syllables and 7034 testing syllables. All speech
The proposed preclassification scheme can be incorporated into signals were sampled at a rate of 10 kHz and preemphasized with a
initial-final based continuous Mandarin speech recognition systemdigital filter, 1 — 0.952 . It was then analyzed for each Hamming-
speed up its recognition process. Mandarin Chinese is a tonal amiddowed frame of 20 ms with 10 ms frame shift. The recognition
syllabic language. There exist more than 80000 words, each cof@atures consist of 12 mel-cepstral coefficients, 12 delta mel-cepstral
posed of from one to several characters. There are more than 10 666fficients, and the delta energy. The following definition of syllable
commonly used characters, each pronounced as monosyllable vaiticuracy was used to evaluate the performance of the recognition
one of five tones. There are in total 411 base-syllables, disregardgygtem:
the tones required to cover all necessary pronunciations for Mandarin
speech. A complete continuous Mandarin speech recognition system syllable accuracy . .
is generally composed of two components: 1) acoustic processing for =1- Substitutionst delet!ons+ Insertlon§ 1)
syllable identification and 2) lexical decoding for word (or character) number of testing syllables
string recognition [7]. In this study, we only consider the part oThe average number of states to search per frame and the average
acoustic processing. Effectiveness of the proposed method is thusnber of Gaussian components to calculate per frame by the search
demonstrated via incorporating it with a CDHMM-based continuoysrocedure are used to measure the computational cost in order to
411 Mandarin base-syllables recognizer. The recognizer uses 4i/bid any implementation bias.
eight-state base-syllable HMM models and a one-state silence HMMFirst, the proposed preclassification front-end processor was tested.
model in the recognition search. The 411 base-syllable models & RNN with 25 hidden nodes achieved 92.9% classification rate
formed by using 100 three-state right-context-dependent initial HMialculated based on taking the segmentations of all testing utterances
models and 39 five-state context-independent final HMM modelsy using an initial-final based continuous CDHMM recognizer as
The number of mixtures in each state of a subsyllable HMM modegference. The confusion matrix is shown in Table II. After using the
varies from one to eight depending on the amount of training datSM to put some marginal frames into the T state, we found that the
A conventional recognition procedure uses the well-known one-staglassification becomes very reliable. For the casd @y = 0.90
DP search embedded with a beam search to find out the best baselT H; = 0.10, the classification rate raises to 98.2% with a cost
syllable sequence for the input testing utterance. of 26.2% of frames being classified as T state. The confusion matrix
In the proposed fast recognition method, different search spacessirshown in Table Ill. So most classification errors of the RNN have
the DP search are set for those four states. Specifically, for frantesen absorbed by the transient state of the FSM.
with |, F, and S states, we let the search space be restricted tdhe baseline CDHMM base-syllable recognizer using the one-
stay only in the states of 100 initial HMM’s, 39 final HMM'’s, andstage DP search with an embedding beam search was then tested.
the silence HMM, respectively. On the contrary, for frames with Beveral values of beamwidth were tested. The recognition results

IV. EXPERIMENTAL RESULTS

IIl. I NTEGRATING THE FSM wITH THE DP SEARCH
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Fig. 5. Recognition results of the baseline CDHMM base-syllable recognizer 1100— .

with several values of beamwidth. (a) Recognition rate. (b) Average number

of active states (Gaussian components) per frame. Baseline

1000

and the computational costs are plotted in Fig. 5. It is found from the
figure that the recognition speed of the one-stage DP can be greatl@ 9001
increased by engaging the beam search. But the recognition rate drofs
rapidly when the beamwidth is less than 100. g
The proposed fast recognition method was then tested. An RNNjg
with 25 hidden nodes was used. Its overhead is approximately equaﬁ
to the computational load of calculating 30 Gaussian components.g
Several values of beamwidth arfiHy (T'H, = 1 — THy)
were tested. The recognition results are plotted in Fig. 6. It is
found from the figure that the recognition speed of the DP search<
with an embedding beam search can be further improved with a 500 :
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negligible small degradation on the recognition rate. For the case of 100 15 _ 200
beamwidth= 100 andT' Hy = 0.95 (T H7, = 0.05), the recognition Beamwidth
rate decreases by 0.1% only. But the computational cost is further (c)

Imprqvgd by droppln.g away addltlonal_ 38.7% of Seia.rchlng states afdl 5 Recognition results of the proposed fast recognition scheme with

by eliminating the likelihood calculations for additional 35.1% ofhe search space for frames of F state being slightly relaxed to include the

Gaussian components. This confirms the efficiency of the propogd#dM states of 25 short initials. (a) Recognition rate. (b) Average number of

fast recognition method. activfe states per frame. (c) Average number of active Gaussian components
per frame.

V. DiscussiONS AND CONCLUSIONS

In this work, an RNN-based front-end preclassification scheme feffectiveness has been demonstrated by simulations to incorporate it
fast continuous Mandarin speech recognition has been discussedintis an HMM-based continuous 411 Mandarin base-syllables recog-
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nizer. Experimental results showed that it can be used in conjunction Speech Analysis and Recognition Using Interval
with the beam search to greatly reduce the computational complexit@tatistics Generated from a Composite Auditory Model
of the HMM recognizer while still keeping the recognition rate almost
undegraded. Obviously, it is also suitable to be incorporated with H. Sheikhzadeh and L. Deng
other subsyllable-based Mandarin speech recognizers.
An additional advantage of the proposed method was also found. ) ) )
Instead of making a decision at the last frame of the testing utteranc@Pstract—A modeling approach to auditory speech analysis and recog-

d by th . | DP h v deci nition is proposed and evaluated, where a composite auditory model
one by the conventional one-stage search, an early deci§Ofigeq o generate parallel sets of auditory-nerve instantaneous firing

can be made once the FSM enters an S state. We can therefgfgs (IFR's) along the spatial dimension, followed by a processing stage
decompose a large complex DP search for the whole utterance it constructs from the IFR’s an interval statistics in a form called the

several simpler DP searches for the partitioned voice segmentsi.”l?rpeik interval TStOgr?‘m('P'H?{ A Sg_eeCh pfepfoc%&?or ifs dESi%”ed
; g ; : : at performs transformation on the auditory IPIH’s and interfaces the
is of benefit in reducing system complexity when we consider t EIH—based auditory representation with a hidden Markov model-based

incorporation of a Ia_nguage model with the continuous Mandarfpnvm-based) speech recognizer. The results demonstrate that the new
base-syllable recognizer. preprocessor consistently outperforms the conventional mel frequency

cepstral coefficient-based (MFCC-based) preprocessor for the signal-to-
noise ratio (SNR) level up to at least 16 dB.
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