
Chapter 2  Theory and Methodology 

 

     The propagation behavior of light is determined by the four Maxwell’s equations [15]. 

We consider the light propagation within a periodic dielectric medium, a composite of regions 

of homogeneous dielectric material, with no free charge or currents ( ρ =J=0). Therefore, the 

four Maxwell’s equations given in MKS units are as follows. 

( , ) 0,D r t∇ =
JK Ki          (2.1) 

( , ) 0,B r t∇ =
JK Ki  (2.2)

E( , ) ( , ),  r t B r t
t
∂

∇× = −
∂

JK JKK K  (2.3)

H( , ) ( , ),r t D r t
t
∂

∇× =
∂

JK JKK K  (2.4)

where E and H are the macroscopic electric and magnetic fields, D and B are the electric 

displacement and magnetic induction field.  

 

2-1 Introduction 

     

     In order to solve the wave equations derived from Maxwell’s equations, we need the 

so-called constitutive equations related D to E and B to H. Since we do not deal with 

magnetic material, we assume the magnetic permeability of the photonic crystal is equal to 

that in free space with µ0 being the permeability in vacuum: 

    
0( , ) ( , ).B r t H r tµ=

K KK K                                                    (2.5) 

In general, the relation between D with E is written as: 

                                              (2.6) 2 (3) 3
0 2 4D E dE Eε ε χ= + + +"
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For simplifying the problem, we make three assumptions. First we assume the field 

strengths are small enough so that they are in the linear regime, or the operation frequency 

region far away from the resonance frequency region of the photonic materials. Second, we 

assume the medium is macroscopic and isotropic, so that E(r,ω) and D(r,ω) are related by a 

scalar dielectric constantε (r,ω). Third, we ignore any explicit frequency dependence of the 

dielectric constant so the materials which construct the photonic crystals are non-dispersive 

and non-absorptive, so the ε (r,ω) is treated as a real. According to the last three assumptions, 

the relation between D and E can be rewritten as this form: 

( ) ( ) ( ).D r r E rε=
JK K K JK K

                                    (2.7) 

For most dielectric materials of interest, the magnetic permeability is very close to unity 

so we may set 0B = a monochromatic electromagnetic wave is incident, all components 

of the electric and magnetic fields are harmonic functions of time and the same frequency. 

Hµ . If 

                     
( , ) ( )

( , ) ( )

i t

i t
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E r t E r e

ω

ω

=

=

GJJK JJK K
i

JK K JK K
i

.                                   (2.8) 

When we substitute (2.8) into (2.1) ~ (2.4), we obtain the following equations: 

                                (2.10) 

2

2

1( ) { ( )} ( ),E E r E r E rω
Θ ≡ ∇× ∇× =
JK K JK K JK K

K                            
( ) crε

       (2.9) 

    
2

2

1( ) { ( )} ( ).
( )H H r H r H r

cr
ω

ε
Θ ≡∇× ∇× =
JJK K JJK K JJK K

K

The (2.9) and (2.10) are the eigen-value problems, and HΘ  is a Hermitian operator. That 

means the eigen functions Hn of HΘ  form an orthonorma omplete set. Because l c ε (r) is a 

period function, we can apply the Bloch’s theorem to (2.9) and (2.10). By the so-called 

plane-wave expansion method, these eigen equations can be solved, and then we can obtain 

the dispersion relation of the eigenmodes, or the photonic band structure [16] [17]. 
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2-2 Omnidirectional one-dimensional photonic crystal and band 

ystal and typical band structure 

A one-dimensional (1-D) photonic crystal (PC) has an index of refraction that is 

periodic in one direction

1 2 1 2

2 1 2 2

1 2

structure 

 

2-2.1 One-dimensional photonic cr

 

 and consists of endlessly repeating stacks of dielectric slabs, which 

alternate in thickness from d  to d  and in index of refraction from n  to n . In our research, we 

choose TiO  (n =2.36) and SiO  (n =1.47) as the two slabs. Lattice constant D is defined as 

d +d . The general photonic band structure calculated form 1-D PC is shown in Fig 2-1. 

 

 

Fig. 2-1 Band structure (the relation of ω to k) of 1-D PC. 

The vertical coordinate describes the normalized frequency Ω in unit c/D, i.e. 

Ω=ωD/ rizon

 

2πc. Where ω is angular frequency and c is speed of light. The ho tal coordinate 

describes the normalized wave vector, whose direction is perpendicular to the interface of 
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slabs, in unit 2π/D. We can see there are four allowed photonic bands which are the eigen 

modes of the eigen equations in Fig 2-1, and all photonic bands are symmetrical at K┴=π/D. 

There are no photonic bands inside the square surrounded by dash lines, i.e., there are no 

electromagnetic modes available within these frequency ranges in the photonic crystal. 

Therefore, the frequency ranges are the so-called photonic band gaps; the incident wave 

within the frequency ranges cannot pass through this photonic crystal. 

 

2-2.2 Omnidirectional band structure 

In previous section, we only consider that the incident light is normally incident to the 

PC. B

 

esides normal incidence, the incident light can be either TE-polarized (E is 

perpendicular to the plane of incidence) or TM-polarized (H is perpendicular to the plane of 

incidence). In order to analyze and realize these conditions, we calculate the distinguishing 

band structure which is shown in Fig 2-2. 

 
Fig. 2-2 Omnidirectional band structure of 1-D PC. The frequency range  
within two horizontal dash line is the so-call omnidirectional bandgap. 
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The c oordinate. 

K// means that the normalized wave vector is p

┴ // 

┴ ┴

// // n

n // ┴

// Ωn for all possible values of K┴ were plotted 

in Fig. 2-2. That’s why the photonic bands in 

┴

┴

ectional bandgap and reflection 

We notice that there is no complete bandgap in Fig. 2-2 because each frequency has 

corresponding allowed m

the allowed m

ritical difference between these two band structures is the horizontal c

arallel to the interface of slabs. Because the 

photonic crystal is periodic in K direction and homogeneous in K direction, the 

electromagnetic modes can be characterized by a wave vector k, with K  restricted to 0 ≤ K  ≤ 

π/D and K  regarded as K ≥ 0. The allowed mode frequencies Ω  for each possible choice of 

k constitute the band structure of the crystal. The functions Ω  (K , K ), for each n, are the 

photonic bands mentioned above. 

For each value of K , the mode frequencies 

Fig. 2-1 and in Fig. 2-2 are “thin lines” and 

“broad regions” respectively. In the gray region there are electromagnetic modes for some 

value of K , whereas in the white regions there are no electromagnetic modes, regardless of 

K . The TE-polarized modes are plotted to the right side of the band structure, and the 

TM-polarized modes to the left. Thus incident light from any direction with any polarizations 

is shown in this band structure, which we defined as omnidirectional band structure. The 

word “omnidirection” means “all-direction”. [5] 

 

2-2.3 Omnidir

 

odes. However, the absence of bandgap doesn’t prohibit 

omnidirectional reflection, the leading capability of photonic crystal. 

We have to know what is the connection between the incident propagation wave and 

odes in photonic crystal. So we give a simple demonstration below. 

From c f λ= ⋅ , we get 

c k⋅
= ⋅ =

⋅
,                                                 (2.11) //

sin
c k
n n

ω
θ
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where n is the refractive index of ambient medium. And then, the normalized parameters are 

// //

,
2 cπ

Ω =

( ).
2

D

DK k

ω

π

⋅

= ⋅
                                                     (2.12) 

After substituting (2.12) into (2.11), we obtain the following result 

ngle. Therefore, the EM wave incident from outside medium, whose 

//( ) ,
sin

K
n θ

Ω = ⋅
⋅

                                  1                 (2.13) 

where θ is the incidence a

refractive index is n, can couple into the modes lying on the oblique straight line whose slope 

is 1
sinn θ⋅

 in band structure. In our whole research, we suppose the ambient medium is air, 

so ys take n=1. When θ =90we alwa

2-3 T ansfer matrix method 

We consider the problem of the reflection and transmission of electromagnetic radiation 

through a thin film

( ) ,
,

n x n
n

= ⎨
⎪
⎩

     

o, the equation Ω=K// is defined as light line, which is the 

two oblique dash lines in Fig. 2-2. Thus, any incident wave laughed from outside medium can 

only excite the modes inside the “line cone”. There are no allowed bands within the two 

horizontal dash lines inside the line cone, so we define this frequency range as 

omnidirectional bandgap. Consequently, the 1-D photonic crystal is able to exhibit 

omnidirectional reflection for incident light from any direction with any polarization within 

omnidirectional bandgap. 

 

r

 

 using the 2 ×  2 matrix. The dielectric structure is described by  

1,n⎧
⎪

0,x <

2

3

0 ,
,

x d
x d
< <
>

    (see Fig. 2-3) 

where d is the thickness of the film. We assume the wave propagates on the xz plane, and the 
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electric field is either a TE wave (E//y) or a TM wave (H//y). 

 

Fig. 2-3 A thin film of dielectric medium

 

he electric field E(x) consists of a right-traveling wave and a left-traveling wave, can 

be wr

. 

T

itten as ( ) ( ) ( ),x xik x ik xE x Re Le A x B x−= + ≡ +  where xk±  are the x components of the 

wave vector a omogeneous layer. We define A(x) as the 

amplitude of the right-traveling wave and B(x) as that of left-traveling wave. To illustrate the 

matrix method, we define 

1 2(0 ), ' (0A A A A−= =

nd R and L are constants in each h

1 2 2 3

), ( ), ' ( ),

(0 ), ' (0 ), ( ), ' ( ),
2 3A A d A A d

B B B B B B d B B d

+ − +

− + − +

= =

= = = =
  

respectively, where 0- represents the left side of the interface, x = 0, and 0+ represents the right 

2

2

A A
D D D

B B B
⎛ ⎞ ⎛ ⎞

= ≡⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

                                      (2.14) 

2

2

side of the same interface. d- and d+ are similarly defined. E(x) for TE wave is a continuous 

function of x. If we represent the two amplitudes of E(x) as column vectors, they are related 

by (see Fig. 2-3) 

1A −⎛ ⎞ 21
1 2 12

1 2

' '
,

' '

2

2

2 2
2

2 2

' 0
,

' 0

i

i

A A Ae
P

B B Be

φ

φ−

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
                                   (2.15) 
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3 32 1
2 3 23

2 3

' '
,

' '
A AA

D D D
B B

− ⎛ ⎞ ⎛ ⎞⎛ ⎞
= ≡⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

3B
       

where D1, D2, and D3 are the dynamical matrices, which can be obtained by matching the 

boundary conditions at the interface. They are  

n n

                              (2.16) 

1 1
cos cosn n

D α α α α
α

α α

α α

θ θ
⎧⎛ ⎞

−⎪⎝ ⎠= ⎨        
cos cos

⎠

e in 

θ θ

⎪⎜ ⎟

⎛ ⎞⎪
⎜ ⎟⎪ −⎝⎩

                                (2.17) 

where α=1, 2, 3 and θα is the ray angl

which accounts for propagation through 

for TE wave, 

, 

2 2 .xk dφ =  

From Eqs. (2.14)─(2.16), the amplit

31 1 1
1 2 2 3

1 3 'B B⎝ ⎠ ⎝ ⎠
2

'AA
D D P D D− − ⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟ ,       

The Snell's Law sin .n constα αθ =  

 vectors representing the plane

c

the column

produ rices in sequenc

=⎜ ⎟ ⎜ ⎟⎜ ⎟

ct of 2 ×  2 mat e.

dynamical matrix, and the bulk of each lay

recipe can be extended to the case of multil

Now we consider the case of multil

the amplitudes of the first medium (0) and f

0 11 12

21 220

'
'

s

s

A AM M
M MB B

⎛ ⎞ ⎛ ⎞⎛ ⎞

⎝ ⎠⎝ ⎠
,

⎝ ⎠
        

with the matrix given by 

1

N
11 12 1 1

0
21 22M M⎝ ⎠

M M
D D P D Dα α α

α

− −

=

⎛ ⎞ ⎡ ⎤
=⎜ ⎟ ⎢ ⎥

⎣ ⎦
∏

 

for TM wave
each layer. P  is the so-called propagation matrix, 

t

u

a

s

2

he bulk of the layer. The phase φ2 is given by 

des A1, B1 and A3’, B3’ are related by 

                                   (2.18) 

-wa

an connect the ray angle in each layer. Note that 

ve amplitudes in each layer are related by a 

an be written as 

 Each side of an interface is represented by a 

er is represented by a propagation matrix. Such a 

ayer structures.  

yer. Similarly to Eq. (2.18), the relation between 

inal medium (s) c

                                   (2.19) 

                                   (2.20) 
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N is the number of layers. 

Now we discuss the reflectance and transmittance. When the light is incident from 

d transmission coefficients are defined as medium 0, the reflection an

0

                                                    (2.21-2) 

0 ' 0sB

B
A

=

⎛ ⎞

⎝ ⎠
,r = ⎜ ⎟                                                     (2.21-1) 

0 ' 0

' ,
s

s

B

At
A

=

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

Using the matrix equation (2.19) and definitions (2.21), we obtain 

21

11

Mr
M

=                                                          (2.22-1) 

11

2

1 .t
M

=                                                         (2.22-2) 

Reflectance is given by 

2 21 ,MR r= =                                                  (2.23-1) 

provided medium 0 is lossless. 

If the bounding media (0, s) are both pure dielectric with real ns and n0, transmittance T 

11M

is given by 

2
2cos cos 1n n

n
θ θ

0 0 0 0 11

.
cos cos

s s s sT t
n Mθ θ

= =                                     (2.23-2) 

Consequently, by using transfer matrix method we can simulate the transmission of a wave 

incident to a multilayer consisting of finite layers. [18] 

C by plane wave expansion method, 

and taking the incidence angle θ0 = 0o to calculate the transmission spectra through this 1-D 

PC wi

 

Now, we calculate the band structure of a 1-D P

th ten periods by using transfer matrix method. The results are shown in Fig. 2-4. 
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Fig. 2-4(a) The band structure 
of 1-D PC. Whose n1=2.36, 
n =1.47, and d /d =0.7. 

Fig. 2-4(b) The transmission 
spectra of normal incident 
wave passing through the same 

 

In Fig. 2-4(b), we can see that there are three bandg

arrowest. This result matches the band structure in Fig. 2

descri

n

bes the behavior of normal incident wave. Howev

transmission cannot always keep 100% at each normaliz

transmission curve dips at some frequencies. They are 

always appears at optical coated thin films. This phenome

light wave from the finite multilayers. The number of 
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structure of 1-D PC with 10 
periods. 
e

e

s

n

r

2 1 2
aps, and the second bandgap is the 

-4(a), where the thick line at center 

r, on the four allowed bands, the 

d frequency (see Fig. 2-4(b)). The 

o-called ripples. The ripple effect 

on is caused by the interference of 

ipples increases as the number of 



coating layers is increased. In this case, the transmission spectra calculated from ten periods 

have nine or ten ripple peaks at each allowed band. 

     In 1-D case, transfer matrix method (TMM) is an exact solution, so it can simulate 

more correct results of finite 1-D PC than the plane wave expansion method that treats infinite 

 

PC. The band structure is calculated by solving the eigen equation of a unit cell of 1-D PC 

that doesn’t consider the finite periods and the interference of wave. Therefore, after 

designing a device by using plane wave expansion method, we have to check the 

transmittance by TMM. 

 

 

 

 

 

 

 - 14 -


