
Journal of Computational and Applied Mathematics 234 (2010) 545–556

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Optimization and sensitivity analysis of controlling arrivals in the
queueing system with single working vacation
Dong-Yuh Yang a, Kuo-Hsiung Wang b,∗, Chia-Huang Wu a
a Department of Industrial Engineering and Management, National Chiao Tung University, Hsinchu 30050, Taiwan
b Department of Applied Mathematics, National Chung-Hsing University, Taichung 402, Taiwan

a r t i c l e i n f o

Article history:
Received 2 February 2009
Received in revised form 26 November
2009

Keywords:
F-policy
Optimization
Quasi-Newton method
Sensitivity analysis
Working vacation

a b s t r a c t

This paper analyzes the F-policy M/M/1/K queueing system with working vacation and
an exponential startup time. The F-policy deals with the issue of controlling arrivals to
a queueing system, and the server requires a startup time before allowing customers to
enter the system. For the queueing systems with working vacation, the server can still
provide service to customers rather than completely stop the service during a vacation
period. The matrix-analytic method is applied to develop the steady-state probabilities,
and then obtain several system characteristics. We construct the expected cost function
and formulate an optimization problem to find the minimum cost. The direct search
method and Quasi-Newton method are implemented to determine the optimal system
capacity K , the optimal threshold F and the optimal service rates (µB, µV ) at theminimum
cost. A sensitivity analysis is conducted to investigate the effect of changes in the system
parameters on the expected cost function. Finally, numerical examples are provided for
illustration purpose.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Many real-world situations involve queueing systems, in which the server may be unavailable for occasional intervals of
time when the system becomes empty. The occasional intervals of time are called vacations. Queueing systems with server
vacations have been investigated and applied extensively in many areas, such as computers and communication systems,
manufacturing/production and inventory systems. Under various vacation policies, the optimal design and control of queues
appears flexible. An excellent and comprehensive survey on this topic can be found in Doshi [1] and Takagi [2].
In this paper, we consider the F-policy M/M/1/K queueing system with single working vacation and an exponential

startup time. The server takes a single vacation whenever the system becomes empty. During a vacation period, the server
remainsworking at a different service rate rather than completely stop to provide service. Such a vacation is called aworking
vacation (see Servi and Finn [3]). Gupta [4] first introduced the concept of the F-policy which means that when the number
of customers in the system reaches its capacity K (i.e. the system becomes full), no further arriving customers are allowed
to enter the system until the queue length decreases to a certain threshold value F(0 ≤ F ≤ K − 1). At that time, the server
requires an exponential startup time to restart allowing customers to enter the system. This queueing system is referred to
as the F-policy M/M/1/K/WV queueing system with an exponential startup time.
Past work regarding controllable queues may be divided into two parts according to whether the system is considered to

control the service or the arrival. The first category of controlling the service which focuses on three different threshold
policies includes the N-policy, introduced in [5], the T -policy, introduced in [6] and the D-policy, introduced in [7]. In
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the second category of controlling the arrival, Gupta [4] was the first to investigate the F-policy and derived the steady-
state analytic solutions. Karaesmen and Gupta [8] applied the duality relationship to obtain the stationary queue length
distributions for the two queueing systems under N-policy and F-policy. Recently, Wang et al. [9] extended the F-policy
M/M/1 queue to the F-policy M/G/1 queue by using the supplementary variable technique. Most recently, Wang et al. [10]
investigated the optimal management problem of the F-policy G/M/1//K queueing systems with an exponential startup
time.
Servi and Finn [3] first introduced the M/M/1 queueing model with working vacation. Queueing models with working

vacation have been studied by several researchers such as Kim et al. [11], Li et al. [12], Yi et al. [13], Tian et al. [14], and so on.
Baba [15] examined the GI/M/1 queue with multiple working vacations. Jain and Agrawal [16] investigated M/Ek/1 queue
with working vacation and developed the average queue length by the probability generating function. Moreover, Servi and
Finn’s system [3] was extended to M/G/1 case in [17], where the service times during a normal busy period, the service
times during working vacation, and the length of working vacation are general distributions. The finite capacity GI/M/1/WV
queue with multiple working vacations was discussed in [18]. They derived the system size distributions at pre-arrival and
at arbitrary epochs, the blocking probability and the mean waiting time in the system. Li and Tian [19] analyzed a discrete
time GI/Geo/1 queue with working vacations and presented the stochastic decomposition results for the queue length and
the expectedwaiting time. Recently, Tian et al. [14] investigated a discrete timeGeom/Geom/1 queuewithmultipleworking
vacations by using the quasibirth and death process and matrix-geometric method.
To the best of our knowledge, there has been no research that explores controlling arrivals in the queueing system by

using the matrix-analytic method. This motivated us to apply this approach to solve the steady-state equations of the F-
policy M/M/1/K/WV queueing system with an exponential startup time. The rest of this paper is organized as follows. In
the next section, some basic assumptions and the practical justification of the model are described. In Section 3, we use the
matrix-analyticmethod toderive the closed-formexpression of steady-state probability vector; and further, special cases are
also discussed. Section 4 develops the various system characteristics inmatrix forms. In Section 5, the expected cost function
per unit time is constructed to determine the joint optimal values at theminimumcost.We employ the direct searchmethod
to find the optimal capacity,K ∗, and the optimal threshold value, F∗. Subsequently,we implement theQuasi-Newtonmethod
to obtain the optimal service rates (µB, µV ) after K ∗ and F∗ are determined. In Section 6, a sensitivity analysis is carried out
to verify the effect of the system parameters on the cost function. Section 7 presents a numerical example to accomplish
the optimum tasks. In addition, some numerical experiments are also provided to illustrate the sensitivity analysis. Finally,
conclusions are given in Section 8.

2. Model descriptions

2.1. Assumptions

We investigate the F-policy M/M/1/K/WV queueing system with an exponential startup time. The basic assumptions of
this controlling arrivals system is described as follows. The arrival of customer follows a Poisson process with parameter λ.
The service times during a normal busy period are according to exponential distribution with parameter 1/µB. The system
capability is finite, denoted by K (K <∞). If the system is full, it forbids any customers entering the systemuntil the number
of customer is less than or equal to a prefix threshold value F . Moreover, at this time, the server requires an exponential
startup time with parameter γ and the customers continue enter the system. Once the system becomes empty, the server
goes to a working vacation. The service times during a working vacation period and the duration of a working vacation
are according to exponential distribution with parameter 1/µV and θ , respectively. If the server finds no customers in the
system at the end of vacation, the server waits for the next arrival, i.e., single vacation policy. Each server can serve only one
customer at a time. Arrived customers form a single waiting line and follow the first-come first-served (FCFS) discipline. If
all servers are busy, the arrived customers must wait in the queue until a server is available. Various stochastic processes
(arrival or service or vacation) involved in this system are assumed to be independent with each other.

2.2. Practical justification of the model

The intention of the F-policy is to control arrival process, which focuses on reducing the number of customers in the
system. In real-world applications, the model discussed in this paper is quite useful due to the consideration of arriving
customers. Such a queueing model frequently occurs in the area of computer processing, transportation systems and so on.
A practical problem related to a computer processing system is provided for illustration purpose. If the processor is available,
indicating that it is not currently working on a task and the message is processed. Then the message is temporarily stored
in a buffer to be served some time later if the processor is unavailable. When the buffer runs full at any time, newly arriving
messages are blocked until the number ofmessages drops to a specified threshold level. Messages are immediately admitted
to enter the system on condition that the system buffer reduces to the specific level. On the other hand, the processor will
switch a lower processing rate to newly arriving messages whenever all messages are processed. However, the processor
can switch a higher processing rate at any time. It is helpful to prevent a computer from becoming overloaded and enhance
the computer performance.
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3. Steady-state results

For the F-policyM/M/1/K/WVqueueing systemwith an exponential startup time,wedevelop the steady-state probability
equations based on the Markov process method.
Let us define some notations in the following:
N(t) ≡ the number of customers in the system at time t ,
Y (t) ≡ the state of the server at time t ,

where

Y (t) =


0, if the arrivals are not allowed to enter the system and the server is on a working vacation period;
1, if the arrivals are not allowed to enter the system and the server is on a normal busy period;
2, if the arrivals are allowed to enter the system and the server is on a normal busy period;
3, if the arrivals are allowed to enter the system and the server is on a working vacation period.

Then {Y (t),N(t); t ≥ 0} is a continuous time Markov process with state space

S = {(i, n)|i = 0, 1; n = 0, 1, . . . , K − 1, K} ∪ {(i, n)|i = 2, 3; n = 0, 1, . . . , K − 2, K − 1} .

The steady-state probabilities of the system are defined as follows:

Pi(n) = lim
t→∞
{Y (t) = i,N(t) = n} , i = 0, 1, n = 0, 1, . . . , K − 1, K .

Pi(n) = lim
t→∞
{Y (t) = i,N(t) = n} , i = 2, 3, n = 0, 1, . . . , K − 2, K − 1.

3.1. Steady-state probability equations

Referring to the state-transition-rate diagram for the F-policyM/M/1/K/WVqueueing systemwith an exponential startup
time shown in Fig. 1, we have the following steady-state probability equations:

(θ + γ )P0(0) = µVP0(1), (1)

(µV + θ + γ )P0(n) = µVP0(n+ 1), n = 1, 2, . . . , F , (2)

(µV + θ)P0(n) = µVP0(n+ 1), n = F + 1, F + 2, . . . , K − 1, (3)

(µV + θ)P0(K) = λP3(K − 1), (4)

γ P1(0) = µBP1(1)+ θP0(0), (5)

(µB + γ )P1(n) = µBP0(n+ 1)+ θP0(n), n = 1, 2, . . . , F , (6)

µBP1(n) = µBP1(n+ 1)+ θP0(n), n = F + 1, F + 2, . . . , K − 1, (7)

µBP1(K) = λP2(K − 1)+ θP0(K), F 6= K − 1, (8)

λP2(0) = γ P1(0)+ θP3(0), (9)

(λ+ µB)P2(n) = γ P1(n)+ λP2(n− 1)+ µBP2(n+ 1)+ θP3(n), n = 1, 2, . . . , F − 1, F , (10)

(λ+ µB)P2(n) = λP2(n− 1)+ µBP2(n+ 1)+ θP3(n), n = F + 1, F + 2, . . . , K − 2, (11)

(λ+ µB)P2(K − 1) = λP2(K − 2)+ θP3(K − 1), (12)

(λ+ θ)P3(0) = γ P0(0)+ µBP2(1)+ µVP3(1), (13)

(λ+ µV + θ)P3(n) = γ P0(n)+ λP3(n− 1)+ µVP3(n+ 1), n = 1, 2, . . . , F , (14)

(λ+ µV + θ)P3(n) = λP3(n− 1)+ µVP3(n+ 1), n = F + 1, F + 2, . . . , K − 2, (15)

(λ+ µV + θ)P3(K − 1) = λP3(K − 2). (16)

3.2. Matrix form equations

Using the matrix-analytic method, we may develop the steady-state probabilities for the F-policy M/M/1/WV queueing
system with an exponential startup time. The corresponding transition rate matrix Q of this Markov chain has the block-
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Fig. 1. The state-transition-rate diagram for an F-policy M/M/1/WV queueing system with an exponential startup time.

tridiagonal structure:

Q =

0
1
2
...
F
F + 1
F + 2
...

K − 2
K − 1
K



A0 C0 0 0 · · · 0 0 0 · · · 0 0
B0 A1 C0 0 · · · 0 0 0 · · · 0 0
0 B1 A1 C0 · · · 0 0 0 · · · 0 0
...

. . .
. . .

. . .
. . .

...
...

...
...

...
...

0 0 0 B1 A1 C0 0 0 0 · · · 0
0 0 0 0 B1 A2 C0 0 0 · · · 0
0 0 0 0 0 B1 A2 C0 0 · · · 0
...

...
...

...
...

. . .
. . .

. . .
. . .

. . .
...

0 0 0 0 · · · 0 0 B1 A2 C0 0
0 0 0 0 · · · 0 0 0 B1 A2 C1
0 0 0 0 · · · 0 0 0 0 B2 A3


,

where the lower boundary block entries A3, B2 and C1 arematriceswith dimensions (2×2), (2×4) and (4×2), respectively.
Other matrices are square matrices with dimension (4× 4). Each entry of the matrix Q is listed in the following:

Aj =

− (Ω{j 6= 0}µV + θ +Ω{j 6= 2}γ ) θ 0 Ω{j 6= 2}γ
0 − (Ω{j 6= 0}µB +Ω{j 6= 2}γ ) Ω{j 6= 2}γ 0
0 0 − (λ+Ω{j 6= 0}µB) 0
0 0 θ − (λ+Ω{j 6= 0}µV + θ)

 ,

where j = 0, 1, 2 andΩ{α} =
{
1, if α is true,
0, if α is false.

A3 =
[
− (µV + θ) θ

0 −µB

]
, Bj =

µV 0 0 0
0 µB 0 0
0 0 Ω{j = 1}µB Ω{j = 0}µB
0 0 0 µV

 , where j = 0, 1.

B2 =
[
µV 0 0 0
0 µB 0 0

]
, C0 =

0 0 0 0
0 0 0 0
0 0 λ 0
0 0 0 λ

 , C1 =

0 0
0 0
0 λ
λ 0

 .
The steady-state probability vector P for Q is partitioned as (P0, P1, . . . , PK−1, PK ), where the sub-vectors Pn = {P0(n),

P1(n), P2(n), P3(n)}(0 ≤ n ≤ K − 1) and PK = {P0(K), P1(K)} are of dimensions four and two, respectively. Solving the
steady-state probability equations is equivalent to solve PQ = 0 along with the boundary condition Pe = 1, where e is a
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column vector of ones. Thus, the steady-state probability equations in matrix form are expressed as follows:

P0A0 + P1B0 = 0, (17)
Pn−1C0 + PnA1 + Pn+1B1 = 0, 1 ≤ n ≤ F , (18)
Pn−1C0 + PnA2 + Pn+1B1 = 0, F + 1 ≤ n ≤ K − 2, (19)
PK−2C0 + PK−1A2 + PKB2 = 0, (20)
PK−1C1 + PKA3 = 0. (21)

3.3. Computation of the steady-state solution

In the following, we derive the steady-state probabilities in the matrix form by simple algebraic manipulation.
Since A0 is nonsingular, we have from (17) that

P0 = P1X0, where X0 = −B0A−10 . (22)

From (18) and (22), it implies that

Pn = Pn+1Xn, where Xn = −B1(Xn−1C0 + A1)−1, 1 ≤ n ≤ F . (23)

Using (19) and (23), it leads the following result,

Pn = Pn+1Xn, where Xn = −B1(Xn−1C0 + A2)−1, F + 1 ≤ n ≤ K − 2. (24)

Finally, from (20) and (24), we get

PK−1 = PKXK−1, where XK−1 = −B2(XK−2C0 + A2)−1. (25)

Solving (22)–(25) recursively, the solution Pn (0 ≤ n ≤ K − 1) can be represented in terms of PK .

Pn = Pn+1Xn = · · · = PK
K−n∏
ξ=1

XK−ξ = PK9∗n , (26)

where9∗n =
∏K−n
ξ=1 XK−ξ and Xn (0 ≤ n ≤ K − 1) are given in (22)–(25).

From the normalizing condition and (26), we have

K−1∑
n=0

Pne1 + PK e2 = [P0 + P1 + · · · + PK−1] e1 + PK e2

=
[
PK9∗0 + PK9∗1 + · · · + PK9∗K−1

]
e1 + PK e2

= PK

[
K−1∑
n=0

9∗n e1 + e2

]
= 1, (27)

where e1 and e2 are column vectors of orders four and two, respectively. All their elements are equal to one.
Note that (21) can be written as

PK [XK−1C1 + A3] = 0. (28)

Therefore, PK can be obtained by solving (27) and (28). Once PK have been determined, it is possible to obtain the steady-
state solutions for Pn (0 ≤ n ≤ K − 1) from (26). To this end, a computer program (MAPLE) is developed to compute
Pn (0 ≤ n ≤ K).

3.4. Special cases

We present three special cases of our model in the following.

Case 1: As µV = 0, our model can be reduced to the F-policy M/M/1/K queueing system with single vacation.
Case 2: The corresponding result for the F-policyM/M/1/K queueing system by setting θ to approach∞ andµV = µB, which
is in accordance with the result of Gupta [4].

Case 3: The server is always on working vacation under F-policy if we set θ = 0.
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4. System characteristics

Our analysis is based on the following system characteristics of the F-policy M/M/1/K/WV queueing system with an
exponential startup time. Let us define
LS ≡ the expected number of customers in the system;
PB ≡ the probability that the server is busy;
PS ≡ the probability that the server starts to allow customers entering the system;
PL ≡ the probability that the system is blocked;
WS ≡ the expected waiting time in the system;
λeff ≡ the effective arrival rate.
The expressions for LS , PB, PS , PL,WS and λeff are given by:

LS = Pπ = PK

(
K−1∑
n=1

n9∗n e1 + Ke2

)
, (29)

PB =
K−1∑
n=1

Pne1 + PK e2 = 1− PK9∗0 e1, (30)

PS =
F∑
n=0

Pnv1 = PK
F∑
n=0

9∗nv1, (31)

PL =
K−1∑
n=0

Pnv1 + PK e2 = PK

(
K−1∑
n=0

9∗nv1 + e2

)
, (32)

WS =
LS
λeff
=

PK
(
K−1∑
n=1
n9∗n e1 + Ke2

)
λPK

K−1∑
n=0

9∗nv2

, (33)

λeff = λ

K−1∑
n=0

Pnv2 = λPK
K−1∑
n=0

9∗nv2, (34)

where P = (P0, P1, . . . , PK−1, PK ), π = (π0, π1, . . . , πK−1, πK )
T , πn = ne1 for 0 ≤ n ≤ K − 1, πK = Ke2, v1 =

[ 1 1 0 0 ]T , v2 = [ 0 0 1 1 ]T .

5. Cost optimization analysis

We develop the expected cost function per unit time for the F-policy M/M/1/K/WV queue with an exponential startup
time. In our cost function, four decision variables K , F , µB and µV are considered. Our objective is to determine the optimal
threshold value F , say F∗, the optimal capacity K , say K ∗, the optimal service rate during a normal busy periodµB, sayµ∗B , and
the optimal service rate during a working vacation period µV , say µ∗V . The decision maker would implement those optimal
values to minimize the expected cost per unit time. Let us define the following cost elements:
Ch ≡ holding cost per unit time for each customer present in the system;
Cb ≡ cost per unit time when the server is busy;
Cl ≡ fixed cost for every lost customer when the system is blocked;
Cs ≡ startup cost per unit time for allowing customer to enter the system;
Cw ≡waiting cost per unit time when one customer is waiting for service;
Ck ≡ the fixed cost for the system capacity;
C1 ≡ cost per unit time for service during a normal busy period;
C2 ≡ cost per unit time for service during a working vacation period.
Utilizing the definitions of each cost element listed above and its corresponding system characteristics, the expected cost

function per unit time is given by

TC(F , K , µB, µV ) = ChLS + CbPB + ClλPL + CsPS + CwWS + CkK + C1µB + C2µV . (35)

The cost elements in (35) are assumed to be linear in the expected number of the indicated quantity. Substitution of
(29)–(34) into (35), the cost function TC(F , K , µB, µV ) is too detailed to be shown here. As a result it would have been an
arduous task to develop optimal solution (F∗, K ∗, µ∗B, µ

∗

V ) analytically, due to the highly nonlinear and complex nature of
the optimization problem. We will present the numerical experiments to show that the cost function is indeed convex and
that the solution gives a minimum. First, we use direct search method to find the joint optimal values (F∗, K ∗)whenµB and
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µV are fixed. Subsequently, we fix (F∗, K ∗) and apply Quasi-Newton method to adjust the service rates (µB, µV ) until the
minimum TC(F∗, K ∗, µB, µV ) is achieved, say TC(F∗, K ∗, µ∗B, µ

∗

V ).

5.1. Direct search method

Asmentioned above, the formula (35) can be found to be too long and complicated. It is rather difficult to develop analytic
results for the optimal value. Additionally, it is not easy to show convexity of this function. In order to guarantee that the
optimum is obtained in the desired region,we use the direct searchmethod to find joint optimal values, (F∗, K ∗). An efficient
and direct procedure in the following is proposed for achieving (F∗, K ∗):
Step 1: Find the optimal system capacity K ∗, for the threshold value F , i.e.,MinimizeKTC(F , K) = TC(F , K ∗).
Step 2: Compute the set of all minimum cost solutions for F = 0, 1, . . . , K − 1, i.e., Θ = {TC(F , K ∗)|F = 0, 1, . . . , K − 2,
K − 1}.
Step 3: Determine the optimal operating F-policy, F∗, i.e.,MinimizeFΘ = TC(F∗, K ∗).

5.2. The Quasi-Newton method

The solution corresponding the minimum expected cost TC(F∗, K ∗, µB, µV ), is denoted by (F∗, K ∗, µ∗B, µ
∗

V ). We can
further decrease the minimum expected cost TC(F∗, K ∗, µB, µV ) easily by adjusting µB and µV . After the determination
of (F∗, K ∗), we will use Quasi-Newton method to globally search (µB, µV ) until the minimum value of TC(F∗, K ∗, µB, µV )
is achieved. The optimum problem can be illustrated mathematically as follows:

TC(F∗, K ∗, µ∗B, µ
∗

V ) = Minimize
µB,µV

TC(F∗, K ∗, µB, µV ). (36)

Quasi-Newton method is reliable and efficient for finding a minimizer of a nonlinear function. For subsequent iteration,
this method is used to decide a search direction. Then trying different step length along this direction for a better solution
until the tolerance is acceptable. We designate the vector

−→
Ω consisting ofµB andµV , and construct the respective gradient

−→
∇ TC(

−→
Ω 0) which consists of ∂TC/∂µB and ∂TC/∂µV . Let the corresponding solution be denoted by (µ∗B, µ

∗

V ). In order to
use the Quasi-Newton method conveniently, a step-by-step procedure is provided as below.

Step 1: Let
−→
Ω 0 = [µB, µV ]

T , i = 0 and the tolerance ε = 10−7.

Step 2: Set the initial trial solution for
−→
Ω 0, and compute TC(

−→
Ω 0).

Step 3: Compute the cost gradient
−→
∇ TC(

−→
Ω i) = [∂TC/∂µB, ∂TC/∂µV ]T |−→Ω i and the cost Hessian matrix

H(
−→
Ω i) =

[
∂2TC/∂µ2B ∂2TC/∂µB∂µV

∂2TC/∂µV ∂µB ∂2TC/∂µ2V

]
at the point

−→
Ω i.

Step 4. Find the new trial solution
−→
Ω i+1 =

−→
Ω i − [H(

−→
Ω )]−1

−→
∇ TC(

−→
Ω i).

Step 5. Set i = i+ 1 and repeat steps 3–4 until Max (|∂TC/∂µB| , |∂TC/∂µV |) < ε.

Step 6. Find the global minimum value TC(µ∗B, µ
∗

V ) = TC(
−→
Ω
∗

i ).

6. Sensitivity analysis for the expected cost function

With the developed cost function,we perform a sensitivity analysis for the expected cost functionwith respect to changes
in specific values of the system parameters. Differentiating PQ = 0with respect to λ, we obtain

∂P
∂λ

Q+ P
∂Q
∂λ
= 0, (37)

or equivalently

∂P
∂λ
= −P

∂Q
∂λ

Q−1. (38)

We have the solutions ∂Pi(n)/∂λ and ∂Pj(K)/∂λ from (38) for 0 ≤ i ≤ 3, 0 ≤ n ≤ K − 1 and j = 0, 1. Using the same
procedure, ∂P/∂µB, ∂P/∂µV , ∂P/∂θ and ∂P/∂γ can be obtained.
Next, we differentiate the expected cost function in (35) with respect to λ. The sensitivity of the expected cost function

is calculated as follows:

∂TC
∂λ
= Ch ×

∂LS
∂λ
+ Cb ×

∂PB
∂λ
+ Cl ×

(
PL + λ

∂PL
∂λ

)
+ Cs ×

∂PS
∂λ
+ Cw ×

∂WS
∂λ

. (39)
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Fig. 2. The expected cost TC(F , K) for different values of F and K .

Table 1
The expected cost TC(F , K) for λ = 4.0, µB = 5.0, µV = 3.0, γ = 2.0 and θ = 3.0.

K F
0 1 2 3 4 5 6 7 8 9 10 11

2 985.60 983.54 – – – – – – – – – –
3 910.04 898.72 899.38 – – – – – – – – –
4 867.11 855.08 846.06 847.06 – – – – – – – –
5 841.32 831.00 821.54 815.53 817.00 – – – – – – –
6 826.69 818.38 810.32 803.81 800.15 801.89 – – – – – –
7 819.88 813.35 806.87 801.23 797.01 794.92 796.73 – – – – –
8 818.70 813.62 808.53 803.94 800.18 797.53 796.45 798.19 – – – –
9 821.65 817.70 813.73 810.09 806.98 804.54 802.93 802.48 804.08 – – –
10 827.64 824.58 821.49 818.63 816.13 814.07 812.53 811.61 811.53 812.97 – –
11 835.91 833.53 831.13 828.88 826.90 825.22 823.90 822.96 822.48 822.62 823.89 –
12 845.88 844.03 842.16 840.40 838.83 837.49 836.40 835.57 835.04 834.84 835.10 836.21

Differentiating the expected cost function in (35) with respect to µB, µV , γ and θ , respectively, it follows that

∂TC
∂φ
= Ch ×

∂LS
∂φ
+ Cb ×

∂PB
∂φ
+ λCl ×

∂PL
∂φ
+ Cs ×

∂PS
∂φ
+ Cw ×

∂WS
∂φ
+ δ, (40)

where φ = µB, µV , γ , θ and δ =
{
C1, if φ = µB,
C2, if φ = µV ,
0, if φ = γ , θ.

7. Numerical examples

First, we present a numerical example for finding the joint optimal values (F∗, K ∗) by using the direct searchmethod. The
following cost elements are considered: Ch = $5/unit, Cb = $300/day, Cl = $200/day, Cs = $400/day, Cw = $60/day, Ck =
$15/unit, C1 = 50/unit and C2 = 20/unit. We fix λ = 4.0, µB = 5.0, µV = 3.0, γ = 2.0, θ = 3.0, vary the threshold value
F from 0 to K − 1, and K ranges from 2 to 12.
If the function TC(F , K) is unimodal, a single relative minimum exists. In order to find (F∗, K ∗), we should show the

existence of convexity or unimodality of TC(F , K). The curve representing the expected cost function is shown in Fig. 2. As
can be seen Fig. 2, it convinces us that the expected cost function is convex. The expected cost TC(F , K) is summarized in
Table 1 for various values of F and K . Using the direct search procedure, we can find that the minimum expected cost per
day of $794.920 is obtained with F∗ = 5 and K ∗ = 7.

7.1. Sensitivity analysis for F∗ and K ∗

Next, we perform a sensitivity analysis on the optimal threshold value (F∗) and optimal capacity (K ∗) based on changes
in the specific values of the system parameter. The optimal values, F∗, K ∗ and the corresponding minimum expected cost
TC(F∗, K ∗) are shown in Tables 2–4 for the following three cases, respectively.
Case 1: µB = 5.0, µV = 3.0, γ = 3.0, θ = 2.0 for different values of λ.
Case 2: λ = 4.0, γ = 3.0, θ = 2.0 for different values of (µB, µV ).
Case 3: λ = 4.0, µB = 5.0, µV = 3.0 for different values of (θ, γ ).
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Table 2
Optimal values of F∗ , K ∗ and the minimum expected cost for different values of λ (µB = 5.0, µV = 3.0, γ = 3.0, θ = 2.0).

λ 1.0 2.0 3.0 4.0 5.0

F∗ 2 3 4 5 5
K ∗ 3 4 6 7 8
TC(F∗, K ∗) 446.861 553.542 667.539 794.920 950.423

Table 3
Optimal values of F∗ , K ∗ and the minimum expected cost for different values of (µB, µV ) (λ = 4.0, γ = 3.0, θ = 2.0).

(µB, µV ) (2.0, 3.0) (4.0, 3.0) (6.0, 3.0) (5.0, 1.0) (5.0, 3.0) (5.0, 6.0)

F∗ 0 3 6 6 5 4
K ∗ 3 6 7 8 7 6
TC(F∗, K ∗) 1026.323 847.979 784.025 800.806 794.920 801.146

Table 4
Optimal values of F∗ , K ∗ and the minimum expected cost for different values of (γ , θ) (λ = 4.0, µB = 5.0, µV = 3.0).

(γ , θ) (1.0, 2.0) (3.0, 2.0) (6.0, 2.0) (3.0, 0.5) (3.0, 1.0) (3.0, 3.0)

F∗ 7 5 4 6 6 5
K ∗ 9 7 6 8 8 7
TC(F∗, K ∗) 830.281 794.920 781.249 875.276 828.551 780.993

Table 5
Quasi-Newton method in searching the optimal solution µ∗B and µ

∗

V with λ = 4.0, γ = 3.0 and θ = 2.0.

No. of iterations 0 1 2 3 4

TC(F , K , µB, µV ) 794.920 781.993 781.524 781.523 781.523
(F∗, K ∗) (5, 7) (5, 7) (5, 7) (5, 7) (5, 7)
µB 5.0000 5.7581 5.8826 5.8891 5.8891∗
µV 3.0000 4.4526 4.1218 4.1318 4.1318∗

Table 6
Quasi-Newton method in searching the optimal solution µ∗B and µ

∗

V with µB = 5.0, µV = 3.0, γ = 3.0, θ = 2.0 and for various values of λ.

λ 1.0 2.0 3.0 4.0 5.0

(F∗, K ∗) (2, 3) (3, 4) (4, 6) (5, 7) (5, 8)
(µB, µV ) (5.0, 3.0) (5.0, 3.0) (5.0, 3.0) (5.0, 3.0) (5.0, 3.0)
TC(F∗, K ∗, µB, µV ) 446.861 553.542 667.539 794.920 950.423
µ∗B 2.831 3.902 4.872 5.889 6.914
µ∗V 0.769 2.456 3.257 4.132 4.992
TC(F∗, K ∗, µ∗B, µ

∗

V ) 379.884 538.945 667.125 781.523 890.685

One can easily see from Table 2 that (i) F∗ and K ∗ increase as λ increases; and (ii) the minimum expected cost TC(F∗, K ∗)
increases as λ increases. From Table 3, it appears that (i) F∗ and K ∗ increase as µB increases or µV decreases; (ii) TC(F∗, K ∗)
decreases as µB increases; and (iii) TC(F∗, K ∗) decreases or increases as µV changes. From Table 4, we observe that (i) F∗
and K ∗ decrease as γ or θ increases; and (ii) TC(F∗, K ∗) decreases as γ or θ increases.

7.2. Searching the optimal values of (µB, µV )

After the determination of F∗ and K ∗, we then apply the procedure of the Quasi-Newton method to search the optimal
service rates (µB, µV ). Let us take the same example for illustration as above, the initial trial solution is (F∗, K ∗, µB, µV ) =
(5, 7, 5.0, 3.0) with the initial value $794.920. It can be seen from Table 5 that after only four iterations, the minimum
expected cost per day of $781.523 is achieved at (F∗, K ∗, µ∗B, µ

∗

V ) = (5, 7, 5.8991, 4.1318). The minimum expected cost is
approximately 1.8% lower from the initial value. Thus, it leads to the conclusion that the Quasi-Newton method is working
well and converges very fast. In addition, we also provide other numerical results by using the Quasi-Newton method from
Tables 2–4 and summarized in Tables 6–8. From Tables 6–8, it is obvious that the expected cost can be reduced essentially.

7.3. Sensitivity analysis for the expected cost function

Finally, we will use a graphical analysis to study the effects of various parameters on the expected cost function. We fix
K = 12, choose F = 3, 6, 9 and consider the following five cases.
Case 4: µB = 5.0, µV = 3.0, γ = 3.0, θ = 2.0, λ varies from 2.0 to 4.0.
Case 5: λ = 4.0, µV = 3.0, γ = 3.0, θ = 2.0, µB varies from 4.0 to 6.0.
Case 6: λ = 4.0, µB = 5.0, γ = 3.0, θ = 2.0, µV varies from 2.0 to 4.0.
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Table 7
Quasi-Newton method in searching the optimal solution µ∗B and µ

∗

V with λ = 4.0, γ = 3.0, θ = 2.0 and for various values of (µB, µV ).

(µB, µV ) (2.0, 3.0) (4.0, 3.0) (6.0, 3.0) (5.0, 1.0) (5.0, 3.0) (5.0, 6.0)

(F∗, K ∗) (0, 3) (3, 6) (6, 7) (6, 8) (5, 7) (4, 6)
TC(F∗, K ∗, µB, µV ) 1026.323 847.979 784.025 800.806 794.920 801.146
µ∗B 5.386 5.928 5.928 5.837 5.889 5.927
µ∗V 5.523 4.892 4.122 3.512 4.132 4.772
TC(F∗, K ∗, µ∗B, µ

∗

V ) 900.282 787.466 781.511 784.321 781.523 784.148

Table 8
Quasi-Newton method in searching the optimal solution µ∗B and µ

∗

V with λ = 4.0, µB = 5.0, µV = 3.0 and for various values of (γ , θ).

(γ , θ) (1.0, 2.0) (3.0, 2.0) (6.0, 2.0) (3.0, 0.5) (3.0, 1.0) (3.0, 3.0)

(F∗, K ∗) (7, 9) (5, 7) (4, 6) (6. 8) (6, 8) (5, 7)
(µB, µV ) (5.0, 3.0) (5.0, 3.0) (5.0, 3.0) (5.0, 3.0) (5.0, 3.0) (5.0, 3.0)
TC(F∗, K ∗, µB, µV ) 830.281 794.920 781.249 875.276 828.551 780.993
µ∗B 6.070 5.889 5.800 5.222 5.592 5.947
µ∗V 3.970 4.132 4.321 7.757 6.454 0.933
TC(F∗, K ∗, µ∗B, µ

∗

V ) 808.007 781.523 770.328 773.029 790.463 759.057
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Case 7: λ = 4.0, µB = 5.0, µV = 3.0, θ = 2.0, γ varies from 2.0 to 4.0.
Case 8: λ = 4.0, µB = 5.0, µV = 3.0, γ = 3.0, θ varies from 1.0 to 3.0.
Figs. 3–7 show the sensitivity performance of the expected cost with respect to λ, µB, µV , γ and θ , respectively. It is

noted that the sign of sensitivity indicates an increase or decrease in the expect cost by changing the values of system
parameters. In Fig. 3, it shows that (i) ∂TC/∂λ is positive, which means that incremental change of λ increases the expected
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cost; (ii) ∂TC/∂λ increases as λ increases for all F ; and (iii) as λ is fixed, ∂TC/∂λ is getting larger as F decreases. We observe
from Fig. 4 that (i) ∂TC/∂µB increases asµB increases for all F ; and (ii) ∂TC/∂µB is negative whenµB is smaller than around
5.8 which means that an incremental change of µB improves the expected cost. Fig. 5 shows that (i) ∂TC/∂µV is positive;
(ii) ∂TC/∂µV increases asµV increases; and (iii) asµV is fixed, ∂TC/∂µV increases as F increases. It appears from Fig. 6 that
(i) ∂TC/∂γ is negative; (ii) ∂TC/∂γ increases as γ increases for all F ; and (iii) as γ is fixed, ∂TC/∂γ increases as F increases.
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In Fig. 7, one can easily see that (i) ∂TC/∂θ is negative; (ii) ∂TC/∂θ increases as θ increases; and (iii) as θ is fixed, ∂TC/∂θ
increases as F increases. In summary, it reveals from Figs. 3–7 that λ and µB affect the expected cost significantly.

8. Conclusions

In this paper, we considered the F-policy M/M/1/K/WV queueing system with an exponential startup time. Steady-state
probability vectors were developed in matrix form by the matrix-analytic method. We utilized the probability vectors to
perform various system characteristics. An expected cost function per unit time was constructed to determine the optimal
threshold value F∗, the optimal capacity K ∗, the optimal service rates µ∗B and µ

∗

V at the minimum cost by using the direct
method and Quasi-Newton method. Sensitivity analysis of the cost function has been done for specific values of the system
parameters λ,µV ,µB, θ and γ . Finally, numerical examples were presented to illustrate how to obtain the optimal solutions.
Moreover, numerical investigations show that λ and µB affect the expected cost significantly. Hence, these results could be
helpful for the system analyst to make reliable decisions in reducing the cost.
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