
Chapter 2  Theory 

2.1 Huygens’ integral and ABCD law 

  Fig. 2.1 Huygens’ integral in free space 

In this section, we introduce the Huygens’ integral and the ABCD law which we 

will use in our simulation model.  For simplicity we will discuss it in one-dimension 

and then extend to deal with the laser system with cylindrical symmetry.  Huygens’ 

integral in one transverse dimension for propagation through a distance L in free 

space can be written in the form 
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where the path length ρ(x1,x2) for an optical ray in free space traveling from position 

x1 at plane z1 to position x2 at plane z2 = z1+L is given by the paraxial approximation      
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So, the Huygens-Fresnel kernel for wave propagation in free space thus takes on the 

X2

L

)(~
22 xu)(~

11 xu

 4



form 

    ])(exp[),(~ 2
12

12 λ
π

λ L
xxj

L
jxxK −

−=  

in one transverse dimension, or a product of two such kernel in two transverse 

dimensions. 
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Fig. 2.2 Fermat’s principle says the total path length from P1 to P2 must be the same 

along the axis or along the ray path indicated by the dashed lines 

 

Consider instead an input wavefunction travels not through free space, 

but through a cascade optical system containing an arbitrary collection of real paraxial 

optical elements between the two planes z

)(~
1 xu

1and z2, as illustrate in Fig. 2.2.  If a ray 

enters at a specified point x1 and exits at another point x2, then from the ray 

relationship x2 = Ax1+Bx1’.  And the input slope of this particular ray must be given 

by 
B

Axx
x 12

1
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=′  and the exit slope must be 
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=′ .  The input ray may 

then be viewed as coming from an on-axis source point P1 located a distance R1 

behind the input plane.  Hence R1is given by 
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This output ray thus intersects the axis at point P2 located a distance R2 behind the 

plane z2.  We now have both R1 and R2 given in terms of x1, x2,and the ABCD matrix 

elements. 

    But Fermat’s principle says that “all rays connecting two conjugate points must 

have the same optical path length between these two points,” It means that the ray 

path from P1 to P2 through x1 and x2is equal to the ray path from P1 to P2 along the 

optical axis.  The total optical path length along the optical axis from point P1 to P2 is 

given by  

   , 2201121 RnLRnPP −+≡

where the minus sign is associated with the sign convention for R2.  The total 

distance going along the off-axis ray through points X1 and X2 is given, in the paraxial 

approximation, by 
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    The Fermat’s principle requires that the total path length from point P1 to the 

conjugate point P2 going along either path be the same, i.e., P1 P2 = P1X1X2P2, it gives 

the desired eikonal function 
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Thus, the Huygens’ integral for wave propagation all the way through the entire 

paraxial system can be written as, 
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with the Huygens kernel in one transverse dimension being given by  
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    We knew the relation between the Huygens’ integral and ABCD law in 

one-dimension.  But the real system is two-dimension with cylindrical symmetry, it 

can be simplified to an one-dimension case and the Huygens’ integral becomes  
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2.2 Thermal effect 

    The other important effect in solid state laser is the thermal optic effect. This 

effect results from temperature induced change of in the refractive index of the gain 

medium.  In order to model the thermally induced index changes, the heat transfer 

equation must be solved for the laser medium to obtain an appropriate temperature 

distribution.  In this work, an approximate analytic solution to the heat transfer 

equation are developed for cw, axially symmetric, longitudinal pumping of a 

cylindrically symmetric solid state laser rod with conductive boundary condition.  

    Consider a model consists of a solid state laser rod longitudinally pumped by a 

second cw laser, as shown in Fig. 2.3, that shows side view and end view of a laser 

rod and heat sink.  The periphery of the laser crystal is held at constant temperature 
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by an actively cooled heat sink. In the steady state 

),(),( zrQzrh =•∇
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where ),( zrh
r

 is the heat sink, and dVzrdPzrQ /),(),( =  is the power per unit 

volume deposited as in the laser crystal. The heat flux is related to the corresponding 

temperature distribution within the crystal by  
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where Kc is the thermal conductivity of the laser material. 
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Fig. 2.3 Side view and end view of an applicable laser rod and thermoelectrically

b

p

a  of the heat sink is much greater 

 

cooled (TEC) heat sink.  The length of the rod is L, the rod radius is r , and the 1/e2 

radius of the Gaussian pump beam is ω . 

    Consider the case where the therm l conductivity

than the thermal conductivity of the laser crystal.  For example, the thermal 

conductivity of Cu, a common heat sink material, is a factor of 30 larger than that of 

yttrium aluminum garnet (YAG), a common solid state laser material.  If it is 
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assumed that the heat flow is essentially radial, Eq. (1) can be integrated over a crystal 

volume bounded by a Gaussian surface of radius r and infinitesimal thickness ∆z. This 

yields  
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Now 
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where α is the absorption c hoefficient of the material and I (r,z) is the intensity of the 

incident pump light that results in heating of the crystal. Here, it is assumed that  
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In Eq. (5), I0h is the incident heat irradiance on a pxis and ω  is the 1/e2 Gaussian radius 

of the pump beam.  Substituting Eqs. (4) and (5) into Eq. (3) and performing the 

integration yields  
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where 2/0hpph IP πω=  is the fraction of pump power tha

ting Eq. (6) into E
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Substitu q. (2), we can obtain 
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where the additional coefficient ξ is the fractional thermal loading and abs

nge ∆Φ that is accumulated by the laser light for a single pass 

 P  is the 

absorbed pump power. 

    The total phase cha

through the laser rod is given by  
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where ∆n(r,z) is the change 

 

in refractive index of the laser medium resulting from 

temperature effects, and l  is the length of the laser rod. Changes in the index of 

refraction (n) accrue from three temperature-dependent effects: thermal variations of 

the index due to dn/dT 

))(,(),(
dT
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thermal induced stress and thermal def  ormation of the rod. In flashlamp pumped YAG,

the variation of n due to dn/dT accounts for 74% of the thermally induced focusing.  

Substituting Eq. (9) to Eq. (8), we can obtain the relation between the temperature and 

the changes of the phase 
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.3 Simulation model 2

 
Fig. 2.4  Configuration of the laser system. 

   Consider the laser system shown in Fig. 2.4. Let the reference plane be where the 

 

 

light beam just leaves the laser crystal toward the curved mirror.  In cylindrical 

symmetry, propagation of the light field toward the curved mirror and back to the flat 

mirror according to the generalized Huygens diffraction integral is  
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with round trip transmission matrix M =  which has discussed in the sec⎥
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2.1.  Here Em
+(r’) and Em+1

-(r’) are the electric fields of the mth and (m+1)st round 

trips at the planes immediately after and before the gain medium (denoted by the 

superscripts + and -); r’ and r are the corresponding radial coordinates, λ is the 

wavelength of the laser, and J0 is a Bessel function of zero-order.  We have imposed 

the phase shift ∆Φ induced by thermal lens effect in the diffraction integral. The phase 

shift is given (ref. [8]) by  
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perature difference between the calculated point (r’, z) and the boundary po

            (3) 

where 1-ρ2 is the round-trip energy loss, σ is the

the tem int 

(rb, z), ξ is the fractional thermal loading, Pabs is the absorbed pump power, z is the 

axial coordinate, and rb, d, α, Kc, and dn/dT are the radius, thickness, absorption 

coefficient, thermal conductivity, and the thermal-optic coefficient of the laser crystal, 

respectively.  Note that the distribution of the thermal induced stress and the thermal 

deformation of the crystal were neglected and the conventional edge cooling was 

assumed.  In a thin-slab approximation, we can relate the electric fields Em+1
+ to 

Em+1
- (after and before the gain medium) in the same round trip as 

)/()exp()()( 11 arNdrErE mm ∏∆= −
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 stimulated-emission cross section, 

∆N is the population inversion per unit volume, d is the length of the active medium, 

and ∏(r/a) is an aperture function that equals 1 for r less than aperture radius a and 

equals 0 otherwise.  Furthermore, assuming that the evolution of the population 
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inversion follows the rate equation of a four-level system, we can write the rate 

equation as 

tN
E
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where Rpm is the pumping rate (per unit time per unit volume), t is the round trip time, 

 

mp profile Rpm = Rp0exp(-2r2/2ωp
2) with constant pumping beam radius 

υ/ ,                                           (4) 

where Pp is the effective 

 

propagation time is 

many

Es is the saturation parameter of the active medium, and γ the spontaneous decay rate, 

and N0 is the total density of the active medium.  This method was used to model a 

single-longitudinal multitransversal high-power solid-state ring laser (ref. [5-7]) and 

to analyze the decay rate of standing-wave laser cavities in the linear regime (ref. [9]). 

It was found that a standing-wave resonator can be approximated by a ring resonator 

if a thin gain medium is placed close to one of the end mirrors (ref. [10]).  For a 

continuous 

Gaussian pu

ωp throughout the active medium (thin slab), the total pumping rate over the entire 

active medium is 

∫ = PdVR pppm h

pumping power and hνp is the photon energy of the 

pumping laser.  Because we considered only single-longitudinal-mode dynamics, we 

have omitted the dispersion of the active medium, so the gain is assumed to be real. 

Therefore we have four control parameters: ρ, R, wp , and Pp , which play important 

roles in the laser system and are investigated in detail as follows.  

In an ordinary axially pumped solid-state laser, the round-trip 

 orders of magnitude shorter than the spontaneous decay time, especially in a 

short cavity.  As a result, it would take a large number of iterations to arrive at the 

final state (which may be stable or unstable).  To reduce computation time and 
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because the quasi-periodic bifurcation point is just above the stable continuous-wave 

solution, we used the scaling method (ref. [9]) to magnify g by 104 times to determine 

the bifurcation points.  We also checked some important points without scaling that 

showed no promising change in the quasi-periodic threshold.  To reduce the 

influence of the diffraction loss, we slightly varied R of the curved mirror rather than 

changing cavity length L to simulate tuning the laser cavity across the point of 

degeneration.  
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