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The K -P theory in Bose-Einstein condensates

in optical lattices

Student: Ying-Ru Chen Advisor: Prof. Wen-Feng Hsieh

Institute of Electro-optical Engineering
National Chaio Tung University

Abstract

We apply the K-P (effective mass) theory to study the dynamics of
Bose-Einstein condensates (BECs) in optical lattices with either attractive or
repulsive atom interactions. . The macroscopic condensate wave function is
described by Gross-Pitaevskii (G-P) equation. - Near band edge, we obtain the
analytic condensate wave function which is deduced from the effective mass theory
and is found to be a Bloch function modulated by a soliton envelope function of the
effective mass equation. =~ We demonstrate that bright and dark solitons,
corresponding to energy in band gap and energy within band, respectively, can exist
for both attractive and repulsive atom interactions and can be categorized as Bragg
reflection and internal reflection type solitons. In deriving the effective mass
equation, we preserve the band edge energy term and we show this term is important
to describe BECs in optical lattices. Numerically solving the G-P equation
confirms the analytic results that agree reasonably well with simulations as well as
compared with the experimental results reported by Eiermann et al. We
demonstrate that BECs in optical lattices can be described, qualitatively and

quantitatively, by the effective-mass theory.
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Chapter 1 Introduction

1-1 Preface

Bose-Einstein condensates were predicted in 1924 by S. N. Bose and A. Einstein.
S. N. Bose, an Indian physicist, worked out the statistics for photons. A. Einstein
applied Bose’s statistical model to predict that almost all of the particles in a Bosonic
system would congregate in the ground state at an ultra-low temperature.
Particles, in this case, are referred to atoms or molecules. They are bosonic
(fermionic) if they have integer (half-integer) spin, or equivalently, if the total number
of electrons, protons, and neutrons they contain is even (odd). For fermions, the
Pauli exclusion principle prevents‘two particles from occupying the same quantum
state, whereas, for bosons, the-probability of finding particles in the same quantum
state increases dramatically and satisfy.the.distribution of Bose-Einstein statistics

given by

1
e(E_/u)/kBT -1

N(E)=
where kp is Boltzmann’s constant, x is the chemical potential, 7 is temperature
and E is the energy of particles. As a gas of bosonic particles is cooled to below a
critical temperature and are all in ground state, De Broglie’s matter waves are
comparable to the distance between particles, the individual wavepackets start to
overlap and then these waves start to oscillate in coherent. These bosonic particles
are called Bose-Einstein condensates (BECs). Since all atoms of BECs occupy the
same ground state energy, the many-body wave function is then the product of N

identical single-particle where N 1is the number of condensate atoms. This

single-particle wave function is therefore called the condensate wave function or



macroscopic wave function. If the number of atoms is high, BECs exhibit cubic

nonlinearity which is equivalent to Kerr nonlinearity in optics due to interatomic
forces of condensate atoms, characterized by the s-wave scattering length a

(typically 1 to 5 nm for alkali atoms). In a gas, the separation between atoms n V3

is much larger than the effective range of the interatomic forces, i.e. the quantity
nag’ < 1. This inequality expresses that binary collisions are much more frequent

than three-body collisions. It is in this limit that the theory of the weakly interacting
Bose gas applies. Under weak atomic interaction condition, condensate wave
functions of BECs in optical lattices can be described by the Gross-Pitaevskii (G-P)

equation, or equivalently, the nonlinear Schrodinger equation with periodic potentials.

BECs could not be observed until cooling techniques were developed to reach
such a low temperature, because creation' of BECs accompany with ultra-low
temperature (around billionths™-of ‘a.degree-above absolute zero). S. Chu, C.
Cohen-Tannoudji and W.D. Phillips ‘who won the Nobel Prize in Physics in 1997
developed methods to cool and trap atoms with laser light. This achievement
accomplishes the first observation of BEC in dilute alkali gas in 1995 by E.A. Cornell,
W. Ketterle and C.E. Wieman who won the Nobel Prize in Physics in 2001. With
successful experimental observation of BECs, many physical properties of BECs can
be investigated further such as loading BECs in optical lattices [1] generated by
interference of laser beams. The first experiments involving the dynamics of BECs
in periodic potentials were carried out by Anderson and Kasevich, who used this
approach to demonstrate a mode-locked atom laser [2], and observe atomic Josephson
oscillations [2,3]. In addition, the properties of coherent macroscopic matter waves

in a lattice, such as the Bloch-band structure [4], macroscopic interference effects [2],



Bloch oscillations and Landau—Zener tunnelling [5], have been explored in a number

of experiments.

Due to the potential wells being separated by a finite distance, atoms can tunnel
between adjacent wells. BECs in optical lattices are affected by the structures of
optical lattices. The BEC spectrum has a band-gap structure [6], no BEC states can
exist within the band gap in a linear regime, where the number of atoms is low. If
the number of atoms is high, BECs behave nonlinearly. ~As the nonlinear term in the
wave equation exactly compensates for wavepacket dispersion, solitons occur.
There are spatially localized nonlinear BEC states, called gap, or equivalently bright,
solitons which exist within the band gaps [7]. As the energy is in band, there exist
dips on condensate density and a sharppphase gradient of the wave function at the
position of the minimum and are called dark solitons.= Without optical lattices, bright
solitons of BECs can only exist-with attractive nonlinearity (a, < 0) below a certain
number of atoms [8]. On the contrary, dark solitons can only exist under repulsive
nonlinearity (a, >0). However, bright and dark matter wave solitons is stable under
both attractive and repulsive nonlinearity and have no restriction of number of atoms
in BECs due to the periodicity of the optical lattice which leads to the effective

dispersion of the BEC wavepakets deduced from the band structure.

1-2 Motivation

Since the governing equation of BECs in optical lattices, G-P equation, is
nonintegrable, several different theories whose accuracy depends heavily on the

nature of the underlying problem are used to find the approximated solutions. The



tight binding approximation [9] is only accurate when the potentials are deep and well
separated. The coupled-mode theory is valid when the energies are close to the gap
and shallow potentials. An accurate solution of solitons can only be obtained by
exactly solving the full nonlinear Schrédinger equation with a periodic potential.
Louis et al. [10] analyzed numerically the existence and stability of spatially extended
and localized states of BEC loaded into an optical lattice. They demonstrated the
existence of families of spatially localized matter-wave solitons existing at gaps.
Efremidis et al. [11] studied numerically the properties of gap solitons in BECs with
either attractive or repulsive atom interaction. They found families of gap solitons,
which are characterized by the position of the energy eigenvalue within the associated
band structure. However, numerical simulations of BECs in optical lattices are
highly computationally intensive, we describe Bose-Einstein condensates in
one-dimensional optical lattices by introducing the effective-mass theory which has
been extended to study semiconductor-supetlattices successfully without the need for
full-scale numerical calculations. “Puwet al [12] have obtained an effective equation
of motion governing the time evolution of the envelope of the condensate wave
function in which the periodic external potential appears in the form of an effective
mass. Numerical calculation confirmed that this envelope function approach

provides us with useful qualitative insight into the condensate dynamics.

In the Thesis, we study the nonlinear effect of BECs in one-dimensional optical
lattices, numerically and analytically. With a little modification, we add a term, band
energy at a specific wave-vector, to the effective mass equation [12] of the envelope
wave function of BECs in which the periodic external potential appears in the form of

an effective mass. Accordingly, we obtain analytical solution of the wave function



of soliton solution which is a Bloch function from periodicity times the envelope
function of the nonlinear effective-mass Schrodinger equation. We will theoretically
observe the appearance of bright and dark solitons correspond to energy in and out-of
band gap under different sign of the s-wave scattering length a,. The analytic
solutions of BECs are compared with the numerical results of the G-P equation. We
find that BECs in optical lattices can be described, qualitatively and quantitatively, by

the effective-mass theory.

1-3 Organization of the Thesis

This Thesis is organized as follows. Chapter 2 gives a brief review of effective
mass theory and a deduction of the effective mass of BECs in optical lattices. The
plane wave method is applied te study the'linear regime of BECs in optical lattices to
obtain the band structure. In Chapter3;.the-one-band effective mass theory of a G-P
equation is introduced which gives analytic bright/dark soliton solution. We give the
comparisons between analytic and numerical results. Comparisons between analytic
and experimental results reported by Eiermann et al. are also included. We give a

brief conclusion in Chapter 4.



Chapter 2 Theory and Methodology

The dynamics of Bose-Einstein condensates (BECs) can be approximately
described in the mean-field approximation by the Gross-Pitaevskii (G-P), or nonlinear
Schrédinger, equation for the macroscopic condensate wave function. BECs in
optical lattices have many special phenomena, which are created by the interference
between the nonlinearity due to the atomic interactions and the exotic dispersion
relations from the periodic potential produced by interference of laser beams. The
chemical potential of atoms trapped in a period potential exhibits band structures
containing band gaps. No linear eigenmodes exist within a band gap. Louis et
al.[10] demonstrated numerically that there are nonlinear localized modes of the
condensate existing in the band gap, which are ‘matter-wave gap solitons. On the
other hand, dispersion relations-of photons in-nonlinear photonic crystal also exhibit
the band-gap structure. Nonlinear flocalized-photon-modes, which are optical gap
solitons [13], are shown inside the photenic gap [14, 15].

To understand the physical properties of the gap soliton, the one-band
effective-mass theory of a nonlinear Schrodinger equation is derived and solved
analytically to obtain gap soliton solutions. We start with G-P equation to describe
the dynamics of BECs in optical lattices. The linear band structure of BECs in
optical lattices is solved by the coupled mode theory. The effective mass of BECs is

defined. The numerical simulation method is also given.

2-1 Bose-Einstein condensates in optical lattices

The dynamics of a Bose-Einstein condensate in an optical lattice can be

described by the Gross-Pitaevskii (GP) [16] or the nonlinear Schrédinger equation for

6



the macroscopic condensate wave function W(r,z),

2
ma\Pg’t): 2h V24 v (@) +Un+glyl? [P, @.1)
m

where 7% is Planck’s constant, m is the mass of the atoms, g = 47msh2 /m is the

nonlinear  coefficient, and a is the s-wave scattering length.

s
V(x)=E, sinz(ﬂx/ L) is a one-dimensional periodic potential produced by the
interference of laser beams, where L is the lattice constant and E, is the potential
depth. U(r)= %m[a))%xz + a)f ( y2 + 22)} is an optical trapping potential with

frequencies @, and @;. Due to the high confinement in the y-z plane, the trap is
elongated along the x direction (i.e.®, < @|). Therefore, we express the wave
function as W (r;t) = a(y,z)w(x,t)s where a(y,z) is described by a solution of the

two-dimensional radially symmetric quantum harmonic-oscillator
problem, (—h2 /2m)Via + (ma)i / 2)()c2 + y2 Ja=mh€ a . By applying the
transformation y — wexp(—i€2¢) “and/ integrating Eq. (2.1) in the y-z, a
one-dimensional G-P equation is derived as

5 OV ) —h? 87
ot 2m axz

+E, sinz(%x)+§|l//|2 w(x,1). 2.2)
It is more convenient to use dimensionless quantities by normalizing
T=t/T,,X=x/(L/2),y=¢/L?, and V, =E,/E,, and choose T,=mL>/4h,

Li=w |as|mL2 /2h,and E, = 41 /mI?.  After these transformations, an effective

one-dimensional G-P equation in dimensionless variables is derived as

2
p 22D | L e[y +olgl” lp(x,T), 2.3)
oT 2 ox? 2
where o =sgn(a;) . Eq.(2.3) is equivalent to a time-dependent nonlinear

7



Schrédinger equation with a periodic potential. If g is positive (negative), atoms
are resulting in repulsive (attractive) interaction. Eq.(2.3) possesses an integral of

motion
N= j_°°w|go|2 e (2.4)

which accounts for the conservation of the number N of atoms in the condensate.

2-1-1 Band Structure

The E-k band structure of a BEC in optical lattices determines basic properties of
the matter waves under linear Schrodinger equation. To find the band structure we
assume that the linear part of Eq.,(2.3) admits stationary solutions of the

formp(X,T) = ¢(X)exp(—iET) ,.thus obtaining thefollowing eigenvalue problem,
E ¢(X)= 1 sinz(ﬂj H(X) (2.5)
2 AXETT 2 ' '

Eq. (2.5) possesses periodic solutions,” known as Floquet-Bloch (FB) modes. By
using plane-wave methods, the periodic potential V, sin’ (X /2) can be expanded

as

The Bloch functions can be expressed as

H(X, k)= a,eFrmmX (2.6)
m

and satisfy orthonormality
|8 X (X K)dx = 5,6 (k= q) 27)

Substituting Eq.(2.6) into Eq.(2.5), we have



(2E—V0 —(k+m7r)2)am +%am_1+%am+l —0. 2.8)

The accuracy of the method depends on the number of plane waves considered in the
expansion, as well as on the form and the depth of the potential. We assume the
potential is relatively shallow, and the Bloch modes between the first and the second
band can be accurately described by keeping only two terms of the expansion,

1.e.m=0,-1.Eq.(2.6) is rewritten as
HX k)= a,e™ +a_j X (2.9)

Considering the dominant terms in Eq.(2.8), we obtain the following coupled

equations
V
(2E—V0 —kz)ao +70a_1 =0
y (2.10)
2, +(2E—V0 —(k—zz)z)a_l =0
We substitute Eq.(2.9) into Eq.(2.7) to satisfy the orthonormality of the Bloch

functions, and then the coefficients. a,and-a.; are given by

1

o SFEFE L

(2.11)

Substituting these coefficients into the Bloch functions in Eq.(2.9), we obtain the

lower band Bloch waves at wave vector k

B(X, k) = ™ L(l +einX ) (2.12)

N/

And, the upper band Bloch waves at wave vector &

H(X, k) = ™ (—1 +eminX ) (2.13)

i
N4r
We have a nontrivial solution in Eq.(2.10), when the determinant of coefficients

vanishes. E-k band structure of BECs in one-dimensional optical lattices is then

derived as



2 2 2 _ 2\2 2

The wave-vectork lies in the first Brillouin zone which is —z/2<k<x/2. For
V, = 2.5, the band structure is as in Fig. 1. We first consider the two lowest bands at
the extreme point of the first Brillouin zone i.e.k =7z/2. E,, the lower energy band

atk = z/2, is given by

2

T 1
E =—+-7V7 2.15
@8 4° @15)

And, E},, the upper energy at k=7z/2,is given by
2

T 3
E,=—+=-VT 2.16
b g 4 ° ( )

We therefore obtain the second band gap AE=V,/2 at k=7z/2. Finally, we can
derive the Bloch waves at energy bands, at, k =7/2 from Eq.(2.12) and Eq.(2.13).

At the energy, E,, , the Bloch wavgis an even:function given by

/4 1 V4
X,—)= 2cos| =X 2.17
PaX,7) -~ ( 5 j (2.17)
And at the energy, £}, , the Bloch wave s an odd function given by
Vd 1 T
X,—)= 2sin| —X 2.18
¢b( 9 ) \/E ( 9 j ( )

The condensate wave function in the lowest energy of the first band at =0 is
given by
¢.(X,0)=(b, +b_jcoszX) (2.19)

We solved Eq.(2.7) to obtain b,and b_; , which are given by
V.

by 1 o
b ) 4 > 2[4 2 \/7z4+2V2—7z2
N2mAlm” + 2V, —m A\ x" + 2V, 0

E,, the energy atk =0, is given by

2 4 2
7T +2V,
E =£+”_ NT T (2.21)

€ 2 4 4

j (2.20)

10



The first band gap is explicitly AE =FE_ since E,. is the lowest energy in the E-K

spectrum.
Up to the present, we have derived the energy band structure and obtained three
Bloch functions, named ¢,(X), ¢,(X) and ¢.(X) at chosen points in the E-K
structure under the linear regime of the nonlinear Schrédinger equation with periodic
potentials.

In the following, we will introduce the effective-mass theory to the nonlinear
Schrédinger equation with periodic potentials. The envelop wave function of BECs
in a periodic potential can be described by an effective nonlinear Schrodinger

equation, where the periodicity is absorbed into the effective mass.

2-2 The Effective Mass Theory,

Effective mass theory is a-wellsknown-approximation in solid state physics for
studying dynamics of an electron.in_semiconductor, described by nonlinear
Schrodinger equation. The dynamics of a Bose-Einstein condensate loaded into an
optical lattice are described by the Gross-Pitaevskii (G-P) equation. The two
systems, electrons in semiconductor and BECs in optical lattices, are analogous.
Therefore, we can introduce the effective mass theory to study BECs in optical

lattices.

2-2-1 Brief review of effective mass theory

We give a brief review of effective mass theory in solid state system [17].

Starting with a general form of /inear Schrodinger equation

11



op(r.t)
ot

where H, is a time independent Hamiltonian that, in most instance, contains a

(H,+U)op(r,t)=in (2.22)

periodic potential. U represents an external influence; it is not periodic and may be

time dependent. The eigenfunctions of the characteristic equation given by

H,p,(k,r)=E,$,(K,r) (2.23)
are the Bloch functions with ¢, (K,r)=¢,(k,r +a). Here k isthe wave vector, n

1s the band index and a is the lattice vector. The Bloch functions are orthonormal

according to
[ (0r) ()’ =6,5(k =), .29

Note that in this equation and everywhere else, the integral on r involves complete

space. They also form a complete set that

> [ (k.p) gk k=5 (r-1). (2.25)
n
It is sometimes desirable to expand-the wave funection simply related to the Bloch
functions at a single K-point of a band structure. Therefore, we introduce a basis of the
so-called Kohn-Luttinger functions g, (k, r)which are defined in terms of the Bloch
functions at some conveniently chosen point in the first Brillouin zone K, as
2 (kir) =KDy (ko 1) = KT, (Kq.1). (2.26)
whereu,, is the cell periodic function. The Kohn-Luttinger functions obey the same

orthonormality and completeness relations as the Bloch functions. Thus, an arbitrary

wave function can be expanded as
o(r,0)=> [ 4,(k,t) 2, (k1) dk, (2.27)
n
where A4, (k,t) are the expansion coefficients. And the matrix elements of H,

are determined as the follows

12



[nk|H,|1a] = [ 23 (k1) Hozi (0, 7) dr
:Iei(q_k)°ru* (Ko.r)
<[ 1 0o (/) (ko e (12 2m) (22

xul(ko,r)d3r

(2.28)

We can break up the integral over whole space into an integral over unit cells since

pu; (Ko, r)is periodic if u; is periodic.

[ ST 1 (ko 1) Py (Kot) dr = 5(a-K)p,y (Ko ) (2.29)
where
) 3
pn;(ko)=( g) [ (Kour)puy (Ko,r) (2.30)

with Q2 being the volume of a unit cell: " Thus, Eq.(2.28) yields
[nk|H,|iq]

(2.31)
= (oK) 00 £1+ (80 2m) (2K |+ (8/m) (arko s (o)
Consequently, the expansion coefficients An(k,t) of Eq.(2.27) satisfy
[En+(h2/2m)(q2-k 2)_ma/atJA (k,t)
+(1/m)(g-K) an, )4 (K1) (2.32)

+Zj.d3q[nk|U|lq]Al q,t =
/

This is the Schrodinger equation under the effective mass theory. For a stationary

state of energy E, i.e., 4, (K,t) > 4, (k), Eq.(2.32) can be represented as

[En+(h2/2m)(q2-k 2)—E}atn(k)

+(n/m)(a-k, an; (2.33)

+ Zjd3q[nk|U| 1914;(q) =

13



After some algebra, the last term in Eq.(2.33) is represented as
1

(27)’

The only terms of Eq.(2.33), which represent coupling between bands, are those

[nk|U|lg | =6,,U(k-q)=05,

[ DU (r)a. (2.34)

involving the momentum matrix elements p,; .
We will consider the simpler non-degenerate case in the following discussion.

By introducing a unitary transformation C=e 4 to the expansion coefficients,

where § is Hermitian and is in some sense “small”, Eq.(2.33) is then replaced by

o (1om (o ko o o Sepy ohoms) | ColK)

—E C,(K)+[d’q U(k=q) C,(q) =0
By using ordinary perturbation theory; the energy of a state in the nth band at k is

related to that at Kk, in the second order by.

L i
E, (k) =L, (k0)+;5k'pnn +%(k2 - kg)

7l ki) (kP )
"0 2 (ko) (ko)

(2.36)

The first three terms in Eq.(2.35) are equivalent to the expression given in the

Eq.(2.36) for the energy as a function of wave vector to second order in oK, so that

we replace those terms by E,, (k)

(En(k)—E)Cn(k)+J‘d3q U(k-q)C,(q)=0 (2.37)
This equation resembles the Schrédinger equation in momentum space for one
particle in the potential U. There is a significant difference in that the effective mass

tensor m" is involved, rather than the free electron mass m,. All of the effects of

the periodic potential are incorporated in the effective mass.

It is desirable to transform Eq.(2.37) to a differential equation in ordinary space. We

14



define a function F, (r) by

F

n

(r)=[e?rc, (k)d*k (2.38)
The integration in Eq.(2.38) includes only the Brillouin zone. Next, multiply
Eq.(2.37) by exp(i5 k-r) and integrate over the Brillouin zone. Let us consider the
term
[E(k)e*TC, (k)dk (2.39)
where E (k) can be expressed as
E(K)=E,+ Y a; ok; ok; (2.40)

where ¢a;; is the reciprocal effective mass tensor, given implicitly in Eq.(2.35)

for(m/m,’;) , :(m/hz)(azEn /akaakﬂ). Bysubstituting Eq.(2.35) into Eq.(2.38)
Q
we have

E, Fn(r)+2a,.jj5k,. Sk %" C,(k)d*k

Jd 0
=E, F,(r)+ Y a; Pr— F,(r) (2.41)
P
1
=E,—F,(r)

iV
The expression E,(1/iV) means that we are to substitute 9/iox; for Jk;. The

last term of Eq.(2.37) is transformed as

[[d*q d U(k-q)C,(q)e™"

(2.42)

If |r| is large compared to a lattice spacing, the errors from approximation are not

important for slowly varying impurity potentials. Therefore, we are able to simplify
Eq.(2.42) as
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L ([[d% d* a*k &%y (1) e, (q)= U (N F,(r)  243)

(27)

Now, we have, in replace of Eq.(2.37)

{E %—Ean(r)W(r)Fn(r):O (2.44)

This is the transformed effective mass equation and does not contain any terms

coupling different bands.

Now, we introduce Wannier functions an(r -R ﬂ), characterized by a band index

and a lattice site vector R, to express the wave function in terms of orthogonal

an(r—Rﬂ): /(zj)3je‘ik'Rﬂ¢n(k,r)d3k (2.45)

After some algebra, the Bloch functions can be expressed as

4, (a.r) = Q3Ze_iq'R”an(r—Rﬂ) (2.46)
(22) 4

With Eq.(2.46) and the transformation C =e ™ A4, we have

localized functions.

ZI[HK i8] } q)d3
- q(k)—%kz%c (K -

where ®,; =(E, —E;)/h. The leading term in 4, is just C,, and we neglect the

first-order correction. To this order
ch VT4 (Koo1)dk
= z¢n k0> r n ( )
n

(2.48)

If we are interested in the wave function associated with a particular impurity level

under the conduction band, for instance n=c, we have finally
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@(r)=4¢.(Kq.r)F(r) (2.49)
The impurity function is then an oscillatory band wave function modulated by a

slowly varying, but exponentially decreasing, envelope function F (r) .

2-2-2 Effective mass theory in BECs

We, in turn, adopt the effective mass equation [Eq.(2.44)] to consider a
Bose-Einstein condensate in an optical lattice, described by G-P equation. For the
envelope functions vary not faster than on a scale of three lattice constants, the

nonlinear terms should be added to Eq.(2.44) in a straightforward way

(Eniiv—Ean(r)+U(r)Fn (O] 7, ()] F,(r)=0 (2.50)

or

[(En—E)+Zal.jiiJFn(r)+U(r)Fn(r)+o-‘Fn(r)‘2Fn(r):0 2.51)

l@xl iox J
where o is the strength of the nonlinear interatomic interaction. x;and x;are

cartesian components of r. Finally, we have the transformed effective mass

equation contains nonlinear interaction without coupling bands.

Now, we proceed to consider the nonlinear Schrodinger equation without
external influence as in Eq.(2.3), the effective mass equation in Eq.(2.51) is rewritten

as

1 0°F,(X
__*#_5;1}7;1()()+O—n‘Fn(X)‘2Fn(X):0 (2'52)
2m, 0X

where 8, =E—-E,(k,) is the detuning chemical potential from E,(k,), the
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chemical potential at the extreme point of the band. This is the effective-mass

equation near the extreme points of the band, %k, , by making a unitary
transformation to diagonalize the Hermitian matrix of Eq.(2.3). In deriving
Eq.(2.52), we have assumed that the band mixing is small. If the band mixing is not

negligible, a two-band model is necessary to describe BECs in optical lattices. We

believe that E,(k,) is usually ignored in the applications of the effective-mass

theory [12], cannot be ignored and is important to describe BECs in optical lattices,

qualitatively and quantitatively. The effective nonlinear interaction strength o, is
given by

0, =70 [y (ky X' dX (2.53)
The reciprocal effective mass is 1/ m: 23 62E(k) / ok? for band n as being defined
in solid-state physics. With second-order. differential of Eq.(2.14), effective mass
o

a

at E, isgiven by

2
1* or (2.54)
oV,

L (2.55)

and, effective mass m: at E,. is given by

m. =1 (2.56)

The effective mass can be positive or negative depending on the band. With proper
atomic interaction o, and the detuning chemical potential ¢, , solitons may emerge
from band edge E,(k,) .

Eq.(2.52) is a time-independent nonlinear Schrdodinger equation governing the
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condensate envelope function F,(X), which is related to the condensate wave

function by (p(X ) =Z¢n (ko,X )Fn(X ) from Eq.(2.49). If we are interested in
n

the condensate wave function associated with a particular localized state developed

from a certain band, from Eq.(2.49), we have
P (X) =8, (ko X) F, (X) (2.57)

where n is band index marked as a, b, or c in this thesis.

To give a brief summary, we have derived the condensate wave function of a
time-independent nonlinear Schrédinger equation with a periodic potential to be an

oscillatory band wave function modulated by a slowly varying envelope function

F, (X ) In next chapter, we introduce the bright and dark solitons arise from the

BEC:s in optical lattices and discuss their properties.

2-3  Numerical Method

For obtaining the numerical results of one-dimensional G-P equation in Eq.(2.3)
at steady state, we introduce numerical differentiation for approximating a
second-order derivative, Newton-Raphson method for finding the solutions of
nonlinear equations, and numerical integration for calculating the number of atoms in

a BEC [Eq.(2.4)].

2-3-1 Numerical Differentiation

We use central-difference formula of order O(h2 ) as a second-order derivative
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f"(x). Start with the Taylor expansions

N han(x) N h3f(3) (x) N h4f(4) (x)
2! 3! 4!

f(x+h):f(x)+hf'(x)
and

2em0) B3O () @ («
b= £ (x)~f (x) + f2!( ) _h f3!( ),/ f4!( )

Adding the two Eqs.(2.58)(2.59), we have

x+h)- x)+ f(x— 2@ (x 4O (x
o)< LM =2 () fx=h) 20777 (x) 200777 ()

+ ..

4+ ..

2 41 6!

(2.58)

(2.59)

—.o (2.60)

If the series in Eq.(2.60) is truncated at the fourth derivative, there exists a value c that

liesin [x—/h,x+h] so that

o A2 21O ()
© W2 4

This gives us the desired formula for approximating /" (x)

5 f_2f0+f—
fozT

We consequently have the error W,

2-3-2 Newton-Raphson theorem [18]

2.61)

(2.62)

We apply Newton-Raphson (or simply Newton’s) method for finding the

solutions of nonlinear equations. Assume that f eCz[a,b] and there exists a

number p € [a,b] where f(p)=0.1f f'(p)+0, then there exists a & >0 such that

the sequence { py }ZO: o defined by the iteration

S (Pra1)

for k=1,2,...
S (Pr-1)

Pr = g(Pk—l) =Pr-1—

20
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will converge to p for any initial approximation p, € [ p—0,p+o ] . The function

g(x) defined by the formula

(2.64)

is called the Newton-Raphson iteration function. Since f ( p) =01t is easy to see that
g( p) =0. Thus, the Newton-Raphson iteration for finding the root of the equation
f(x)=0 is accomplished by finding a fixed point of the equation g(x)=x. Since

Newton’s method rely on the continuity of f’(x)=0 and f"(x)=0, we start with

the Taylor polynomial of degree n =1

77(e)(x= po )

F(x)=1(po)F /(2o {xmps) 2

(2.65)

where ¢ lies somewhere between p,-and_x. Substituting x=p into Eq.(2.65)

and using the fact that f(p)=0 produces

£'(e)(x=p,)"
2!

O:f(po)+f’(po)(x_po)+ (266)

If p, is close enough to p, the last term on the right side of Eq.(2.66) will be small

enough compared to the sum of the first two terms. Hence, it can be neglected and

we can use the approximation
Ozf(po)+fl(po)(p_po) (267)
Solving for p in Eq.(2.67), we getp~ p,— f(p,)/ /' (p,). This is used to define

the next approximation p; to the root

S (po)
I'(Po)

P1=DPo— (2.68)
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When p;_; is used in place of p, in Eq.(2.68), the general rule Eq.(2.63) is
established. For most applications this is all that needs to be understood. However,

to fully comprehend what is happing we need to consider the fix-point iteration

function. The key is in the analysis of g'(x)

Since g'(p)= f(p)f”(p)/[f’(p)]2 =0 and g(x) is continuous, it is possible to

find a >0 so that the hypothesis

g’(x)‘ﬁl is satisfied on [p-6&,p+6].

Therefore, a sufficient condition for p, to initialize a convergent sequence { Di }?:0
which converges to a root of f(x)=0uristhat p,e[p—3J,p+5] and that & be

chosen so that

<1 forallxe[p—é',p+5] (2.69)

2-3-3 Numerical Integration [19]

We adopt a three-point formula exact up to polynomials of degree two. This is
true; moreover, by a cancellation of coefficients due to left-right symmetry of the

formula, the three-point formula is exact for polynomials up to and including degree

three, i.e. f(x)= x>, We have the Simpson’s rule
[7 r(x)dx=n Leidpily +O(h5f(4)) (2.70)
X, 3 3 3

where x;=x,+ih; i=0,1,---,N+1 and f(xl-)sfi . Here f(4) means the

fourth derivative of the function f evaluated at an unknown place in the interval
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and therefore the error is 4°. Note that the formula gives the integral over an

interval of size 24, so the coefficients add up to two.
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Chapter 3 Simulation Results and Discussion

We have applied the effective mass theory to the Gross-Pitaevskii (G-P) equation,
nonlinear Schrédinger equation with optical lattices, to obtained the effective mass

equation [Eq.(2.52)]

o*F, (X
_%#_é‘nFn(X)-"o-n‘Fn(X)‘zF (X):O
2m, 0X
The condensate wave function associated with a particular localized state developed

from a certain band is shown in Eq.(2.57)
(pn(X) = ¢n (ka)Fn(X)
which is an oscillatory band wave, function ¢,(k,,X) modulated by a slowly

varying, but exponentially decreasing, envelope.function F,(.X) which provides a

concrete picture to study the properties of BECs for-certain energy in band structure.
If the energy is within the band-gap, gap  solitons occur. These solitons,
characterized by localized wavepackets of the condensates, are also called bright
solitons. On the other hand, for the energy is within the band, dark solitons occur
and are characterized by localized dips on the condensate density background.

In the following, we apply the effective mass equation to obtain the analytic
solutions of bright and dark solitons, respectively. Both numerical simulations and
experimental results reported by Eiermann et al. [20] are applied to confirm that this
envelope function approach indeed provides us with useful qualitative insight into the

condensate dynamics.
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3-1 Bright Solitons

For the energy is within band gap, bright soliton solutions can be described by
the envelope functions which satisfy effective mass equation [Eq.(2.52)] and are
given by

F,(X)=4, sech(B,X) (3.1)

where B, =2 5nm: and 4, =B, / ‘ [‘m:an . Bright solitons are developed from

states of the upper (lower) band edge of the band gap, if atomic interactions are

attractive (repulsive). The sign of detuning chemical potential, atomic interactions

and effective mass determines whether bright solitons exist or not. For the energy is

below the band edge &, <0, the effective inass m, >0, and attractive atomic

interactions o, <0. For the energy is above the band edge J, >0, the effective

mass m:; <0, and repulsive atomic interactions o, >0. From Eq.(3.1), we know

that the gap soliton width is inversely proportional to B, and depends upon the
detuning chemical potential &, , which is the relative chemical potential to the band
edges. The properties of a gap soliton are determined by J,,, therefore, in order to

understand BECs in optical lattices qualitatively and quantitatively, the chemical
potential £, (k,) atband edge is significant. Near the band edge, where |5,| and
B, are small, the soliton is much extended (occupying many lattice sites) in the

n

space and decay slowly to infinity. Deep inside the band gap, where |§n| and B,

are large, the soliton is much confined in the space. These analytic soliton properties

are consistent with the numerical studies of BECs in optical lattices [8, 10].

We proceed to add oscillatory Bloch waves ¢, (ko,X ) to envelope function
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F,

»(X) to obtain the condensate wave functions. According to the states in the

band from which solitons are developed, we classify gap solitons into categories that

are Bragg-reflection type and internal-reflection type, respectively. Note that we

kept the depth of the optical lattices ¥, =2.5 in our numerical studies.

3-1-1 Bragg-Reflection Type

Solitons which arise from the energy E,, the first band at k =7/2, or Ep, the
second band at k =7/2, are classified in Bragg-Reflection Type. From Eq. (2.15)
and Eq. (2.16), we have E, =1.859 and Ej, =3.109, respectively. For the solitons

arising from E,, we have the energy goes.up to the second band gap which implies

5, >0, the effective mass m., ==0.839 [Eq.(2.54)] is negative, and the formation of

gap solitons is under repulsive atomic-interactions’ o >0. For convenience, we

name gap solitons which arise ftom "E, as a-type gap solitons. By multiplying
the Bloch wave ¢,(X,7/2)=/1/z cos(z/2X) [Eq.(2.17)] to the envelope function

of Eq.(3.1), the condensate wave function of gap solitons developed from E, is
given by

P, (X)=4 sech(BX)%cos(%) (3.2)
We plot a series of the typical a-type gap solitons which are developed from the first
band edge for repulsive atomic interactions for different energy under V, =2.5.
These plots are Fig. 2(a), Fig. 2(b) and Fig. 2(c) which correspond to the energy
E=2015, E=24837,and E =2.9525, respectively. They have even symmetric

Bloch wave under soliton envelope. For comparison, we numerically solve

time-independent G-P equation [Eq.(2.3)] and plot in Fig. 2(d), Fig. 2(e) and Fig. 2(f)
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for the a-type gap solitons at the corresponding energies.

On the other hand, for the solitons arising from Ej, we have the energy goes

down to the second band gap which implies o, <0, the effective mass mZ =0.202
[Eq.(2.55)] is positive, and the formation of gap solitons is under attractive atomic

interactionso < 0. For convenience, we name gap solitons which arise from Ej, as

b-type gap solitons. By multiplying the Bloch wave
¢, (X,7/2)=/l/7sin(z/2X) [Eq.(2.18)] to the envelope function of Eq.(3.1), the
wave function of gap solitons developed from E; is given by

0y (X) = 4 sech(BX)%sin(%j (33)

We plot a series of the typical hstype gap solitons which are developed from the

second band edge for attractive.atomic interactions for different energy under

V,=2.5. These plots are Fig.-3(a); Fig..3(b).and Fig. 3(c) which correspond to the
energy E =2.015, E=24837, and E =2:9525, respectively. They have odd
symmetric Bloch wave under soliton envelope. For comparison, we again
numerically solve time-independent G-P equation [Eq.(2.3)] and plot in Fig. 3(d), Fig.

3(e) and Fig. 3(f) for the b-type gap solitons at the corresponding energies.

The results of a-type and b-type gap solitons reveal high agreement between

the analytic and numerical solutions, especially, when detuning chemical potential
|5n| is small. The oscillations of gap solitons are due to the cosine and sine

standing wave functions at the E, and FE, as the Bragg reflection (BR) type
solitons. They are the modulated standing Bloch waves, resulting from the

interference of counter-propagating Bragg reflected waves, by the soliton envelope
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function.

To obtain the analytic particle number N related to the detuning chemical

potential o, for the a-type gap solitons, we substitute Eq.(3.2) into the

conservation of number of atoms in Eq.(2.4)

2 2.2 2
N:l A—+A T csch| Z— 3.4)
7\ B 2B?

To obtain the analytic particle number N related to the detuning chemical potential

o, for the b-type gap solitons, we substitute Eq.(3.3) into the conservation of

number of atoms in Eq.(2.4)

2 2 2 2
N:l A Az csch| Z— (3.5)
z|.B  2p2 2B

The number of atoms N in a BEC at different energies for a-type and b-type gap

solitons are plotted in Fig. 5.+« From Eq:(3+4), and Eq.(3.5), we found the atomic
number N is approximately proportional to\/ﬁ and it is small close to the band

edges and becomes zero at band edges. These properties are not only consistent with
the numerical simulations [10, 11] but also with our simulations as shown in Fig. 5.
Going deeper inside the band gap, the particle number N becomes large and the

nonlinear effect is strong (solitons being more localized).

3-1-2 Internal-Reflection Type

Solitons which arise from the energy E,_, the first band at k£ =0 are classified
in Internal-Reflection Type. From Eq.(2.21), we have E_.=1.096. For the solitons

arising from E_, we have the energy goes down to the first band gap which implies
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0, <0, the effective mass m: =1 [Eq.(2.56)] is positive, and the formation of gap

solitons is under attractive atomic interactions o <0. For convenience, we name

gap solitons arise from E,. as c-type gap solitons. By multiplying the Bloch

wave ¢(X,0)=(b,+b_jcoszX) [Eq.(2.19)] to the envelope function of Eq.(3.1),

the wave function of gap solitons developed from E_ is given by
@.(X)=Asech(BX)(b, +b_jcosnX) (3.6)

We plot a series of the typical c-type gap solitons as shown in Fig. 4(a), Fig. 4(b)
and Fig. 4(c) which correspond to the energy FE =0.1371, E=0.5482, and
E=0.9594 , respectively. For comparison, we again numerically solve
time-independent G-P equation [Eq.(2.3)] and plot in Fig. 4(d), Fig. 4(e) and Fig. 4(f)
for the c-type gap solitons at the corresponding energies. Note that the Bloch wave
function is no longer a standing wave due te no.coupling with counter-propagating
wave. The soliton is mainly -localizéd-by-the attractive potential rather than by
Bragg reflection in the periodic structure; in this band, it resembles an ordinary guided
wave modulated by a periodic structure and acts as internal reflection (IR) wave
which does not contain zeros. It is a fundamental eigenmode gap soliton with small

ripples and it becomes pure sech? profile for the soliton energy deeper in the gap or

with lower soliton energy.

To obtain the analytic particle number N related to the detuning chemical

potential o, for the c-type gap solitons, we substitute Eq.(3.6) into the

conservation of number of atoms in Eq.(2.4)

2 2 2_2 2
N=4A L+2ab27r csch| Z— +b7z csch| - (3.7)
B B 2B B B

where the coefficients a, b are given by
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o

a 1 4 J
(bJ \/E\//Z’4+2V02—72'2«/7Z'4+2V02 {\/’74+2V02 -7

(3.8)

Number of atoms in condensates N is also approximately proportional to,/|é1 and

does not exhibit atomic population cutoffs at band edge as shown in Fig. 5. It
becomes large as the localized state goes deeper inside the band gap where the
nonlinear effect is strong (solitons being more localized). However, we found in Fig.
5 the numerical particle numbers of a-type and b-type both slightly larger than
those obtained from the analytic formula of Eq.(3.4) and Eq.(3.5), but that for c-type

1s smaller.

3-2 Dark Solitons

For the energy is on the band, dark soliton solutions can be described by the

envelope functions which satisfy-effective-mass equation [Eq.(2.52)] and are given by

F

n

(X)="4, tanh(B,X) (3.9)

where B, = §nm:‘ and 4, =B, / m:o;Z . Dark solitons are developed from

states of the upper (lower) band edge of the band gap, if atomic interactions are
repulsive (attractive). The sign of detuning chemical potential, atomic interactions

and effective mass determines whether dark solitons exist or not. For the energy is
above the band edge &, >0, the effective mass m, >0, and repulsive atomic
interactions o, >0. For the energy is below the band edge &, <0, the effective
mass m, <0, and attractive atomic interactions &, <0. The atomic interaction of

dark solitons is contrary to that of bright solitons while sign of the effective mass

remains the same. From Eq.(3.9), we know that width of dark soliton is inversely
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proportional to B, and the background condensate density is proportional to 4, .

These two properties both depend upon the detuning chemical potential o,,, which is

the relative chemical potential to the band edges. Near the band edge, where |5n

5

B

, and A, are small, the width of the localized condensate density dips is extended

(occupying many lattice sites) in the space and the background condensate density is

low. Deep inside the band, where |§n and 4, are large, width of the dips is

> Bn
much confined and the background density is high. We find that he chemical
potential E, (ko) at band edge plays an important role in order to study BECs in

optical lattices qualitatively and quantitatively. To confirm these properties of dark

solitons, we solve the condensate wave functions analytically and numerically.

The procedure to seek for the condensate wave functions of dark solitons is

analogous to that of bright solitons. and-is-to,add oscillatory band wave function

¢, (k,,X) to envelope function £, (X )sssAccording to the states on the band from

which solitons are developed, we classify gap solitons into categories that are the

Bragg-reflection type and internal-reflection type, respectively. Note that we kept

the depth of the optical lattices V, =2.5 in the numerical studies.

3-2-1 Bragg-Reflection Type

Same as for dark solitons which arise from the energy E,, the first band at
k=r/2,o0r E,,thesecond band at k =7/2, are classified in Bragg-Reflection Type.

For dark solitons arising from the energy E, =1.859, we have the detuning chemical

potential o, <0 and negative effective mass mz =-0.339 [Eq.(2.54)]. The
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atomic interaction to form dark solitons is turned into attractive o <0 while the
effective mass leaves unchanged. For convenience, we call dark solitons arise from

E as a-type dark solitons. By multiplying the Bloch wave

a
¢, (X,7/2) =1/ cos(7/2X) [Eq.(2.17)] to the envelope function of Eq.(3.9), the

wave function of dark solitons developed from E, is given by

9. (X)=4 tanh(BX)%cos(%j (3.10)
We plot a series of the typical a-type dark solitons as shown in Fig. 6(a), Fig. 6(b)
and Fig. 6(c) which correspond to the energy E=1.1917 , E=1.4776 ,
and E=1.7634 , respectively. For comparison, we numerically solve
time-independent G-P equation [Eq.(2.3)] and plot in Fig. 6(d), Fig. 6(e) and Fig. 6(f)

for the a-type dark solitons at the cerfesponding energies.

For dark solitons arising from the .energy. Ep =3.109, we have the detuning

chemical potential &, >0 and, positive effective: mass mZ =0.202 [Eq.(2.55)].

The atomic interaction to form dark selitons-i§ turned into repulsive o >0 and the

effective mass leaves unchanged. For convenience, we call dark solitons arise from

E, as D-type dark solitons. By multiplying the Bloch wave
¢, (X,7/2) =/l/7wsin(z/2X) [Eq.(2.18)] to the envelope function of Eq.(3.9), the
wave function of dark solitons developed from £, is given by

1 X
X)= A tanh(BX )—=sin| — 3.11
%( ) ( ) Jr ( > j (3.11)
We plot a series of the typical b-type dark solitons as shown in Fig. 7(a), Fig. 7(b)
and Fig. 7(c) which correspond to the energy E =3.204, E=3.4898, and
E =3.7757, respectively. For comparison, we numerically solve time-independent

G-P equation [Eq.(2.3)] and plot in Fig. 7(d), Fig. 7(e) and Fig. 7(f) for the b-type

dark solitons at the corresponding energies.
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The results of a-type and b-type dark solitons reveal high agreement between
the analytic and numerical solutions. Also, we show that the smaller detuning

chemical potential |§n , the higher accuracy of the analytic results. Lower accuracy

of the analytic results occurs around the position X =0. The oscillations of a-type
and b-type dark solitons are due to the cosine and sine standing wave functions at
the E, and E, as the Bragg reflection (BR) type solitons. They are the
modulated standing Bloch waves, resulting from the interference of

counter-propagating Bragg reflected waves, by the soliton envelope function.

3-2-2 Internal-Reflection Type

For dark solitons arising from the energy. £, =1.096 at k=0 are classified as

Internal-Reflection Type. We- have the_detuning-chemical potential 6, >0 and

positive effective mass m, =1 [Eq.(2:56)].7 The atomic interaction to form dark

solitons is turned into repulsive o >0 and still the effective mass leaves unchanged.
For convenience, we name dark solitons arise from E_. as c-type dark solitons.
By multiplying the Bloch wave ¢(X,0)=(b,+b_jcoszX) [Eq.(2.19)] to the
envelope function of Eq.(3.9), the wave function of dark solitons developed from £,
is given by

¢.(X)= A tanh(BX)(b, +b_jcostX) (3.12)
We plot a series of the typical c-type dark solitons as shown in Fig. 8(a), Fig. 8(b)
and Fig. 8(c) which correspond to the energy E=1.1917 , E=1.4776 ,
and £ =1.7634 , respectively. For comparison, we again numerically solve

time-independent G-P equation [Eq.(2.3)] and plot in Fig. 8(d), Fig. 8(e) and Fig. 8(f)
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for the c-type dark solitons at the corresponding energies.

Mechanism of the formation of dark solitons is quite different from bright
solitons. Condensate waves can propagate in linear regime since the energy of dark
soliton is in band. With the consideration of atomic interaction, i.e., under nonlinear
regime, phase difference A@ between the parts left and right to the dark soliton (DS)
plane, a plane of minimum condensate density, is 7. This phase difference can be
regarded as destructive interference of two waves, and hence there exist a localized
dip in condensate density. In aspect of energy band spectrum, since the energy
band structure shift slightly, there exist the nonlinear localized mode, dip on
condensate density, i.e. dark solitons. Therefore, a dark soliton can propagate and its

shape leave unchanged. Dark solitons are chatacterized by the dependence of a

complementary norm N, of the condensate wave function on the chemical potential

E to represent a notch on the condensate density. - We have N,

N = J'[(Dgackground ()= Piatiton (X )}dX
where N, represents a deficit of the condensate atoms associated with the formation
of a dark soliton notch in the Bloch wave background. We analytically calculate the
number of deficient atoms in condensate, N,. which are plotted in Fig. 9. The
quantitative measure of this deficit depends on the width of the notch and the peak
density of the background. As a rule, wider solitons form on lower density Bloch
waves near the lower edges of spectral bands. The higher density nonlinear Bloch

waves, corresponding to large chemical potentials, carry narrower dark states.

We have numerically and analytically demonstrated that bright (dark) solitons

developed from both of band edges of the first and second bands at k =7z/2 into the
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second band gap (within the first band) are Bragg reflection type, a standing wave of
counter propagating Bragg reflected Bloch waves due to optical lattices, whereas,
bright (dark) soliton below the first band (within the first band) is mainly localized by
the nonlinear attractive (repulsive) potential rather than by Bragg reflection in optical
lattices. It resembles the ordinary guided waves modulated by a periodic structure

and has internal reflection (IR) wave profile which does not contain zeros.

The first experimental observation of bright matter wave solitons with repulsive
interaction for *’Rb in optical lattices was reported by Eiermann et al. [20]. The

experimental conditions are transverse and longitudinal trapping frequencies

o) =27 x85Hz and o =27x0.5Hz, and a standing light wave of wavelength
A=783nm. They deduced :a soliton width of %, =6 uym from the absorption

images and the inverse effective mass 1/ mz =—0.1 from the experimentally
measured soliton period, and they found the number of atoms is around 300. We
proceed to compare our analytic results for a-type gap solitons with Eiermann’s

experimental results. We can, on the contrary, obtain the analytic bright solitons

solutions by deducing the depth of the optical lattice V, =0.8972 from the effective

mass 1/ m, =-0.1 and the detuning chemical potential & =5.322x107> from the

soliton width x, =6 um. Note that the soliton solutions are dimensionless and
satisfy the effective one-dimensional G-P equation [Eq.(2.3)]. With parameter
transformation discussed in Chapter 2, we can obtain solitons solutions satisfying
one-dimensional G-P equation [Eq.(2.2)] instead and derive the number of atoms in

bright soliton in dimensional variables
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2 L, 2 h 2 h
'[|W| dx J.2L1 |§0| @ J-a)LasmL|¢| @ a)LaSmLN 3-13)

where the lattice constant L=4/2 and N is the number of atoms in dimensionless
variables [Eq.(2.4)]. By substituting all parameters into Eq.(3.13), N is found to
be 287 which well agree with Eiermann’s experimental results. Eiermann’s
experiments show that only partial condensate atoms can form bright solitons and the
rest condensate atoms are regarded as background. In aspect of our analytic soliton

solutions, the detuning potential 6 represents number of condensate atoms to form

bright solitons, whereas the band edge energy E, (k

0) is regarded as background

condensate atoms. For further discussion, we consider the product of atom number
and soliton width as a function of the effective mass varied by adjusting the depth of
the periodic potential. As the o isismall, thersecond term in Eq.(3.4) is negligible
and we found that the produet of soliton width and the number of atoms is
proportional to the inverse effective mass; = These results are shown in Fig.10 and are
compared with Eiermann’s expérimental results {22]. Good coincidence between
analytic solutions and experimental results is also revealed in Fig. 10. However, the
foregoing are under small § and V,. To complete our discussion, we plot
numerical and analytical N-E for V,=1.5 and ¥V, =3.5 shown in Fig. 11(a) and
Fig. 11(b), respectively. For small &, the numerical and analytical results are in
good agreement for both two values of V,; for large ¢, it is found that V, =3.5
has higher disagreement than V, =1.5. For large depth of the optical lattice,
V,=3.5, the atoms are much confined in optical lattices, and hence the Bloch
functions are not adequate to describe condensate atoms near band edge.
Consequently, the inaccuracy of the analytic soliton solutions occurs. In summary,
the effective mass theory can describe BECs in optical lattices qualitatively and

quantitatively, especially adequate for small optical lattice and detuning potential.
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Chapter 4 Conclusion and Perspective

4-1 Conclusion

We have applied the effective mass theory to study the dynamics of
Bose-Einstein condensates (BECs) in optical lattices with either attractive or repulsive
atom interactions. The macroscopic condensate wave function is describes by
Gross-Pitaevskii (G-P) equation. We have derived the analytic soliton solution near
band edge by including band edge energy as a parameter of solitons. The analytic
soliton solution is found to be a Bloch function from the periodicity modulated by a
soliton envelope function of the effective mass equation in which the periodic external
potential appears in the form of an;effective mass:’. The band edge energy is regarded
as background condensate atoms at.a specific.wave vector to form solitons. We have
demonstrated that the analytic soliton-Selutions, can-be either bright or dark solitons
for both attractive and repulsive atom interactions since the energy band structure can
change the dispersion of the BEC wavepackets dramatically. Both bright and dark
solitons corresponding to energy in band gap and energy within band, respectively,
can be categorized as Bragg reflection type solitons due to a standing wave of counter
propagating Bragg reflected Bloch waves and internal reflection type solitons due to
mainly localized by the attractive (repulsive) potential. The relation between the
number of atoms to form solitons and energy has also been studied. As the energy
goes deep inside the energy band (energy band gap), the number of atoms in dark
(bright) soliton increases. Numerically solved the G-P equation, we confirmed the
analytic soliton solutions agree reasonably well with simulations. The higher
accuracy occurs at smaller detuning chemical potential and smaller depth of optical

lattice.  Eventually, we compared our bright soliton solutions with repulsive
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interaction with the experimental results reported by Eiermann et al [20]. Good
agreement has been revealed. In conclusion, we have demonstrated that the band
edge energy has physical significance to describe BECs in optical lattices and we
have found that BECs in optical lattices can be described, qualitatively and

quantitatively, by the effective-mass theory.

4-2 Perspective

We have applied the effective mass theory to study the stationary state
BEC:s in optical lattices, i.e., the time-independent G-P equation throughout the Thesis
and have showed that BECs in optical lattices can be described, qualitatively and
quantitatively, by the effective-mass theory. In the future work, we can consider the
time-dependent G-P equation where many phenomena of BECs in optical lattices can
be experimentally demonstrated-and/or theeretically investigated. The prediction of
modulational instability (MI) [21] is one.of the;phenomena. Under the MI condition,
the wavevector has imaginary term after adding a small perturbation wave to the
Bloch wave and, consequently, the wave “grows up”. In other words, solitons can
occur under such condition. Konotop and Salerno [22] have studied the
modulational instability in BECs in optical lattices by means of multiple-scale
expansion. With such analysis, they obtain the velocity and inverse effective mass
of the energy band, and explain the relation between the existence of solitons and the

scattering length a,. We can instead proceed to study MI of BECs in optical

lattices by applying the effective mass theory to the time-dependent G-P equation.
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Fig. 1 Typical energy band spéctrum . E'=k--of BECs for depth of optical lattices

V,=2.5. Points “a” and “b™ are the band edges of the first and second bands at
k=r/2 and point “c” is the lowest band edge at k=0. The shaded regions

are the first and second band gap, respectively.
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with energy (a) £E=2.015, (b) £E=2.4837, and (c) E =2.9525 and for the

numerical result of G-P equation (d), (e), and (f). The dashed line represents

optical lattices.
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respectively.
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numerical result of G-P equation (d), (e), and (f). The dashed line represents

optical lattices.
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