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Abstract 

Suppose G = (V,E) is a graph with vertex set V and edge set E. A vertex labeling f :  
V ~ {0,1} induces an edge labeling f * :  E --~ {0,1} defined by f * ( x y )  = If(x) - f (Y)l .  
For i E {0,1}, let vf(i) and ef(i) be the number of vertices v and edges e with f ( v )  = i 
and f * (e )  = i, respectively. A graph G is cordial if there exists a vertex labeling f such that 
] 9 ] ( 0 )  --  Vf (1 ) l  ~< 1 and ]ef(0) - ef(1)l ~< 1. This paper determines all m and n for which mK, is 
cordial. 

Keywords: Cordial labeling, graceful labeling, Diophantine equation 

I. Introduction 

Suppose G = (V ,E)  is a graph with vertex set V and edge set E. A vertex labeling 

f :  V --~ {0, 1} induces an edge labeling f * : E  ~ {0, 1} defined by f * ( x y )  = I f (x)  - 

f (Y)l .  For a vertex labeling f and i E {0, 1}, a vertex v is an i-vertex if  f ( v )  = i 

and an edge is an i-edge if f * ( e )  = i. Denote the numbers o f  0-vertices, 1-vertices, 

0-edges, and 1-edges of  G under f by vf(O), vf(1), ef(O), and ef(1), respectively. A 

vertex labeling f is cordial if I v f ( O ) -  vf(1)]~<l and l e f ( O ) -  ef(1)] ~<1. A graph is 
cordial if it admits a cordial labeling. A graph is perfectly cordial if there exists a 

vertex labeling f such that vf(O) = vf(1) and ef(O) = ef(1). For even m, mKn has an 
even number of  vertices and an even number o f  edges, so cordiality is equivalent to 

perfect cordiality when m is even. 

The notion of  a cordial labeling was first introduced by Cahit [3] as a weaker 

version o f  graceful labeling. See [5,10,13, 14,16,17] for related results and [4,6, 11] 
for generalizations. Cordial labelings o f  various families of  graphs were studied in 
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[1,8,9,12,15]. This paper completely determines the cordiality of mK, ,  the disjoint 
union of m copies of the complete graph K~ of n vertices. 

To do this, we first transform the problem into Diophantine equations with boundary 
conditions. Results from number theory are then used to solve the problem. 

More precisely, given a vertex labeling f of mK, ,  let xi be the number of 1-vertices 
in the ith copy of Kn. Restricting f to this Kn, we have 

vf(O) - vf(1 ) = n - 2xi ,  

e f (  O ) - ef(1) = ( (n - 2xi ) 2 - n )/2 . 

Setting yi = n - 2Xi, we obtain the following theorem. 

Theorem 

(yl, y2 . . . . .  Ym): 

[Yi[ ~ n  f o r  1 <~i<~m, 

Yl -- Y2 =- "'" =- Yrn = n (mod 2), 

lYl + Y2 + " "  + Yrnl <~ 1, 

l Y~ + y2 + . . .  + y2  _ mn[<~ 2. 

1. inK. is cordial i f  and  only i f  the fo l lowing sys tem has an integral solution 

(c1) 

(C2) 

(C3) 

(c4) 

Remark. Note that if (C4) holds and n>~m, then y2<~mn + 2~<n2+ 2 < (n + 1) 2 for 
each i, 1 <~i<~m, so (C1) holds. Therefore, when checking whether (y l ,Y2  . . . . .  Ym) 

satisfies (C1)-(C4), it is not necessary to check (C1) if n>~m. 

2. Cordiality of mK~ for m ~ 4 

In this section, we determine the cordiality of mKn for m ~<4. The main results are 
contained in Theorems 2, 3, 6 and 8. 

Theorem 2 (Cahit [3]). Kn is cordial i f  and  only i f  n E {1,2,3). 

Proof. I fK ,  is cordial, then by Theorem 1, there exists an integer Yl such that lyll.< 1 
and [y2 _ n[ ~< 2. We conclude that n E { 1,2, 3 }. 

Conversely, for n E {1,2,3}, Yl = (n mod 2) is a solution to (C1)-(C4), so Kn is 
cordial. [] 

Theorem 3. 2Kn is cordial i f  and  only i f  n = k 2 f o r  some  integer k. 

Proof. Suppose 2K~ is cordial. Let ( Y b Y 2 )  be a solution to (C1)-(C4). By (C2), Yl 
and Y2 are of the same parity, i.e., yl + Y2 is even. This together with (C3) imply 
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yl + y2 ---- 0. (C4) then gives [y~ - nl ~ 1. As Yl and n are o f  the same parity, we 
have n = y2. 

Conversely, i f  n = k 2 for some integer k, then (Yl ,y2)  --- ( - k , k )  is a solution to 

( C 1 ) - ( C 4 ) .  Hence 2Kn is cordial. [] 

Theorem 4. (a) I f  n is even, then 3K, is cordial i f  and only i f  n - 0 or 2 ( m o d  8) and 
x 2 + 3y  2 = a/2 has an integral solution, where a is the only number in {3n,3n + 2} 

satisfyino a - 0 ( m o d  8). 

(b) I f  n is odd, then 3Kn is cordial i f  and only i f  n =_ 1,3 or 7 (mod 8) and x 2 + 3 y  2 = 

6a - 2 has an integral solution, where a is the only number in {3n - 2 ,3n,3n + 2} 

satisfyin9 a = 3 (rood 8). 

Proof .  (a)  Suppose n is even. I f  3Kn is cordial, then ( C 1 ) - ( C 4 )  has a solution (ybY2,  

Y3) ,  where y t ,  y2, and Y3 are even. So (C3) implies Yl + Y2 + Y3 = 0. Substituting 

Y3 = --Yl - - Y 2  into (C4), we obtain 

2y  2 + 2y~ + 2yly2  - 3n = - 2 ,  0 or 2. 

However,  2y  2 + 2y  2 + 2yly2 - 0  or 2 ( r o o d 3 )  only. Thus 

a = 2y~ + 2y  2 + 2yl  Y2 = 3n or 3n + 2. (2.1) 

Since 2y  2 + 2y  g + 2y ly2  = 0 (mod 8), n = 0 or 2 (mod 8), and a is the unique integer 

amongst 3n and 3n + 2 satisfying a = 0 ( m o d  8). Consequently, x 2 + 3y 2 = a/2 has an 

integral solution because (yl  + y2/2) 2 + 3(y2/2)  2 = a/2. 

Conversely, suppose x 2 +  3y 2 = a/2 has an integral solution (x, y) .  Let (Yb y2, Y3 ) --- 

(x - y , 2 y , - x  - y). To verify (C1), by the remark alter Theorem 1, we only need to 

consider the case o f n  = 2. In this case, a = 8 and (x ,y )  = (4- l , d :  1) or (-t-2,0);  thus 

(C1) holds. Since a --- 0 (mod 8), x and y are o f  the same parity, hence (C2) holds. 

(C3) and (C4) follow from a straightforward calculation. Therefore 3Kn is cordial. 

(b)  Suppose n is odd. I f  3Kn is cordial, then ( C 1 ) - ( C 4 )  has a solution (Yl ,y2 ,Y3)  

where Yl, Y2, and Y3 are odd, yl  + y2 + Y3 = -4-1 and 

y ~ + y 2 + y 2 _ 3 n = _ 2 , 0  or 2. 

However,  a = y2 + y2 + y 2 _  3 (rood 8). Hence n -  1,3 or 7(rood 8) and a is the 

unique integer in {0,3n 4- 2} satisfying a = 3 (mod 8). Using the solution ( - Y l , - y 2 ,  

-Y3)  i f  necessary, we may further assume Yl + Y2 + y3 --- - 1 ,  which leads to a --- 

2 y 2 + 2 y l y 2 + 2 y ~ + 2 y t + 2 y 2 + l ,  or equivalently, ( 3 y l + l ) 2 + 3 ( y l + 2 y 2 + l )  2 = 6 a - 2 .  

Thus x 2 + 3y 2 -- 6a - 2 has an integral solution. 

Conversely, suppose x 2 + 3y 2 --= 6a - 2 has an integral solution (x, y) .  Then x 2 - 

1 (mod 3). Since ( - x , y )  is also a solution, we may assume x -  1 (mod3) .  Also,  a--=- 

3 (mod 8) implies 6a - 2 - 0 (mod 8) and x - y - 0 or 2 (mod 4). Let Yl = (x - 1 )/3, 

y2 = (y  - 1 - y l ) / 2 ,  and Y3 = - 1  - y! - y2 = ( - y  - 1 - y l ) /2 .  For (C1),  we only 

need to check the case of  n = 1. In this case, a = 3 and ( x , y )  --- (4 ,0)  or ( - 2 , + 2 ) .  
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Thus each [yi[~<l, hence (C1) holds. Next, Yl ~ ( X -  1)/3 -- 1 - x ( m o d 4 )  and 

2y2 = y - 1 - Yl = x + y - 2 = 2 (mod 4), so both yl and y2 are odd; consequently, 
so is Y3. (C3) and (C4) follow from a straightforward calculation. [] 

In order to use Theorem 4 effectively, we need a result from number theory. 

Theorem 5 (Bolker [2, p. 122]). The equation x2 + 3y 2 = n has an &tegral solution i f  

and only i f  n = 3a°p~ ' • . . . . .  p~'22b°q~ b~ qs-2b" for  some nonnegative integers ai and bi, 

where Pi and qi are primes satisfying Pi = 1 (mod 6) and qi ~ 5 (mod 6), respectively. 

The cordiality of 3Kn is summarized in the next theorem. 

Theorem 6. Define b = b( n ) as 

3n/2 / f n  = 0(mod 8), 
3 n / 2 ÷ 1  i f n = 2 ( m o d 8 ) ,  

b = 1 8 n - 2  i f n  -= 1 (mod 8), 

18n+ 10 i f n  = 3 (mod8), 
1 8 n - 1 4  i f n - = 7 ( m o d 8 ) ,  

and let Vp(Z) denote the highest power o f  the prime p that divides z. Then 3Kn is 

cordial i f  and only i f  n = O, 1,2 ,3 ,7(mod8)  and v2(b) and vq(b) are even for  all 

prime divisors q o f  b with q - 5 (mod 6). 

We now turn our attention to 4K~. 

Theorem 7 (Grosswald [7, p. 24]). The equation x 2 + y2 ÷ z 2 = n has an integral 

solution ( x , y , z )  i f  and only i f  n is not o f  the fo rm 4a(8b + 7) f o r  any nonneoative 

integers a and b. 

Theorem 8. 4K, is cordial i f  and only i f  n is not o f  the f o r m  4a(8b + 7) f o r  any 

nonnegative integers a and b. 

Proof. Suppose 4Kn is cordial and (Yl, Y2, Y3, Y4) is a solution to (C1)-(C4) .  By (C2), 
yl,  y2, y3, and Y4 are of  the same parity. (C3) then implies ya + Y2 + y3 + y4 = 0. 
(C4) imp lies 2 y l + y 2 2 + y 2 + y 2 = 4 n . H e n c e 4 n = y 2 + y ~ + y 2 + ( - y l - y 2 - y 3 )  2 =  

(yl + y2) 2 + (y2 + y3) 2 + (y3 + Yl) 2. By Theorem 7, 4n, and hence n, are not of  the 
form 4a(8b + 7) for any nonnegative integers a and b. 

Conversely, suppose n is not of the form 4a(8b + 7) for any nonnegative integers a 
and b. By Theorem 7, x 2 +  y2 + z  2 = n has an integer solution (x ,y ,z ) .  Let 

Yl = x + y + z, ):2 = x - y - z ,  

Y3 = - x  + y - z, Y4 = - x -  y + z. 
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Note that for each i, lyit<<.lxL + lyl + [z[<~ x2 + y2 q,z  2 = n. Thus (C1) holds. Also, 

each Yi ~ X2q" y2 q . z  2 ~ n (mod2) ,  so (C2) holds. (C3) and (C4) follow from a 

straightforward calculation. Hence 4K~ is cordial. [] 

3. Cordiality of tnK~ for m ~> 5 

The cordiality of  mK~ is much more uniform when m >~ 5. There are three cases: 

m ~ 0 ( m o d 4 ) ,  m - 2 ( m o d 4 ) ,  and m - 1 (mod2) .  Theorems 12, 14 and 15 contain 

the corresponding results. Because of  the next lemma and its corollary, in each of  these 

three cases, we only have to check the cordiality of  mKn for only a few values of  m. 

Lemma 9. I f  G is perfectly cordial and H is cordial, then G tA H is cordial. 

Corollary 10. I f  mKn and m~K, are cordial and m is even, then (m+m' )Kn  is cordial. 

Proofi The corollary follows from Lemma 9 and the fact that cordiality and perfect 

cordiality of  mKn are equivalent when m is even. [] 

To determine the cordiality of  mKn, we need the famous 'four squares theorem' due 

to Lagrange (see, for example, [7, p. 25]): 

Theorem 11. The equation z 2 q. z 2 + z 2 q. z j = n has an integral solution for  any 

nonnegative integer n. 

Theorem 12. I f  m >~ 5 and m =- 0 (mod 4), then mKn is cordial. 

Proof.  Because o f  Corollary 10, we only have to prove the theorem for m = 8 and 

m - 1 2 .  

Case 1: m = 8. By Theorem 11, z 2 q. z 2 q. z 2 q. z42 = n has an integral solution 

(Z1,Z2,Z3,Z4). Let 

y~ = z l  q,  z2 q,  z3 q,  z4,  Y2 = Zl - z2 q" z3 - z 4 ,  

Y3 ---- z l  - -  z2 - -  z3 q .  z4,  Y4 ~ Zl q" z2 - -  z3 --  z 4 ,  

Y5 ----- --Yl, Y6 = --Y2, Y7 = --Y3, Y8 = -Y4-  

Then for each i, 

[Yil<<.lzl[ q" [z2l q" Iz3] q" Iz4l ~ z  2 q ' z  2 q ' z  2 q ' z  2 = n ,  

that is, (C1) holds. Also, 

Yi =- zl q,z2 q.z3 q,z4 --- z 2 q ,z  2 q .z  2 q-z ] -= n (mod2)  

for each i, so (C2) holds. (C3) is clearly true. (C4) follows a straightforward calcula- 
tion. 
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Case 2: m = 12 and n is even. By Theorem 11, zl z +z22 + z 3  z + z 4  z = 3n/2 has an 

integral solution (z~,z2,z3,z4).  Let 

Yi = 2Zi ,  Yi+4 = --2Zi and Yi+8 = 0 for 1 ~<i~<4. 

2 2 + z ]  = 3 or 6 implies each IZil~ 1 Then ( C 2 ) - ( C 4 )  hold. For n = 2 or 4, z 2 + z  2 + z  3 

or 2, respectively, hence (C1) holds. For n~>6, each lYil <~21z j l~<2V/ '~  = v ~ < n ,  
so (C1) holds again. Thus 12K, is cordial. 

Case 3: m = 12 and n is odd. By Theorem 11, z 2 + z ~  + z ~  + z ~  = 3(n - 1)/2 has 

an integral solution. Let 

1 + 2 z i  i f  1 ~<i~<4,  

Yi = 1 - -  2 g  i _ 6  if  7 ~< i ~< 10, 

Y5 = Y6 = 1, Yll = Y12 = - 1 .  

Then ( C 2 ) - ( C 4 )  holds. For n = 1, 3 or 5, z12 + z  22 +z32 +z~ = 0, 3, or 6 implies Izil <<. O, 

1, or 2, respectively, so (C1) holds. For n >/7, each l y;l<~ 21z j I+ 1 ~ 2 v / 3 ( n -  1) /2+1 = 
v/'6-~ - 1 ) +  l~<(n - 1 ) +  1 --- n, so (C1) still holds. Thus 12Kn is cordial. [] 

L e m m a  13. I f  (i) n is even and mn =- 4 ( m o d  8), or (ii) n is odd and m(n - 1) = 

4 ( m o d  8), then mK~ is not  cordial. 

Proof.  Suppose mKn is cordial and (Yl,Y2 . . . . .  Yn) is an integral solution to (C1)-(C4) .  
Suppose n is even and mn =- 4 ( m o d 8 ) .  By (C2), all Yi are even. By (C3), Yl + 

y2 + ' " + Y n  = 0. By (C4), y 2 + y ~ + . . . + y Z  = mn. Let zi = y i /2  for 1 <~i<~m. Then 
2 mn/4.  Since mn = 4 (mod 8), mn/4  is zl + z2 + . . . + zm = O and z~ + z~ + " " + z m =  

odd. Consequently, 

O=--Zl +Z2+' ' '+Z,n--Z~ +Z 2 + ' ' ' + z  2=-- m n / 4 -  1 ( m o d 2 ) ,  

a contradiction. 
Suppose n is odd and m ( n -  1) = 4 ( m o d 8 ) .  By (C2), each Yi is odd, say Yi = 

• 4 " m 2z i+  1 By (C4), [ ~--~i=l zi(zi + 1) - m(n - 1) I ~<2. This is impossible, since 4 ~ i = 1  zi 

( z i +  l ) = O ( m o d 8 )  and m ( n - 1 ) = 4 ( m o d 8 ) .  [] 

Theorem 14. For m >~ 5 and m = 2 (mod 4), mKn is cordial i f  and  only i f  n =- 0 or 1 

(mod 4). 

Proof.  I f  mK,  is cordial, then n =-0 or 1 ( m o d 4 )  by Lemma 13. Conversely, suppose 
n ~ 0 or 1 (mod4) .  By Corollary 10 and Theorem 12, we only have to prove that 
mKn is cordial for m = 6  and m = 1 0 .  Solutions to ( C 1 ) - ( C 4 )  for n < m  are 
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listed below. 

m = 6  and n =  1: 

m = 6  a n d n = 4 :  

m = 6  a n d n = 5 :  

m = 1 0  a n d n =  1: 

m =  10 a n d n = 4 :  

m =  10 a n d n = 5 :  

m =  1 0 a n d n = 8 :  

m =  10 a n d n = 9 :  

(1, 1, 1 , - 1 , - 1 , - 1 ) .  

( 2 , 2 , 2 , - 2 , - 2 , - 2 ) .  

( 3 , 3 , - 3 , -  1 , -  1 , - 1 ) .  

(1, 1, 1, 1, 1 , - 1 , - 1 , - 1 , - 1 , - 1 ) .  

( 2 , 2 , 2 , 2 , 2 , - 2 , - 2 , - 2 , - 2 , - 2 ) .  

(5, 3, 1 , - 3 ,  - 1 , -  1 , -  1 , -  1, - 1 , - 1 ) .  

( 8 , - 2 , - 2 , - 2 , - 2 ,  0 ,0 ,0 ,0 ,0) .  

( 9 , - 1 , - 1 , - 1 , - 1 , - 1 , - 1 , - 1 , - 1 , - 1 ) .  

Now we may assume n>~m, and we only need to check ( C 2 ) - ( C 4 )  for a solution. 

Case 1: n = 0 ( m o d 4 )  and mn/4 is not o f  the f o r m  4~(8b + 7). By Theorem 7, 

x 2 + y2 + z 2 = mn/4 has an integral solution (x, y , z ) .  Let 

Yl = x + y + z ,  Y2 = x - y - z ,  

Y3 = - x + y - z ,  Y4 = - x - y + z ,  

Yi = 0 for i~>5. 

For instance, when m = 10, n = 12, we could let ( x , y , z )  = (5,2, 1), from which we 

obtain the solution (8, 2, - 4 ,  - 6 ,  0, 0, 0, 0, 0, 0). 

In general, each Yi =-- X 2 + y2 + Z 2 =_ mn/4 -- 0 =-- n ( m o d 2 ) ,  so (C2) holds. (C3) 

and (C4) follow from a straightforward calculation. 

Case 2: n - 0 (mod 4) and mn/4 is o f  the f o r m  4a(8b + 7). Then mn/2 is not of the 

form 4a(8b + 7). By Theorem 7, x 2 + y2 + z 2 = mn/2 has an integral solution (x, y , z ) .  

Since rnn/2 =_ 0 (mod 4), x, y, z are all even. Let 

yl = x, y2 = y, Y3 = z, 

Y4 ----- --x, Y5 = --Y, Y6 = --z; 

and for m = 10, set 

Y7 = Y8 = Y9 = Ylo = 0. 

Then ( C 2 ) - ( C 4 )  clearly hold. 

For example, when m = 10, n = 24, we could pick ( x , y , z )  = (10,4,2),  which leads 

to the solution ( 1 0 , 4 , 2 , - 1 0 , - 4 , - 2 , 0 , 0 , 0 , 0 ) .  

Case 3: n = 1 (mod4) .  Note that (ran - m + 2)/2 = 1 (mod4) ,  so it is not of the 

form 4a(8b + 7). By Theorem 7, x z + y 2  + z  2 = ( r a n -  m + 2 ) / 2  has an integral solution 

(x, y , z ) ,  two of them, say x and y, are even and the other one is odd. Let 

yl = 1 + x ,  Y2 = - 1  + y, Y3 = z, 

Y4 = 1 --X, Y5 = - - 1 -  y, Y6 = --z; 

and for m = 10, set 

Y7 = Y8 = 1 and Y9 = ylo = - 1 .  

Then ( C 2 ) - ( C 4 )  hold. 
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An example: when m = 10, n = 13, selecting ( x , y , z ) =  (6,4,3) gives the solution 

(7, 3, 3, -5 ,  -5 ,  -3 ,  1, 1, - 1, -1 ) .  
We have shown that, in all cases, m K ,  is cordial. [] 

Theorem 15. For  o d d  m s a t i s f y i n g  m >~ 5, mKn is cord ia l  i f  a n d  o n l y / f n  ~ 4, 5 (mod 8). 

Proof. If mKn is cordial, then n ~ 4, 5 (mod 8) by Lemma 13. Conversely, suppose 
n ~ 4, 5 (mod 8). By Corollary 10 and Theorem 12, we only need to prove that mKn 

is cordial for m E {5,7,9, 11}. 
For n < m, the following are solutions to (C1)-(C4).  

m = 5  a n d n =  1: 
m = 5  a n d n = 2 :  
m = 5  a n d n = 3 :  
m = 7  a n d n =  1: 
m = 7  a n d n = 2 :  
m = 7  a n d n = 3 :  
m = 7  a n d n = 6 :  
m = 9  a n d n =  1: 
m = 9  a n d n = 2 :  
m = 9  a n d n - - 3 :  
m = 9  a n d n = 6 :  
m = 9  a n d n - - 7 :  
m = 9 a n d n = 8 :  
m =  11 a n d n =  1: 
m =  11 a n d n = 2 :  
m =  11 a n d n = 3 :  
m =  11 a n d n = 6 :  
m =  11 a n d n = 7 :  
m- -  11 a n d n = 8 :  
m =  11 a n d n = 9 :  
m =  11 a n d n =  10: 

(1, 1, 1 , - 1 , - 1 ) .  
(2 , -2 ,  0,0,0). 
(3, 1 , - 1 , - 1 , - 1 ) .  
(1, 1, 1, 1 , - 1 , - 1 , - 1 ) .  
( 2 , 2 , - 2 , - 2 , 0 ,  0,0). 
(3, 1, 1, 1 , - 3 , - 1 , - 1 ) .  
( 4 , 2 , - 4 , - 2 , 0 , 0 , 0 ) .  
(1, 1, 1, 1, 1 , - 1 , - 1 , - 1 , - 1 ) .  
( 2 , 2 , - 2 , - 2 , 0 , 0 , 0 , 0 , 0 ) .  
(3,3, 1 , - 1 , -  1 , -  1 , -  1, - 1 , -  1). 
( 6 , - 4 , - 2 ,  0, 0, 0, 0, 0, 0). 
(5, 3, l, 1, -5 ,  -1 ,  - 1 , -  1 , -  1). 

(6, - 6 ,  O, O, O, O, O, O, 0). 
(1, 1, 1, 1, l, 1 , - 1 , - 1 , - 1 , - 1 , - 1 ) .  
( 2 , 2 , 2 , - 2 , - 2 , - 2 , 0 , 0 , 0 , 0 , 0 ) .  
(3,3, 1, 1, 1 , - 3 , - 1 , - 1 , - 1 , - 1 , - 1 ) .  
( 6 , 2 , 2 , - 2 , - 2 , - 2 ,  - 2 ,  - 2 ,  0, 0, 0). 
(7,3, 1 , - 3 , - 1 , - 1 , - 1 , - 1 , - 1 , - 1 , - 1 ) .  
( 8 , - 4 , - 2 , - 2 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) .  
(5,5,3, 1 , - 5 , - 3 , - 1 , - 1 , -  1 , - 1 , -  1). 
( 8 , 2 , - 6 , - 2 , - 2 , 0 , 0 , 0 , 0 , 0 , 0 ) .  

So we may assume n>~m. All we need now is to find solutions to (C1)-(C4).  
Let n' = (n mod 2). Since n - n' ~ 4(rood8),  exactly one of the three numbers 

mn - mn ~ - 2, mn - mn ~, mn - mn ' + 2 is of the form 8t. 
Case  1: 2t  + n ~ is no t  o f  the f o r m  4a(8b + 7) f o r  a n y  n o n n e g a t i v e  in tegers  a a n d  

b. By Theorem 7, x 2 ÷  y 2 ÷  z 2 = 2t + n ~ has an integral solution (x, y , z ) .  Let 

Yl = x + y ÷ z ,  Y2 = x - y - z ,  

Y3 = - x  + y - z, Y4 = - x  - y + z, 

and 

n' if 5 ~< i ~< (m + 5)/2, 

Yi = - n '  if  (m + 7 ) / 2  <~i <~m. 
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Note  that  Yi = X2 h- y2 + 7 2  = 2 t  + n ~ - -  n ~ =_ n ( m o d 2 )  for each i, 1 ~<i~<4. Also ,  for 

each i>~5, Yi =- n ~ - n ( m o d 2 ) .  Then (C2)  holds.  Next ,  ~-~i~=1 Yi = n'  = 0 or 1, thus 

(C3)  holds.  Final ly ,  ~--]~=1 y/2 = 4(x 2 + y2 _~_ z2) .~ (m - 4)n '  = 4(2t  + n ' )  + (m - 4 )n '  = 

8 t  + m n  I - -  m n  - 2, m n ,  or m n +  2; therefore  (C4)  also holds.  

For  example ,  when  m = 9, n = 15, we have t = 16; by  let t ing ( x , y , z ) =  (4 ,4 ,  1), 

we obtain the solut ion ( 9 , -  1 , -  1, - 7 ,  1, 1, 1, - 1 , -  1). When  m = 9, n = 22, we have 

t = 25, and ( x , y , z )  = ( 5 , 4 , 3 )  gives rise to the solut ion ( 1 2 , - 2 , - 4 , - 6 , 0 , 0 , 0 , 0 , 0 ) .  

C a s e  2: 2 t  + n ~ is o f  t h e  f o r m  4~(8b + 7)  f o r  s o m e  n o n n e g a t i v e  i n t e g e r s  a a n d  b. 

Since 128b + 107 - 31n ~ =- 11 + n ~ (rood 32),  it is not  o f  the form 4a ' (8b  ~ + 7)  for  any 

nonnegat ive  integers a ~ and b ~. By  Theorem 7, x 2 +  y 2 +  z 2 = 128b + 1 0 7 -  31n ~ has 

an integral  solut ions (x ,  y , z ) .  

For  n ~ = 0, x, y ,  z are all odd,  for otherwise  x 2 +  y2 + z  2 = 0 or 4 ( m o d  8), whereas  

128b + 107 - 31n ~ =_ 3 (mod  8). W e  can further assume x = y - z ~ 1 (rood 4),  for i f  

necessary  we could  replace  x or y or z by  - x  or - y  or - z ,  respect ively .  

For  n ~ = 1, we must  have x =- y = z -  2 ( m o d 4 )  in order  for 1 2 8 b +  1 0 7 -  31n ~ --  

1 2 ( m o d  16). W e  can further assume x _= y = z - 4  = 2 ( m o d 8 ) ,  o therwise  we could  

replace x or y or z by  - x  or - y  or - z ,  respect ively .  

In ei ther  case,  

x -  l - n ' - y -  1 - n / - - - - z - l - n  ~ - 4 = 0  ( m o d 4 ( l + n ' ) ) .  

Le t  

Yl  = 2 a ( - x  + y + z - 1 - n ' ) /4 ,  Y2 = 2 a ( x  - y + z - 1 - n ' ) / 4 ,  

Y3 = 2 a ( x + y - z - l - n ' ) / 4 ,  Y4 = 2 ~ ( - x - y - z - l - n r ) / 4 ,  

Y5 = 2a(1 + 2n~); 

and for m > 5, set 

n '  i f  6 ~< i ~< (m + 5)/2,  

Yi = - n  ~ i f ( m + 7 ) / 2 < ~ i < . m .  

Note  t h a t a > ~ l  w h e n n / = 0 ,  a n d a = 0 w h e n n  ~ = 1 ,  so (4 a - 1 ) n  ~ = 0 .  

For  the case  o f  n ~ = 0, all Yi = 0 - n ~ =- n ( m o d  2),  so (C2)  holds.  Also,  for the 

case o f  n '  = 1, all Yi =- 1 - n ~ =_ n (rnod 2),  so (C2)  holds  again.  Next ,  ~im=l Yi  = 

2 a ( - 1  - n  r) + 2a(1 + 2n ~) = 2 a n ~ =  0 or 1, so we also have (C3) .  Final ly ,  

m Y~ = 4 ~ (X 2 ..~ yZ + z z + 1 + 3n ' )  
i=l 4 + 4a(1 + 8n/) + (m - 5)n '  

= 4 a ( 1 2 8 b  + 1 0 7 -  31n ~ + 1 + 3n t) 
4 + 4a(1 + 8n ' )  + (m - 5 )n '  

= 4a(32b + 28)  + ( 4  a -1- m - -  5 ) n  t 

= 4(2t  + n)  + (4 ~ + m - 5)n '  

= 8t  + ran'  + (4 a - 1)n I 

= 8t  + m n  I 
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Since 8t + m n  ~ E {ran - 2,ran, ran + 2}, (C4) holds. 

Take m = 11, n = 22 as an illustration. We have t = 30, a = 1, and b = 1. We could 

take (x ,y ,z)  = ( - 1 5 , - 3 ,  1), which leads to the solution ( 6 , - 6 , - 1 0 , 8 , 2 , 0 , 0 , 0 , 0 , 0 , 0 ) .  

Consider m = 9, n = 7 as another example. We have t = 7, a = 0, and b = 

1. Consequently, we could let (x,y,z)  = (10, 1 0 , - 2 ) .  The solution thus obtained is 

( -  1 , - 1 , 5 , - 5 , 3 ,  1, 1 , - 1 , -  1). [] 

4. Conclusion 

This paper completely determines the cordiali ty o f  mK, as follows: 

• K,  is cordial i f  and only i f n  E {1,2,3}.  

• 2Kn is cordial i f  and only i f  n = k 2 for some integer k. 

• Define b = b(n) as 

3n/2 i f  n = 0 (mod 8), 

3n/2+1 i f n = 2 ( m o d 8 ) ,  

b = 1 8 n - 2  i f n  = l ( m o d 8 ) ,  

1 8 n +  10 i f  n = 3 ( m o d 8 ) ,  

1 8 n - 1 4  i f n = 7 ( m o d 8 ) ,  

and let vp(z) denote the highest power o f  the prime p that divides z. Then 3Kn is 

cordial i f  and only i f  n ~ 0, 1 , 2 , 3 , 7 ( m o d 8 )  and vz(b) and vq(b) are even for all 

prime divisors q o f  b with q ~ 5 (mod 6). 

• 4Kn is cordial i f  and only i f  n is not o f  the form 4a(8b + 7) for any nonnegative 

integers a and b. 

• For m >t 5, the following hold. 

- I f  m = 0 (mod 4), mKn is cordial for all n. 

- I f  m = 2 (mod 4), mK, is cordial i f  and only i f  n = 0 or 1 (mod 4). 

- I f  m is odd, mKn is cordial i f  and only i f  n ~ 4, 5 (mod 8). 
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