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a b s t r a c t

In this paper, we analyze the behavior of particle swarm optimization (PSO) on the facet
of particle interaction. We firstly propose a statistical interpretation of particle swarm
optimization in order to capture the stochastic behavior of the entire swarm. Based on
the statistical interpretation, we investigate the effect of particle interaction by focusing
on the social-only model and derive the upper and lower bounds of the expected particle
norm. Accordingly, the lower and upper bounds of the expected progress rate on the sphere
function are also obtained. Furthermore, the sufficient and necessary condition for the
swarm to converge is derived to demonstrate the PSO convergence caused by the effect
of particle interaction.
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1. Introduction

Particle swarm optimization (PSO), introduced by Kennedy and Eberhart [1] in 1995, was proposed based on an
inspiration from the social behavior of insects or animals that the exchanging and sharing of information among a group of
individuals benefit the group survival by improving the group capability of foraging. In the framework of PSO, the insects
or animals are considered as particles flying through the multi-dimensional search space and searching for the optimal
position. The movement of particles is affected by three factors: the inertia, personal experience (the cognitive part), and
particle interaction (the social part).
Since its introduction, PSO has been empirically shown to be a very useful and effective optimization framework [2]

for the easiness to implement and flexibility to use. Although PSO is widely applied in many research fields nowadays,
the theoretical analysis on PSO is still quite limited. To the best of our knowledge, the first analysis was proposed by
Kennedy [3]. Particle trajectories for design choices were shown. Ozcan and Mohan [4,5] assumed fixed attractors and
constant coefficients to demonstrate the particle trajectory as a sinusoidal wave. With similar assumptions, Maurice and
Kennedy [6] simplified PSO to a deterministic dynamical system and analyzed its stability. Such simplified, deterministic
versions of PSO or similar systems, employing a single particle, fixed attractors, or constant coefficients, were analyzed by
many researchers for stability, convergence, and parameter selection [7–11]. Kadirkamanathan et al. [12] and Jian et al. [13]
started to consider the randomness in acceleration coefficients, but attractors were still fixed. Away from the common PSO
configuration, Emara and Fattah [14] as well as Gazi and Passino [15] analyzed PSO in a continuous time setting.
Most of the existing studies do not provide analysis on the facet of particle interaction, which is definitely an essential

mechanism of PSO. In this paper, under more practical assumptions, including multiple particles, unfixed attractors, and
stochastic acceleration coefficients, we make the first attempt to analyze the effect of particle interaction. In particular, we
consider the PSO system from a macrostate viewpoint, analyze the swarm behavior, and obtain theoretical results on the
progress rate as well as the convergence criterion.
The paper is organized as follows. In Section 2, we will describe the particle swarm optimization algorithm and propose

the statistical interpretation. In Section 3, wewill analyze themean positions of particles by considering the effect of particle
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interaction and derive the expected progress rate of the swarm on the sphere function. Next, we will look into the variance
of the particle positions and show that the swarm will converge under certain condition in Section 4. Finally, Section 5
summarizes and concludes this paper.

2. PSO and particle interaction

In this section, we will firstly describe the standard PSO algorithm and then discuss the operations of PSO step by step,
followed by the proposal of our statistical interpretation.

2.1. The standard PSO algorithm

First of all, for easily making an abstraction of PSO based on statistics and probabilistic distributions, we restate the
standard PSO system as the following algorithm:

Algorithm 1 (Standard PSO).
procedure Standard PSO(Objective function F : Rn → R)
Initialize a swarm ofm particles
while the stopping criterion is not satisfied do
Evaluate each particle
for particle i, i = 1, 2, . . . ,m do F Update the best positions

if F (Xi) < F (Pbi) then
Pbi ← Xi
if F (Pbi) < F (Nb) then

Nb← Pbi
end if

end if
end for
for particle i, i = 1, 2, . . . ,m do F Generate the next generation

Vi(t+ 1)← wVi(t)+ Cp ⊗ (Pbi − Xi)+ Cn ⊗ (Nb− Xi)
Xi(t+ 1)← Xi(t)+ Vi(t+ 1)

end for
end while

end procedure

Throughout this paper, boldface is used to distinguish vectors from scalars, and ‖·‖ denotes the L2 norm of a vector. The
notation ⊗ indicates component-by-component multiplication. According to Algorithm 1, we can see that a standard PSO
system comprises the following two main operations regarding the information sharing and utilizing:

(1) Updating attractors: Update the personal best position, Pbi, found by each particle, and the neighborhood best position,
Nb, found by any member within the neighborhood. Since Pbi and Nb exert gravity on other particles, they are referred
to as attractors in this study.

(2) Updating particles: Update the velocities at time t by using a linear combination of the inertia, Vi(t), and the gravitation
from the cognitive part, Pbi, and the social part,Nb, respectively.w is the weight for the inertia and is usually a constant.
Cp and Cn are random vectors with each component sampled from uniform distributions U(0, cp) and U(0, cn) with
cp > 0 and cn > 0 as acceleration coefficients. The position is then assigned according to the current position with
application of the updated velocity.

As we can observe, the inherent characteristics of PSO – the interactions among particles – are implemented with the
shared knowledge on the best position found by neighbors. When a particle within the neighborhood locates a position of
an objective value which is better than F (Nb), the other particles will make corresponding adjustments and tend to go
toward that position. Therefore, the neighborhood attractor can be viewed as a channel through which each particle can
emulate the others, and the update of the neighborhood attractor can be considered as a signal urging the swarm to adjust
their movements in order to respond to the new discovery in the search space.

2.2. A macroscopic view of PSO

In spite of its importance, the effect of particle interaction in PSO is hardly investigated in the literature. Although there
are a number of remarkable theoretical studies that bring insights into the properties and behavior of PSO conducted in
the past, most of those studies are based on the assumption that the attractor is fixed, e.g., the trajectory analysis [4,5]
mentioned in Section 1. Such a setting seems an inevitable path to simplify the PSO system to the extent that rigorous
analysis can be done because the highly decentralized property of a particle swarm leads the system away from a unified
depiction of the entire swarm. Each particle keeps its own position andmemory, in the form of the inertia and the cognitive
part, Pbi. In addition to the personal experience, the swarm also shares collective knowledge, Nb, and any slight change in
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these quantities substantially defines a new state of the whole system. The analysis on the overall behavior of a swarm is
thus beyond tractable due to the complication of state transition, and the simplification of invariant attractors becomes an
unpleasant but necessary means that makes a particle able to be observed independently without the interference from the
other factors of the entire swarm.
As a consequence, in order to take particle interaction into consideration in a theoretical analysis, an alternative

interpretation of PSO that regards the swarm as a unity becomes necessary.With this point of view, the state of a PSO system
should be considered as a measurement that reflects the overall behavior and characteristics of a swarm rather than as a
detailed configuration directly related to each individual particle. For this purpose, the development of statistical mechanics
may be a good example to learn from, especially the employment of statistical methods to bridge the macroscopic and
microscopic descriptions. Accordingly, the state of the entire swarm can be considered as the ‘‘macrostate’’ — an abstraction
of the detailed description of particles, i.e., the ‘‘microstate.’’ Hence in the macrostate space, the precise configuration of
particles are converted into a statistical abstraction and characterization of the entire swarm.
More specifically, the exact locations of particles are no longer traced but instead modeled and expressed by using a

distribution θ(t) over Rn. The velocities on each dimension are viewed as a random vector V(t) ∈ Rn. To concentrate on
the social behavior, i.e., particle interaction, we use the social-only model of PSO categorized by Kennedy [16], in which PSO
works without the cognitive component, to make the system more concise. The swarm sizem is considered as the number
of realizations or samples of the distribution. As to the neighborhood attractor, since the geographic knowledge about the
search space is embodied in the positional distribution, it can be viewed as the best observed value of the current time
step. When the neighborhood attractor is determined, the social gravitation is also accordingly determined. Formally, each
particle Pi is a random vector sampled from θ(t), and its velocity vector Vi is distributed as V(t). Since the neighborhood
attractor is the best observed value, it can be defined as

P∗ := argmin{F (P1),F (P2), . . . ,F (Pm)} ,

and each particle Pi updates its position to Pi + wVi + C⊗ (P∗ − Pi). The distributions of the next time step θ(t + 1) and
V(t + 1) are thus the statistical characterization, denoted as functions TP and TV , of the observed values:

θ(t + 1)← TP (P1, P2, . . . , Pm) ;

V(t + 1)← TV(P1, P2, . . . , Pm;V1,V2, . . . ,Vm) .

By considering PSO in this way, the search/optimization process is conducted through the repeated observations on
the search space by realizing particles and modifying the distribution to accommodate the newly discovered results.
Furthermore, going deeper into the notion of distribution, since the inertia weight w is usually a constant, V(t) can be
considered redundant and may be removed because given two random vectors X ∼ θ(t) and V ∼ V(t), where the notation
‘‘ ∼ ’’ indicates ‘‘is distributed according to,’’ we can simply let θ̃ (t) be the distribution of X′ := X + wV that includes the
effects of both the position and the velocity. Therefore, in the following, wewill alter the notation θ to denote this compound
distribution and parameterize it based on varied contexts.
The remaining questions would be what distribution is suitable for the description of a swarm without sacrificing too

much essence of PSO and how to update the distribution as the search process proceeds.We can consider the random vector
X ∼ θ(t), denote E [X] = µ, and decompose the region

R := {y ∈ Rn | Prob {X = y} > 0}

into s disjoint regions R1, R2, . . . , Rs such that Prob {X ∈ Ri} = 1/s for all i ∈ {1, 2, . . . , s}. Each region is associated with
a random variable of velocity Vi ∼ V(t). If one point xi is respectively selected from each region Ri, when s is sufficiently
large, the average behavior of a swarm can therefore be characterized by

s∑
i=1

1
s
(xi + Vi) =

s∑
i=1

1
s
xi +

s∑
i=1

1
s
Vi

≈ µ+

s∑
i=1

1
s
Vi ,

and each component of the term
∑s
i=1(1/s)Vi can be approximated with a normal distribution according to the central

limit theorem. Thus, as an attempt to characterize the overall behavior of a swarm, the normal distribution should be a
reasonable starting point. It is assumed that, at time t , each particle is sampled from c(t)+ Z, where c(t) ∈ Rn is the center
of distribution and Z ∈ Rn is a random vector of which each coordinate is distributed according to N(0, σ 2), where N(0, σ 2)
denotes the normal distribution with zero mean and variance σ 2. In this paper, φ(·) and Φ(·) are used as the probability
density function (pdf) and the cumulative distribution function (cdf) of the standard normal distribution, respectively. We
can then reparameterize θ(t), the distribution of c(t)+ Z, as θ(c(t), σ 2).
The update of distributions can now be simplified into the modification of the mean and the variance. The mean is the

arithmetic average of updated positions of particles, and the variance is estimated by a maximum likelihood estimation
(MLE) which will be addressed later. Under such an interpretation, the PSO system can be described with the following
algorithm:
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Table 1
Average p-values of normality tests.
Swarm size Normality tests

Shapiro–Wilk [17] Anderson–Darling [18] D’Agostino–Pearson [19]

10 0.3879 0.3621 0.3985
20 0.3257 0.2842 0.3393
30 0.2903 0.2518 0.2876

Algorithm 2 (Statistical interpretation of PSO).
procedure PSO(Objective function F : Rn → R)
Initialize θ
while the stopping criterion is not satisfied do

for i = 1, 2, . . . ,m do
Pi ∼ θ

end for
P∗ = argmin{F (P1),F (P2), . . . ,F (Pm)}
for i = 1, 2, . . . ,m do

P′i ← Pi + Ci ⊗ (P∗ − Pi)
end for
µt+1 ← (

∑m
i=1 P

′

i)/m
σ 2t+1 ← MLE(P′1, P

′

2, . . . , P
′
m)

θ ← θ(µt+1, σ
2
t+1)

t ← t + 1
end while

end procedure

In order to validate the utilization of normal distributions for describing swarms, we conducted three well-known
normality tests: the Shapiro–Wilk test [17], the Anderson–Darling test [18], and the D’Agostino–Pearson test [19] on the
social-only PSO on the sphere function. Table 1 displays the test results, which were obtained for 100 independent runs and
10 iterations in each run. The weight for the inertia is 0.73 and the acceleration coefficient is 1.49. Since all p-values of the
three normality tests significantly surpass the conventional significance level 0.05, none of these tests are able to reject the
null hypothesis. As a result, in this study, adopting the normal distribution as the description of swarms is an acceptable
assumption.
In summary, the macrostate model transforms the detailed configuration of PSO into a corresponding stochastic

representation embodied by normal distributions. As a consequence, the update of particles is simplified as themodification
of the parameters of normal distributions. In each iteration, Algorithm 2 generates a swarm of particles by means of
sampling from the current distribution, and thereafter, the distribution is updated according to particle interaction. In
others words, a state of Algorithm 2 is a distribution, and the sampled swarm serves as a medium for state transition.
In this manner, the analysis of the behavior of the entire swarm is thus reduced to the analysis of parameterized
distributions. The inclusion of particle interaction into analysis supplies numerous facets of PSO typically absent in related
theoretical studies, e.g., the progress rate and the influence of objective functions, because the restriction of fixed attractors
makes objective functions irrelevant. Since the No-Free-Lunch theorem states that all optimization algorithms perform
identically on average [20], the effectiveness of PSO can hardly be theoretically identified unless the scope of functions is
specified.
In the remainder of this paper, Algorithm 2 will be the study subject and be formally investigated on the sphere

function,which is commonly adopted in the theoretical analysis of evolutionary algorithms (e.g., [21]) and can be formulated
as

F (x) =
n∑
i=1

x2i ,

where x = (x1, x2, . . . , xn) ∈ Rn.

3. Progress rate analysis

The major benefit to develop and adopt the abstraction based on probabilistic distributions of PSO is that the
mathematical model can be analyzed without the assumption of fixed attractors, because particles are in essence random
vectors in the search space and consequently their behavior can be described and predicted in a statistical sense. In this
section, we will demonstrate how the statistical interpretation of PSO proposed in the present work facilitates the analysis
of inter-particle effects and how these effects are accounted for the progress rate of a swarm. We will begin with the n-ball
hitting probability.
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3.1. n-ball hitting probability

Given a distribution θ over Rn, the term n-ball hitting probability refers to the probability that a random vector sampled
from θ that ‘‘falls’’ into a specific n-dimensional ball. This probability is fundamental to the sphere model, because in the
sphere model the objective function is simply the squared L2 norm, and a subset of Rn constructed by collecting all the
vectors with their norms bounded by a specific non-negative quantity forms an n-ball located at the origin with a radius
defined by that non-negative quantity. Therefore, n-ball hitting probability is equal to the probability that the norm of a
random vector is less than or equal to the radius. In other words, it is essentially the cumulative distribution function (cdf)
of the norm of a random vector.
Given the center of distribution at time t , c(t) = (c1, c2, . . . , cn) ∈ Rn, wewould like to calculate the probability, denoted

as Bk(o), that c(t)+ Z ∼ θ is in an n-ball located at the origin with radius k, where Z = (Z1, Z2, . . . , Zn) ∈ Rn is a random
vector and each coordinate of Z is normally distributed. Since Z1, Z2, . . . , Zn are independent and identically distributed
(i.i.d.) random variables, Z is an isotropic random vector, i.e., all directions of Z are equally likely to occur [22]. We elaborate
this property as follows. Given Z1, Z2, . . . , Zn ∼ N(0, σ 2), for all x = (x1, x2, . . . , xn) ∈ Rn,

Prob {c(t)+ Z = x} =
n∏
i=1

1
√
2πσ

exp
(
−(xi − ci)2

2σ 2

)

=

(
1

√
2πσ

)n
exp


−

n∑
i=1

(xi − ci)2

2σ 2


=

(
1

√
2πσ

)n
exp

(
−d(x, c(t))2

2σ 2

)
,

where d(·, ·) denotes the Euclidean distance. It is obvious that the density at point x is determined by d(x, c(t)), regardless
of the direction in which x is relatively to c(t). Therefore, without loss of generality, we may assume that c(t) is on the
first axis by conducting a coordinate transformation. Let r := d(c(t), o) ≥ 0. As a result, c(t) can be expressed, after the
coordinate transformation, as (r, 0, 0, . . . , 0), and the distribution is denoted as θ(r, σ 2). Now, the n-ball hitting probability
can be formally defined as follows.

Definition 1. Given an n-ball Bk(o) ∈ Rn and a random vector c(t)+ Z ∼ θ(r, σ 2) ∈ Rn, where c(t) = (r, 0, 0, . . . , 0) and
all coordinates of Z are distributed according to N(0, σ 2), the n-ball hitting probability

HB(k, θ(r, σ 2)) := Prob {c(t)+ Z ∈ Bk(o)} .

The analysis approach adopted in the present work is similar to that used by Beyer in 2001 [21]. The vector Z is decomposed
into two orthogonal vectors: Z1e1 = (Z1, 0, 0, . . . , 0) and Z′ = (0, Z2, Z3, . . . , Zn). We can take a closer look at the n-ball
hitting probability HB(k, θ(r, σ 2)):

HB(k, θ(r, σ 2)) = Prob {c(t)+ Z ∈ Bk(o)}
= Prob

{
‖(r + Z1)e1 + Z′‖ ≤ k

}
= Prob

{
(r + Z1)2 + ‖Z′‖2 ≤ k2

}
= Prob

{
−k− r ≤ Z1 ≤ k− r, 0 ≤ ‖Z′‖2 ≤ k2 − (r + Z1)2

}
.

The equation shows that the n-ball hitting probability is the joint distribution of Z1 andW := ‖Z′‖2. Since Z1 ∼ N(0, σ 2),
the probability density function can be expressed as

p(Z1, x) := Prob {Z1 = x} =
1

√
2πσ

exp
(
−x2

2σ 2

)
,

andW is a chi-square random variable with n′ := n− 1 degrees of freedom:

p(W , y) := Prob {W = y} =
1
σ 2

(
y
σ 2

) n′
2 −1
exp

(
−y
2σ 2

)
2
n′
2 Γ

(
n′
2

) .
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As a result, we can get

HB(k, θ(r, σ 2)) = Prob
{
−k− r ≤ Z1 ≤ k− r, 0 ≤ ‖Z′‖2 ≤ k2 − (r + Z1)2

}
=

∫ k−r

x=−k−r

∫ k2−(x+r)2

y=0
p(Z1, x)p(W , y) dy dx

=

∫ k−r

x=−k−r
p(Z1, x)

∫ k2−(x+r)2

y=0

1
σ 2

(
y
σ 2

) n′
2 −1
exp

(
−y
2σ 2

)
2
n′
2 Γ

(
n′
2

) dy dx

(let u := y/σ 2) =
∫ k−r

x=−k−r
p(Z1, x)

∫ k2−(x+r)2

σ2

u=0

u
n′
2 −1 exp

(
−u
2

)
2
n′
2 Γ

(
n′
2

) du dx

=

∫ k−r

x=−k−r
p(Z1, x)P

(
n′

2
,
k2 − (x+ r)2

2σ 2

)
dx ,

where P (·) is the regularized Gamma function.

Remark 2. If an asymptotic approximation is desired for the n-ball hitting probability, HB(k, θ(r, σ 2)), we can utilize the
normal approximation to the regularized Gamma function [23, chapter 7] as

P

(
n′

2
,
k2 − (x+ r)2

2σ 2

)
≈ Φ

(
1
√
2n′

[
k2 − (x+ r)2

σ 2
− n′

])
.

For the asymptotic approximation, when n is sufficiently large, the term (1/
√
2n′)[k2 − (x + r)2]/σ 2 vanishes. Thanks to

the continuity ofΦ(·), we can obtain

P

(
n′

2
,
k2 − (x+ r)2

2σ 2

)
≈ Φ

(
−

√
n′

2

)
.

Hence,

HB(k, θ(r, σ 2)) ≈ Φ

(
−

√
n′

2

)∫ k−r

x=−k−r
p(Z1, x) dx

= Φ

(
−

√
n′

2

)[
Φ

(
k− r
σ

)
− Φ

(
−k− r
σ

)]

= Φ

(
−

√
n′

2

)[
Φ

(
r + k
σ

)
− Φ

(
r − k
σ

)]
.

In addition to the asymptotic properties ofHB(k, θ(r, σ 2)), it would be helpful to derive a lower bound forHB(k, θ(r, σ 2))
to facilitate our analysis in the present work.

Lemma 3 (Lower Bound for HB(k, θ(r, σ 2))).

HB(k, θ(r, σ 2)) ≥

[
Φ

(
r + k

√
n

σ

)
− Φ

(
r − k

√
n

σ

)][
1− 2Φ

(
−k
√
nσ

)]n−1
.

Proof. Let Y := c(t) + Z, where c(t) = (r, 0, 0, . . . , 0), and Z = (Z1, Z2, . . . , Zn). LetD := [−k/
√
n, k/
√
n]n ⊆ Rn. For all

x ∈ D , because ‖x‖ ≤
√
n‖x‖∞ ≤

√
n(k/
√
n) = k, we can know that x ∈ Bk(o). Hence,D ⊆ Bk(o), and

Prob {Y ∈ Bk(o)} ≥ Prob {Y ∈ D} = Prob
{
−
k
√
n
− r ≤ Z1 ≤

k
√
n
− r

} n∏
i=2

Prob
{
−
k
√
n
≤ Zi ≤

k
√
n

}

=

[
Φ

( k
√
n − r

σ

)
− Φ

(
−

k
√
n − r

σ

)][
Φ

( k
√
n

σ

)
− Φ

(
−

k
√
n

σ

)]n−1

=

[
Φ

(
r + k

√
n

σ

)
− Φ

(
r − k

√
n

σ

)][
1− 2Φ

(
−k
√
nσ

)]n−1
. �
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For the notational purpose, we let

ψ ′(k) :=

[
Φ

(
r + k

√
n

σ

)
− Φ

(
r − k

√
n

σ

)][
1− 2Φ

(
−k
√
nσ

)]n−1
,

and the antiderivative is defined as ψ(k) :=
∫ k
t=0 ψ

′(t) dt .

Remark 4. Similarly, we can also define the n-sphere hitting density HS(k, θ(r, σ 2)) for random vector c(t)+ Z as

HS(k, θ(r, σ 2)) := Prob {‖c(t)+ Z‖ = k}
= Prob

{
−k− r ≤ Z1 ≤ k− r,W = k2 − x2

}
=

∫ k−r

x=−k−r
p(Z1, x)p(W , k2 − x2) dx.

Therefore, the n-ball hitting probability, HB(k, θ(r, σ 2)), as the cumulative function of HS(k, θ(r, σ 2)), can be alternatively
defined as∫ k

y=0

∫ y−r

x=−y−r
p(Z1, x)p(W , y2 − x2) dx dy.

However, the density function HS(k, θ(r, σ 2)) serves no purpose other than a definition in the following analysis. We left it
as a side note for completeness without further discussion.

3.2. Expected particle norm

The entire PSO system can be decomposed into two fundamental components: (1) the update of attractors to share and
exchange information amongparticles, and (2) the update of particle positions through the interaction betweenparticles and
attractors. Hence, as we gain understandings of the characteristics of attractors and particles, wemay capture the stochastic
behavior of the PSO system. More specifically, because the distance from the origin is the most important characteristic of
the sphere model for its unimodality, in this section, we highlight the expected distance between particles and the global
optimum. Given a probabilistic model according to which particles are distributed, we would like to know how close to the
global optimum in expectation the sampled particles are. Since the global optimum is simply the origin in the spheremodel,
we concentrate on the L2-norm of sampled particles. The expected norms of the attractor and of particles are examined,
respectively. As the analysis proceeds, it can be shown that these two expectations influence the progress rate of PSO.
Given the center of a particle distribution c(t) = (r, 0, . . . , 0) and Z = (Z1, Z2, . . . , Zn) with Z1, Z2, . . . , Zn ∼ N(0, σ 2),

suppose that there arem particles, P1, P2, . . ., Pm, sampled as c(t)+ Z, the expected norm of particles can be defined as
P := E [‖c(t)+ Z‖] ,

which can be considered as the mean solution quality of the current swarm on the sphere function. The following lemma
gives an upper bound for P .

Lemma 5 (Upper Bound for the Expected Particle Norm). If c(t) = (r, 0, 0, . . . , 0) and Z = (Z1, Z2, . . . , Zn) with
Z1, Z2, . . . , Zn ∼ N(0, σ 2), P ≤

√
r2 + nσ 2.

Proof. For all positive random variable X , since the square root is a concave function, we have E
[√
X
]
≤
√
E [X] according

to Jensen’s inequality. By utilizing this property, we can have the following derivation:

P = E [‖c(t)+ Z‖]

= E

√√√√(Z1 − r)2 + n∑
i=2

Z2i


≤

√√√√E[(Z1 − r)2 + n∑
i=2

Z2i

]

=

√√√√E [r2]− 2rE [Z1]+ n∑
i=1

E
[
Z2i
]

=

√
r2 + nσ 2.

Because Zi ∼ N(0, σ 2), we have E
[
Z2i
]
= σ 2 and E [Zi] = 0. An upper bound for the expected particle norm, P , is therefore

obtained. �
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The expected particle norm describes how close on average a swarm is to the global optimum, i.e., the origin, of the
sphere function. In order to capture the characteristic of the essential mechanism of PSO – particle interaction – we also
need to investigate the attractor. As stated in the previous section, the attractor is the best observed value, i.e., in our case,
the particle with theminimum objective value within the neighborhood in the current swarm. Under the adopted statistical
interpretation of PSO, the expectedminimumobjective value of a swarmbecomes traceable through order statistics, because
particles are viewed as random vectors over Rn.
Let P(i,m) denote the ith order statistic of ‖P1‖, ‖P2‖, . . ., ‖Pm‖, e.g., P(1,m) = min{‖P1‖, ‖P2‖, . . ., ‖Pm‖}. Denoting the

event ‖Pi‖ = x as {‖Pi‖ = x}, the density of P(1,m) at a non-negative real number x can be given as

Prob
{
P(1,m) = x

}
= Prob

{
m⋃
i=1

[
{‖Pi‖ = x}

⋂( ⋂
j∈{1,2,...,m}\{i}

{
‖Pj‖ > x

})]}

=

∫ k−r

x=−k−r

(
m
1

)
HS(x, θ(r, σ 2))

[
1− HB(x, θ(r, σ 2))

]m
dx .

Denoting E
[
P(1,m)

]
as P(1,m), a naive upper bound for P(1,m) is derived in the following lemma.

Lemma 6. P(1,m) ≤ P
Proof. The general upper bound for the expected ith order statistic states

P(i,m) ≤ P + (Var [‖c(t)+ Z‖])
1
2

√
i− 1

m− i+ 1
.

As a result,

P(1,m) ≤ P + (Var [‖c(t)+ Z‖])
1
2

√
1− 1

m− 1+ 1
= P. �

Lemma 6 causes no surprise. The expected minimum particle norm is obviously less than or equal to the expected norm.
However, inspired by Lemma 6, we can seek another upper bound for P(1,m) by definition.

Lemma 7 (Upper Bound for P(1,m)). (1)

P(1,m) =
∫
∞

x=0

[
1− HB(x, θ(r, σ 2))

]m
dx,

and (2)

P(1,m) ≤
(
lim
h→∞

[h− ψ(h)]
)m
2

.

Proof. (1) For any random variable X , E [|X |]r = r
∫
∞

0 t
r−1Prob {|X | > t} dt with r > 0 [24]. Since P(1,m) is a non-negative

random variable, by letting r = 1 we have

P(1,m) =
∫
∞

x=0
Prob

{
P(1,m) > x

}
dx

=

∫
∞

x=0
Prob

{
m⋂
i=1

{‖Pi‖ > x}

}
dx

=

∫
∞

x=0

[
1− HB(x, θ(r, σ 2))

]m
dx.

(2) Based on the result of (1), we obtain

P(1,m) =
∫
∞

x=0

[
1− HB(x, θ(r, σ 2))

]m
dx ≤

∫
∞

x=0

[
1− ψ ′(x)

]m dx.
By resorting to Hölder’s inequality, we can movem outside of the integration to obtain a more comprehensible bound as∫

∞

x=0

[
1− ψ ′(x)

]m dx ≤ (∫ ∞
x=0

[
1− ψ ′(x)

]2 dx)m2
≤

(∫
∞

x=0

[
1− ψ ′(x)

]
dx
)m
2

=

(
lim
h→∞

[h− ψ(h)]
)m
2

.

The last equation follows from [h− ψ(h)]|h=0 = 0. �
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Because this upper bound is presented in a limit form, a subsequent question would be whether or not it converges. The
following theorem guarantees the convergence of the quantity.
Lemma 8. (limh→∞[h− ψ(h)])

m
2 is convergent.

Proof. Denote
∫ h
x=0

[
1− ψ ′(h)

]
dx asG(h). Sincem is a constant, (limh→∞[h−ψ(h)])

m
2 converges if limh→∞ G(h) converges.

G(h) is incremental because 1−ψ ′(x) is always non-negative. Thus, it is sufficient to show that G(h) is bounded from above.
When h > r

√
n,

G(h) =
∫ h

x=0

[
1− ψ ′(h)

]
dx

=

∫ h

x=0

(
1−

[
Φ

(
r + x

√
n

σ

)
− Φ

(
r − x

√
n

σ

)][
1− 2Φ

(
−x
√
nσ

)]n−1)
dx

≤

∫ r
√
n

x=0
dx+

∫ h

x=r
√
n

(
1−

[
Φ

(
r + x

√
n

σ

)
− Φ

(
r − x

√
n

σ

)][
1− 2Φ

(
−x
√
nσ

)]n−1)
dx

≤ r
√
n+

∫ h

x=r
√
n

1− [Φ ( x
√
n − r

σ

)
− Φ

(
r − x

√
n

σ

)][
1− 2Φ

(
r − x

√
n

σ

)]n−1 dx
= r
√
n+

∫ h

x=r
√
n

(
1−

[
1− 2Φ

(
r − x

√
n

σ

)]n)
dx .

When x ≥ r
√
n,

Φ

(
r − x

√
n

σ

)
≤
1
2
.

By applying Bernoulli’s inequality, we can get

G(h) ≤ r
√
n+

∫ h

x=r
√
n

(
1−

[
1− 2nΦ

(
r − x

√
n

σ

)])
dx

= r
√
n+ 2n

∫ h

x=r
√
n
Φ

(
r − x

√
n

σ

)
dx

= r
√
n+ 2n

[(
−r
√
n+ x

)
Φ

(
r − x

√
n

σ

)
− σ
√
n · φ

(
r − x

√
n

σ

)]∣∣∣∣∣
x=h

x=r
√
n

.

The integration of the normal distribution is given in [25]. When h→∞, the term

σ
√
n · φ

(
r − h

√
n

σ

)
vanishes. Thus, now we only need to show

lim
h→∞

[(
−r
√
n+ h

)
Φ

(
r − h

√
n

σ

)]
<∞.

Here we apply Mill’s ratio to replaceΦ(·)with φ(·) and get(
−r
√
n+ h

)
Φ

(
r − h

√
n

σ

)
=
(
h− r
√
n
) [
1− Φ

( h
√
n − r

σ

)]

≤
(
h− r
√
n
)
· φ

( h
√
n − r

σ

)
·

( h
√
n − r

σ

)−1

=
(
σ
√
n
)
· φ

( h
√
n − r

σ

)
= 0 as h→∞ .

Therefore, G(h) is bounded from above. The proof is completed. �
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3.3. Lower and upper bounds for the expected progress rate

After the work was done in the previous sections, the progress rate of the social-only model PSO can now be formally
investigated under the proposed statistical interpretation. The term ‘‘progress rate’’ was introduced by Rechenberg in
1973 [26]. As the name suggests, progress rate should be a quantity indicating how a particle swarm progresses, and hence
in the present work, it is defined as the difference of the norms of the two distribution centers in successive time steps,
because the distance to the optimum is the L2 norm for the sphere function. Given the current center of distribution c(t) =
(r, 0, 0, . . . , 0) and a random vector Z = (Z1, Z2, . . . , Zn) with Z1, Z2, . . . , Zn ∼ N(0, σ 2), the m particles P1, P2, . . . , Pm
are sampled as c(t) + Z. Let P(i,m) denote the ith order statistic of ‖P1‖, ‖P2‖, . . ., ‖Pm‖. Let P∗ := argmin{F (P1),F (P2),
. . . ,F (Pm)}. By definition, ‖P∗‖ = P(1,m). According to the update rules described in Section 2.2, the updated position P′i
is computed as P′i = Pi + Ci ⊗ (P∗ − Pi), where each coordinate of Ci is distributed according to U(0, c) with c being the
coefficient representing the compound effect of both the inertia weight and the acceleration coefficient of the social part.
For simplicity, we still call c the acceleration coefficient in this paper because the inertia weight is usually constant. The
center of distribution in the next step c(t+ 1) is the mean of P′1, P

′

2, . . . , P
′
m, i.e., c(t+ 1) = (

∑m
i=1 P

′

i)/m.

Definition 9. Given c(t) = (r, 0, 0, . . . , 0), the progress rate∆t := ‖c(t)‖ − ‖c(t+ 1)‖ = r − ‖c(t+ 1)‖.

The following theorem shows that, when c ≤ 1/2, the expected norm of the center of distribution in the next time step
is bounded from above by a linear combination of the expected particle norm P and the expected minimum of the particle
norm P(1,m).

Lemma 10. Suppose C = (C1, C2, . . . , Cn) is a random vector of Rn with i.i.d. components and X is a random vector of Rn. If C
and X are independent, then E [‖C⊗ X‖] ≤

√
µ′2 E [‖X‖], where µ

′

2 is the second moment of Ci.

Proof. For any fixed vector x = (x1, x2, . . . , xn) ∈ Rn,

E [‖C⊗ x‖] = E

[√∑
i=1:n

C2i x
2
i

]

≤

√√√√E[∑
i=1:n

C2i x
2
i

]

=

√∑
i=1:n

E
[
C2i
]
x2i

=

√
µ′2 ‖x‖ .

Since C and X are independent, by the law of total expectation conditional on X, this lemma is proved. �

Theorem 11 (Upper Bound for the Expected Norm of the Next Center). (1) E [‖c(t+ 1)‖] ≤ E [|1− C |]] P + E [|C |] P(1,m); and
(2) If c ≤ 1/2, E [‖c(t+ 1)‖] ≤ (1− c)P + cP(1,m); otherwise, E [‖c(t+ 1)‖] ≤ [(2c2 − 2c + 1)/2c]P + cP(1,m).

Proof. This result is derived from the triangle inequality for L2-norm and the previous lemma:

E [‖c(t+ 1)‖] = E


∥∥∥∥∥∥∥∥∥
m∑
i=1

[
Pi + Ci ⊗

(
P∗ − Pi

)]
m

∥∥∥∥∥∥∥∥∥


=

(
1
m

)
E

[∥∥∥∥∥ m∑
i=1

(1− Ci)⊗ Pi +mCi ⊗ P∗
∥∥∥∥∥
]

≤

(
1
m

)( m∑
i=1

E [‖(1− Ci)⊗ Pi‖]+mE
[
‖Ci ⊗ P∗‖

])
≤
(
c2/3− c + 1

)1/2
P +

(
c2/3

)1/2
P(1,m). �

Corollary 12 (Lower Bound for the Progress Rate). E [∆t ] ≥ r −
(
c2/3− c + 1

)1/2 P − (c2/3)1/2 P(1,m).
After the lower bound for E [∆t ] is established in Corollary 12, the next theorem sets a lower bound for E [‖c(t+ 1)‖]. An
upper bound for E [∆t ] will be accordingly obtained as a corollary.
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Theorem 13 (Lower Bound for the Expected Norm of the Next Center). If c ≤ 1, E [‖c(t+ 1)‖] ≥ r(1 − exp(−2n′[Φ(−r/
σ)]m)).
Proof. Since ‖c(t+ 1)‖ is a non-negative random variable, from Markov’s inequality, we have, for any positive number a,

Prob {‖c(t+ 1)‖ > a} ≤ a−1E [‖c(t+ 1)‖] .
Substituting awith r ,

r Prob {‖c(t+ 1)‖ > r} ≤ E [‖c(t+ 1)‖] .
Let the jth coordinate of Pi, Ci, and c(t+ 1) be Pij, Cij, and c(t + 1)j, respectively. If there exists a coordinate j such that
min{P1j, P2j, . . . , Pmj} ≥ r , then

‖c(t+ 1)‖ ≥ |c(t + 1)j|

=

∣∣∣∣∣∣∣∣∣
m∑
i=1

[
Pij + Cij

(
P∗j − Pij

)]
m

∣∣∣∣∣∣∣∣∣
=

m∑
i=1

[(
1− Cij

)
Pij + CijP∗j

]
m

≥

[(
1− Cij

)
mr + Cijmr

]
m

= r.

Similarly, max{P1j, P2j, . . . , Pmj} ≤ −r implies ‖c(t+ 1)‖ > r . Let E+j be the event that min{P1j, P2j, . . . , Pmj} ≥ r and E
−

j

be the event that max{P1j, P2j, . . . , Pmj} ≤ −r . Let Ej := E+j
⋃
E−j and E :=

⋃m
j=1 Ej, we have

Prob {E} = Prob
{
E
⋂
E+1
}
+ Prob

{
E
⋂(

E+1
)c}

≥ Prob
{
E+1
}
+ Prob

{(
n⋃
i=2

Ei

)⋂(
E+1
)c}

= Prob
{
E+1
}
+
(
1− Prob

{
E+1
})
Prob

{
n⋃
i=2

Ei

}
.

Because P1, P2, . . . , Pm are i.i.d. and for each particle all of its coordinates other than the first one are identically distributed,
for all i > 1 the symmetry and disjointness of E+i and E

−

i imply that Prob {Ei} = 2Prob
{
E+i
}
= 2[1 − Φ(r/σ)]m =

2[Φ(−r/σ)]m. Let q := 2[Φ(−r/σ)]m for convenience of notation. By using the inclusion–exclusion principle, we have

Prob

{
n⋃
i=2

Ei

}
=

n′∑
i=1

(
n′

i

)
qi(−1)i+1

= 1−
n′∑
i=0

(
n′

i

)
(−q)i

= 1− (1− q)n
′

≥ 1− exp
(
−n′q

)
.

As a result,

E [‖c(t+ 1)‖] ≥ r
(
Prob

{
E+1
}
+
(
1− Prob

{
E+1
}) (
1− exp

(
−n′q

)))
≥ r

(
Prob

{
E+1
}
+ 1− Prob

{
E+1
}
− exp

(
−n′q

))
= r

(
1− exp

(
−2n′ [Φ(−r/σ)]m

))
. �

Corollary 14 (Upper Bound for the Progress Rate). If c < 1, then E [∆t ] ≤ r exp
(
−2n′[Φ(−r/σ)]m

)
.

With Theorems 11 and 13, we established the upper and lower bounds of the expected particle norm. Accordingly, with
Corollaries 12 and 14, we derived the lower and upper bounds of the expected progress rate of a swarm in the social-only
model. As aforementioned, by statistically interpreting the social-only model PSO, we can describe the ‘‘macrostate’’ of the
particle swarm and therefore are able to analyze the stochastic behavior of PSO based on the facet of particle interaction.
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4. Convergence analysis

As stated in Section 2.2, the transition from the current time step to the next time step consists of updating positions
of particles, calculating the distribution center by means of the updated positions, and using the maximum likelihood
estimation to calculate the distribution variance. The issues related to the centers of distributions have been addressed
in Section 3. Thus, the part of variance is considered in this section. While the center of a distribution can be viewed as the
indication of the average quality of the swarm at a specific time step, the variance is a direct measurement of convergence,
because from the viewpoint of statistical interpretation, a swarm converges as the variance of the distribution reduces to
zero. The word ‘‘converge’’ is not a unified term in the research domain of PSO [27, p. 132]. It has been used to describe
the behavior of a swarm approaching the local optimum in some papers, while it simply indicates the phenomenon that
a swarm of particles crowds into a specific point, sometimes called the equilibrium, not necessarily the local optimum, in
the search space in other papers. Here in the present work, we adopt the latter definition. We concentrate on the condition
underwhich a swarm of particlesmay go into a stable state.Wewill demonstrate that if certain condition of the relationship
between the swarm size and the acceleration coefficient is satisfied, a swarm in the social-only model does converge under
the mechanism of particle interaction.
Given m observed vectors y1, y2, . . . , ym that stand for the updated positions and the distribution center is denoted

as c(t+ 1) = y := (Σmi=1yi)/m. Let Y1, Y2, . . . , Ym be random vectors sampled from θ(‖y‖, σ 2t+1). These vectors are
n-dimensional random vectors centered at y, and the coordinate on each dimension is a random variable sampled from
N(0, σ 2t+1), where σ

2
t+1 is the variance that we wish to estimate. In order to estimate the variance, the likelihood function of

σ 2t+1, L(σ
2
t+1), can be defined as the joint probability:

L(σ 2t+1) :=
m∏
i=1

(
1

√
2πσt+1

)n
exp

(
−d (yi, y)2

2σ 2t+1

)

=

(
1

√
2πσt+1

)mn
exp


−

m∑
i=1

d (yi, y)2

2σ 2t+1


= Kσ−mnt+1 exp

(
−R
2σ 2t+1

)
,

where

K :=
(
1
√
2π

)mn
, R :=

m∑
i=1

d(yi, y)2 .

In order to get the σ 2t+1 that maximizes L(σ
2
t+1), we differentiate L(σ

2
t+1)with respect to σ

2
t+1:

L′(σ 2t+1) = −
mn
2
K · σ−mn−2t+1 · exp

(
−R
2σ 2t+1

)
+
R
2
K · σ−mn−4t+1 · exp

(
−R
2σ 2t+1

)
.

L′(σ 2t+1) = 0 implies σ
2
t+1 = R/(mn), and it is routine to check the maximality. Since both m and n are fixed, the only

quantity needs to be examined is R, the sum of square of the distance between each updated particle and the center.
Given c(t) = (r, 0, 0, . . . , 0) and Z = (Z1, Z2, . . . , Zn) with Z1, Z2, . . . , Zn ∼ N(0, σ 2t ), the m particles P1, P2, . . . , Pm
are sampled from c(t) + Z, and the updated position is calculated as Pi + Ci ⊗ (P∗ − Pi), where P∗ is the attractor. Since
c(t+ 1) =

∑m
i=1 [Pi + Ci ⊗ (P∗ − Pi)] /m, R, as a random variable, can be defined by P1, P2, . . . , Pm and P∗:

R =
m∑
i=1

∥∥∥∥∥∥∥∥∥∥
Pi + Ci ⊗ (P∗ − Pi)−

m∑
j=1

(
Pj + Ci ⊗ (P∗ − Pj)

)
m

∥∥∥∥∥∥∥∥∥∥

2

.

Denoting Pi’s and P∗’s kth coordinate as Pik and P∗k , respectively, the expectation of R, E [R], can be derived in the following
lemma:

Lemma 15. Given the swarm size, m, and the variance of distribution at time t, σ 2t = σ
2,

E
[
σ 2t+1

]
≤
(m− 1)σ 2

12m

{(
5+
√
3(m− 1)
n

)
c2 − 6c + 12

}
.
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Proof. Defining Rj as

Rj :=
m∑
i=1

Pij + Cij
(
P∗j − Pij

)
−

m∑
k=1

(
Pkj + Ckj(P∗j − Pkj)

)
m


2

yields R =
∑
j=1:n Rj and that we can obtain for j > 1,

E
[
Rj
]
=

(
m− 1
12m

){
σ 2
(
4c2 − 6c + 12

)
+ c2E

[(
P∗j
)2]}

≤

(
m− 1
12m

){
σ 2
(
5c2 − 6c + 12

)}
.

The last inequality follows from the fact that the independence of coordinates implies E
[(
P∗j
)2]
≤ σ 2. Moreover,

E[R1] =
(
m− 1
12m

){
σ 2
(
4c2 − 6c + 12

)
+ c2E

[(
P∗1 − r

)2]}
.

Since E
[(
P∗1 − r

)2] is less than or equal to the expected value of the extreme order statistics of T 21 , T 22 , . . . , T 2m, where
Ti ∼ N(0, σ 2), by using the upper bound for the extreme order statistics [28],

E
[(
P∗1 − r

)2]
≤ σ 2

(
1+

√
3(m− 1)

)
.

As a consequence,

E
[
σ 2t+1

]
= E [R] /(mn) ≤

(m− 1)σ 2

12m

{(
5+
√
3(m− 1)
n

)
c2 − 6c + 12

}
. �

While Lemma 15 is under the assumption that σ 2t is given ormore formally, the conditional expectation E
[
σ 2t+1|σ

2
t = σ

2
]
is

derived, the following theorem indicates the relationship between E
[
σ 2t
]
and E

[
σ 2t+1

]
and gives a sufficient and necessary

condition that the sequence
{
E
[
σ 2t
]}
converges to zero. Without loss of generality for the normal operation of PSO, we

assume that E
[
σ 20
]
<∞.

Theorem 16 (Convergence of the Expectation of Variance). Let κ :=
√
3(m− 1)/n. If c satisfies the condition that

3−
√
9+ 60+5κ

m−1

5+ κ
< c <

3+
√
9+ 60+5κ

m−1

5+ κ
,

limt→∞
{
E
[
σ 2t
]}
= 0.

Proof. The law of total expectation and Lemma 15 imply that

E
[
σ 2t+1

]
≤
(m− 1)
12m

{(
5+
√
3(m− 1)
n

)
c2 − 6c + 12

}
E
[
σ 2t
]
.

Therefore,
{
E
[
σ 2t
]}
is upper-bounded by the geometric sequence with the first term E

[
σ 20
]
and the ratio

(m− 1)
12m

{(
5+
√
3(m− 1)
n

)
c2 − 6c + 12

}
.

By solving

(m− 1)
12m

{(
5+
√
3(m− 1)
n

)
c2 − 6c + 12

}
< 1,

the theorem is proved. �

Since σ 2t takes the value on non-negative real numbers, the convergence of sequence
{
E
[
σ 2t
]}
implies sequence

{
σ 2t
}

converges to zero in probability, as shown in the following corollary.

Corollary 17 (Convergence of Variance). If limt→∞
{
E
[
σ 2t
]}
= 0, then limt→∞ σ 2t

p
→ 0, i.e., for every ε >

0 limt→∞ Prob
{
σ 2t ≥ ε

}
= 0.
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Proof. Suppose for contradiction that there exists some ε > 0 and δ > 0 such that, for allN0 ∈ N, there exists anN(N0) > N0
with Prob

{
σ 2N(N0) ≥ ε

}
≥ δ. However, since Prob

{
σ 2N(N0) ≥ ε

}
≥ δ implies E

[
σ 2N(N0)

]
≥ εδ, for all N0 ∈ N, there exists an

N(N0) > N0 such that E
[
σ 2N(N0)

]
≥ εδ, limt→∞

{
E
[
σ 2t
]}
= 0 is contradicted. �

Theorem 16 and Corollary 17 indicate that as long as the specified condition is satisfied, a swarm will converge in
probability. However, it must be noted that the acceleration coefficient, c , used in this study is the coefficient for the
compound effect of both the inertia weight and the common acceleration coefficient for the neighborhood or global best
position as described in Section 3.3. Therefore, further investigations are needed to gain understandings on the compound
effect and clarify the relationship of these parameters such that the derived results in the present work can be applied in
practice.

5. Summary and conclusions

In this study, we made the first attempt to analyze the behavior of particle swarm optimization on the facet of particle
interaction. We firstly proposed a statistical interpretation of particle swarm optimization and modeled the essential PSO
mechanisms with the operations on probabilistic distributions. In order to investigate the PSO behavior based on particle
interaction, we focused on the social-only model of PSO, in which the personal experience of particles is ignored. From the
viewpoint of macrostates, we obtained the lower and upper bounds of the expected progress rate for a swarm on the sphere
function. By examining in detail the variance of the particle distribution, we further showed that under certain condition, a
swarm will converge in probability due to the mechanism of particle interaction, i.e., exchanging and sharing information,
which is commonly believed to be an essential mechanism of PSO but seldom theoretically analyzed in the literature.
With regard to the practical implications of this study, we demonstrated that the optimization process of PSO can be

interpreted as the interplay between the attractor and the overall swarm, as shown in Theorem 11 that the expected norm
of the next center is upper-bounded by a linear combination of P and P(1,m) as well as that the acceleration coefficient is the
weight balancing the effects of these two quantities. The major resistance in the optimization process of PSO on the sphere
function is the number of dimensions, as it can be observed in Corollary 14 that the progress rate deteriorates drasticallywith
respect to the number of dimensions. On the other hand, the swarm size is the primary factor counteracting the increasing
dimensions, for the exploratory capability of the swarm is augmented in accordance with the number of particles. It is
noteworthy that in a variety of theoretical studies on PSO, the effect of the objective function has been rarely taken into
consideration due to the assumption of fixed attractors. By means of characterizing a swarm as a unity, the analysis of the
influence of the objective function becomes possible.
With this study,wepropose an alternativeway to analyze particle swarmoptimization from the viewpoint ofmacrostates

instead of tracing the trajectory of each particle. The immediate follow-upwork of this study includes the clarification of the
compound effect of the inertia weight and the neighborhood acceleration coefficient for carrying over the theoretical results
to practice and for suggesting applicable parameter settings. Moreover, tighter bounds may be derived to more accurately
describe the behavior of PSO, and a complete PSOmodel may be considered instead of the social-only model adopted in the
present work. Finally, in the long run, a unified behavioral model of PSO might be established by integrating the theoretical
results from the two ends – macrostates and microstates – such that better, more robust optimization frameworks can be
accordingly designed and developed.
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