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MPEG-2/4 Low-Complexity Advanced Audio Coding Optimization

and Implementation on DSP

Bing-Fei WU', Member, Hao-Yu HUANG', Nonmember, Yen-Lin CHEN'™®, Member, Hsin-Yuan PENG',

SUMMARY This study presents several optimization approaches for
the MPEG-2/4 Audio Advanced Coding (AAC) Low Complexity (LC) en-
coding and decoding processes. Considering the power consumption and
the peripherals required for consumer electronics, this study adopts the TI
OMAP5912 platform for portable devices. An important optimization issue
for implementing AAC codec on embedded and mobile devices is to reduce
computational complexity and memory consumption. Due to power saving
issues, most embedded and mobile systems can only provide very limited
computational power and memory resources for the coding process. As a
result, modifying and simplifying only one or two blocks is insufficient for
optimizing the AAC encoder and enabling it to work well on embedded
systems. It is therefore necessary to enhance the computational efficiency
of other important modules in the encoding algorithm. This study focuses
on optimizing the Temporal Noise Shaping (TNS), Mid/Side (M/S) Stereo,
Modified Discrete Cosine Transform (MDCT) and Inverse Quantization
(IQ) modules in the encoder and decoder. Furthermore, we also propose an
efficient memory reduction approach that provides a satisfactory balance
between the reduction of memory usage and the expansion of the encoded
files. In the proposed design, both the AAC encoder and decoder are built
with fixed-point arithmetic operations and implemented on a DSP proces-
sor combined with an ARM-core for peripheral controlling. Experimental
results demonstrate that the proposed AAC codec is computationally effec-
tive, has low memory consumption, and is suitable for low-cost embedded
and mobile applications.

key words: audio coding, audio standards, MPEG-2/4 AAC, DSP, embed-
ded systems

1. Introduction

Due to recent advances in audio compression technol-
ogy [1], [2], the convenience of multimedia communication
has promoted the growth of wireless and wired network
technologies. At the same time, the increasing prevalence of
portable devices such as personal digital assistants (PDAs),
digital audio player and smart mobile phones has also ad-
vanced audio compression technology. In the last decade,
MPEG/Audio Layer3 (MP3)[3] which supports an 11:1
compression rate at a 128 Kbps bit rate with CD audio qual-
ity, has played a crucial role in the domain of audio com-
pression. Moreover, MPEG-2/4 Advanced Audio Coding
(AAC) provides CD audio quality at a 96 Kbps bit rate and
has become the audio compression standard in the recent
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years. With the limited Internet bandwidth and portable de-
vice storage, AAC now leads audio compression technol-
ogy.

Since the AAC standard first appeared, many stud-
ies have been published on optimizing the AAC algorithm.
Some studies [4]-[7] developed an optimized AAC algo-
rithm on PC-based platforms. Profiling the AAC encod-
ing flow indicates that the Psycho-Acoustic Model (PAM)
and the quantization loop module are the most complex
modules in the AAC encoder [9]. Thus, many recent stud-
ies have attempted to accelerate the computational speed
of the PAM and the quantization module while other stud-
ies focus on improving their efficiency [8]-[13]. Dimkoviae
et al. [8] introduced an Adaptive Time-Frequency Transfor-
mation (ATFT) for coding audio signals, and developed a
PAM adapted to time-frequency functions. Huang et al. [9]
used a new design of Modified Discrete Cosine Transform
(MDCT)-based PAM to replace the original Fast Fourier
Transform (FFT)-based PAM and implemented the encoder
on a 16-bit fixed-point processor. Hu et al. [10] presented
an optimized AAC encoder that improved the MDCT-based
PAM with a block switching scheme in the time domain.

While these publications focus on optimizing the PAM,
many other papers attempt to optimize the bit-allocation me-
chanic in the quantization loop. Kurniawati et al. [11] pro-
posed a new implementation technique for the PAM and the
bit allocation module, which is the dominant user of com-
putational resources in the AAC encoder. Yang et al. [12]
presented a new bit allocation algorithm to improve the effi-
ciency of MPEG-4 AAC when the inter-band dependency of
coding process exists in the Breiman, Friedman, Olshen, and
Stone (BFOS) algorithm. Alexandre et al. [13] also worked
on optimizing the bit-allocation algorithm in the PAM with
a nonuniform quantization block in the AAC encoder. Most
current optimization methods concentrate on one module or
block in the whole encoding flow and are implemented on a
PC-based platform.

Recently, numerous multimedia use-cases on portable
and mobile applications have appeared in our daily life.
There are also many real-time application examples of ap-
plying the AAC audio encoder, such as mobile audio/video
recorders and car surveillance systems. Due to the popu-
larity of embedded and mobile devices, recent studies have
begun to focus on optimization methodologies of the AAC
codec implemented on embedded and mobile multimedia
platforms [31]-[38]. Reducing computational complexity
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and memory requirements are the most important optimiza-
tion issues for implementing the AAC codec on embedded
devices. Due to power saving issues, most embedded and
mobile systems can only provide very limited computational
power and memory resources for the coding process. There-
fore, modifying and simplifying only one or two blocks are
insufficient for optimizing the AAC encoder and enable it
to work well on embedded systems. It is also necessary
to enhance the computational efficiency of other important
modules in the encoding algorithm, including the tempo-
ral noise shaping (TNS), mid/side (M/S) stereo, and MDCT
modules. By combining these optimized blocks and mod-
ules with the proposed PAM and simplified bit-allocation
approaches, this study proposes an efficient low-complexity
and low-memory-cost optimization scheme for the AAC en-
coder on embedded platforms. This study also presents an
optimized AAC decoding framework for embedded applica-
tions. Based on computational costs and performance, this
study selects the TI OMAP5912 DSP-ARM dual-core plat-
form to implement the proposed AAC codec.

The optimization of the AAC decoder is another im-
portant issue. Since AAC decompression costs less compu-
tational complexity and power consumption than encoding,
it is easier to port the decoder on the portable devices than
the encoder. Many studies [14]-[17] have presented opti-
mized decoding algorithms for the DSP-based or RISC ar-
chitecture. Servetti et al. [14] improved the decoding frame-
work for the Intel Pentium series platform. Bang et al. [15]
and Waston et al. [16] proposed a fast implementation of the
decoding architecture for embedded applications. Yoon et
al. [17] proposed a specialized DSP architecture for MPEG-
2/4 AAC high-quality audio. To achieve a complete AAC
codec on an embedded system, this study implements a de-
coder with lower computational complexity than existing
AAC decoders on the OMAP5912 platform. This study also
optimizes the inverse MDCT, which is the most computa-
tional complex module in the decoding flow [18]. Due to
the computational limitations of the embedded system, we
present a fast solution to the nonlinear computation in the in-
verse quantization module. As in the encoder, the memory
size must be controlled and reduced in the decoder. There-
fore, this study also presents a programming methodology
to shrink the Huffman tables, which has the most critical
memory requirements in the overall algorithm.

For portable and outdoor usage [19], the proposed AAC
codec can provide higher processing speeds while maintain-
ing audio quality. In the encoder, we optimize the whole en-
coding flow in the following aspects: 1). The MDCT block
is simplified by mathematical techniques to reduce the com-
putational cost and reduce memory usage. 2). This study
also presents a simplified TNS and M/S stereo module based
on an optimized statistical model. By performing a statisti-
cal analysis, we developed an effective early decision ap-
proach to determine the most effective orders of Levinson-
Durbin Recursion (LDR) before performing the TNS com-
putation. Moreover, the M/S decision mechanism in the M/S
stereo coding module is another critical and complex com-
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putational factor. The proposed model adopts an optimized
M/S coding decision scheme that analyzes the energy of a
single frame instead of the scalefactor bands in the entire
frame as adopted by the original AAC standard. 3). Mem-
ory consumption is also a critical issue in embedded applica-
tions, and the Huffman tables occupy a considerable size of
the memory usage in the AAC codec. This paper proposes
an efficient memory reduction approach which provides a
satisfactory balance between reducing memory usage and
expanding the encoded files. 4). Additionally, in the de-
coder, the most complex modules, that is the IMDCT mod-
ule, is optimized for better computational efficiency due to
the limited computation resources of embedded platforms.
Both the proposed AAC encoding and decoding algorithms
are implemented on the OMAP5912 platform with its DSP
and ARM cores. This study focuses on the optimization is-
sues of these blocks, which have not yet been examined in
detail, and implements these optimized approaches in the
AAC codec. In so doing, this study develops a fast and ef-
ficient AAC codec that can be applied to portable and em-
bedded multimedia applications with well-recognized qual-
ity for low cost, flexible, portable and outdoor usages.

This paper is organized as follows. Section 2 focuses
on optimizing the AAC codec using software-based and
algorithmic optimization techniques. Using predictive ap-
proaches, this section simplifies and optimizes the compu-
tational critical modules of the encoding and decoding pro-
cesses and proposes techniques for memory size reduction
as well. Section 3 presents effective platform-based opti-
mizations for implementing the proposed AAC codec on
the OMAP platform, and introduces some DSP-based opti-
mizations. Section 4 presents experimental results. Finally,
Sect. 5 offers the conclusion to this paper.

2. MPEG-2/4 AAC Software-Based and Algorithmic
Optimizations

This section presents the proposed approaches for optimiz-
ing the AAC encoder and decoder, including the fast Modi-
fied Discrete Cosine Transform (MDCT) and Inverse Mod-
ified Discrete Cosine Transform (IMDCT), simplified Tem-
poral Noise Shaping (TNS) tool, simplified mid/side (M/S)
stereo coding module, and inverse quantization block. Due
to the memory consumption issues of resource-restricted
embedded systems, this section also presents some memory
reduction methods based on our optimized statistical model
for the Huffman tables and the Huffman coding process.

2.1 Simplified TNS Tool

This section presents a simplified TNS module. The origi-
nal TNS calculation applies a filtering process to some parts
of spectral coefficients when the prediction gain of spectral
data is greater than a pre-defined threshold, which is ob-
tained by calculating the Signal-to-Noise Ratio (SNR) dur-
ing Levinson-Durbin Recursion (LDR). Table 1 shows the
statistical analysis results for the inactive percentage of fil-
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Table 1  The inactive percentage of TNS filtering.
Inactive
Test samples Signal percentage
P characteristic for long
windows
AlwaysOnYourSide Pop song 94.25%
AFondFarewell Pop song 90.53%
Lifetime Pop song 94.55 %
RedMorning Pop song 91.13%
Sandee Pop song 89.82%
Sopr44 1 Soprano 93.3 %
quar48 1 Quartet 80.1%
horn23 2 Horn 95.35%
trpt21 2 Trumpet 87.01%
gspi3s 2 Glockenspiel 83.17%
Average N/A 89.92%

tering process under the condition of the only-long-window
blocks in the overall encoding process. Because the exist-
ing TNS tool is able to compensate for the negative effect
of the pre-echo, and based on related research [20] show-
ing that the encoding performance without block switching
does not have a significant effect on the loss of the qual-
ity, the proposed Psycho-Acoustic Model (PAM) does not
include a block-switching scheme, thus resulting in only-
long-window blocks.

Figure 1 shows the simplified procedure, in which the
TNS module is enabled only when the predicted gain of
audio spectral data is greater than a pre-defined threshold.
Gsnr., and Trpg, stand for the prediction gain of nth-order
auto-correlation and LDR, respectively. The complexity of
LDR is O(N?)[21]. For this reason, the early decision ap-
proach splits the recursion order of the LDR into two blocks
and performs the 6th-order auto-correlation and LDR. If
Gsnre 1s greater than Trprge, the following recursion order
from 7th to 12th will be performed.

According to the simplified TNS flow in Fig. 1, four
possible cases, which describe whether or not 6th-order and
12th-order Linear Predictive Coding (LPC) are enabled in
the simplified TNS flow are listed in Table 2.

Table 3 shows the active possibilities of the four cases
presented in Table 2. In Table 3, the average result of the
five test samples in case (1) shows that 87.94 % of the LPC
predictions for TNS filtering results can be simply deter-
mined through a 6th-order LPC, while the average result of
the five test samples using case (4) demonstrates that only
about 1.56 % of the LPC predictions mis-predicted using
6th-order LPC. Therefore, this proposed method can pro-
vide very similar quality as compared to that of the original
TNS mechanism because the percentage of mis-prediction
using 6th-order LPC is only 1.56 %. Furthermore, since the
average result for the inactive percentage for long windows
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Fig.1  Simplified TNS flow.

Table 2  Four possible cases in the simplified TNS.
Case (1) 12"-order LPC prediction is disabled.
6"-order LPC prediction is disabled.
Case (2) 12™-order LPC prediction is disabled.
6"-order LPC prediction is enabled.
Case (3) 12™-order LPC prediction is enabled.
6"-order LPC prediction is enabled.
Case (4) 12"-order LPC prediction is enabled.
6"-order LPC prediction is disabled.
Table 3  Analysis of the active possibilities of the four cases.
Test Samples Case(l) | Case(2) | Case(3) | Case(4)
AlwaysOnYourSide | 91.69% | 2.52% | 3.11% | 2.68%
AFondFarewell 91.11% | 2.66% 5.88% 0.35%
Lifetime 91.36% | 3.17% | 5.19% | 0.28%
RedMorning 91.73% | 2.09% 6.03% 0.15%
Sandee 85.59% | 4.22% | 7.59% | 2.30%
Sopr44 1 90.65% | 4.15% 5.15% 0.05%
quar48 1 74.16% | 7.52% | 15.26% | 3.06%
horn23 2 89.72% | 5.04% 4.15% 1.09%
trpt21 2 85.82% | 4.08% 6.98% 3.12%
gspi35 2 87.57% | 1.79% | 8.12% | 2.52%
Average 87.94% | 3.74% 6.76% 1.56%

in Table 1 is 89.92 %, the complexity of TNS can be reduced
by 89.92 % - 87.94 % = 79.08 %.
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2.2 Mid/Side Stereo Coding Optimization

The stereo coding process adopts channel correlations to de-
termine whether or not to apply the Mid/Side (M/S) stereo
coding. The coding algorithm itself is quite simple, but
the process to decide whether or not this scalefactor band
switches to M/S mode requires much more effort. In the
method proposed by the original AAC standard, the decision
process for the M/S stereo coding is thoroughly performed
on each of the scalefactor bands. As a result, the number
of manipulations is too high to implement the decision pro-
cess of the M/S stereo coding in the original AAC standard
on an embedded processor with limited computation power.
Table 4 shows that at least 80 % of the scalefactor bands of
a single frame will be switched to the M/S coding mode.
The original decision method consumes a lot of computa-
tion time. Thus, for the simplicity, we adopt an optimized
decision method that uses the energy of a single frame in-
stead of the scalefactor bands in the entire frame.

Figures 2 and 3 illustrate the channel pair energy ra-
tios of the scalefactor bands switched to the M/S mode or
remaining in the Left/Right (L/R) mode, respectively. Fig-
ure 2 shows that the energy ratios of the channel pair of the
scalefactor band switched to the M/S mode are often around
1~2, whereas Fig. 3 shows that the energy ratios of the scale-
factor band remaining in the L/R mode are usually greater
than those of the M/S mode. Analysis results show that the
M/S mode decision can be performed based on the com-
parative features of the energy ratios. Therefore, this study
proposes an efficient simplified determination approach that
analyzes the frame energy of the stereo channel pair. This
approach only considers the average energy in each frame of
the channel pairs to determine the usage of the M/S stereo
coding, and thus the computation cost is significantly re-
duced. Additionally, since a frame with lower energy is less
benefited from M/S stereo coding, such frames, which usu-
ally occur in the beginning, the end, and the relatively silent
part in the middle of a song, will be determined not to per-
form the M/S stereo coding and thus the computational time
can be significantly saved.

To apply the correlation and the mean energy of two
stereo channels and determine the usage of the M/S stereo

Table 4  The percentage of encoder switching to M/S mode.

Test Samples Percentage
AlwaysOnYourSide 89.26%
AFondFarewell 88.16%
Lifetime 87.35%
RedMorning 95.03%
Sandee 88.34%
Soprd4 1 89.46%
quar48 1 88.84%
horn23 2 83.18%
trpt21 2 80.66%
gspi35 2 85.13%
Average 87.54%
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coding, it is first necessary to define two thresholds. The
first is the threshold of the average frame energy, Tayg, and
the second is the threshold of the ratio of the frame energy,
Trario- Figure 4 depicts the flow chart of simplified deter-
mination approach of M/S coding, where e;, eg and egazio
denote the average energy of the right channel, left channel
and the energy ratio, respectively, which is defined as (1),
and AVG(ey, eg) represents the average of e; and eg. This
optimized M/S mode decision method can achieve a signifi-
cant 73.60 % reduction of computational costs compared to
the original M/S decision module.

. _ ) ecler if eLzer )
katio erler ,if er>eg

2.3 Modified Fixed-Point Inverse Quantization

The inverse quantization defined in the AAC decoder stan-
dard can be computed using Eq. (2), where x, denotes the
quantized spectral coefficients, and xj, represents the inverse
quantized results of x,. This equation shows that the com-

4
putation of |xq| * costs the most computational time.

w10
4 T T
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Variance = (.8534
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Fig.2  Energy ratio of the scalefactor bands switched to M/S mode.
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Fig.3  Energy ratio of the scalefactor bands remaining in the L/R mode.
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% = Sign (x”) ' lx"|% = Sign (x‘i) : |xq| : |xq|% (2

To apply the inverse quantization in the original AAC
decoder standard on a fixed-point DSP platform, it is neces-
sary to optimize the inverse quantization algorithm using a
fixed-point scheme. From [22], we can find that the inputs
|xq|, from O to 8191, can be segmented into 3 sections. The
first section, 0 < x, < 32, utilizes a small Lookup Table
(LUT) to directly obtain the noiseless values. The following
two sections, that is, 32 < x, < 255 and 256 < x, < 8191,
adopt a piecewise linear approximation method to compute

1
the values. Thus, the computation of |xq|3 in the three sec-
tions above can be obtained using respective schemes given
in Eq. (3).

LUT xq%), 0<x,<32

@ (82 (%)) % + B2 (2 (x))

L 32 <x, <256 3)
@3 (83 (xy)) - 3+ B3 (83 (x))

, 256 < x, < 8191

LUT(.) means that the LUT scheme is applied in the 1st
section, @, and (3, are the linear approximation coefficients
for the 2nd section, a3 and B3 are the linear approximation
coeflicients for the 3rd region, S ,(.) is the segment index de-
rived from (4), and S'3(.) is the segment index from (5). This
optimal quantization method can effectively reduce compu-
tational costs, especially for fixed-point processors.

AL
B, (j) = nint(((32)3 - 21)3), j=0~9
= By(j)€(32,41,51,64,81,102,128,162, 204,256} (4)
S (vre) = {/1B2 () < ype < B2 (G + 1)

. _ [nint(256-27), j=0~4,
B =
30) {8192, j=5
= B (j) € {256,512, 1024, 2048, 4096, 8192}

Two-channel data

AVG(ep.er) > Tye?

o

€rarto > Trario?
yes

v

Apply Mid/Sid Apply Left/Right
Stereo Stereo

Fig.4  Simplified flow chart of M/S stereo coding.

1229

83 (vrs) = {1Bs () < ype < B3 G+ D} (5)

Table 5 illustrates analytical results of the inputs of the
inverse quantization, and demonstrates that most of the in-
puts are located in the first section which adopts the LUT
scheme. Thus, the proposed simplified inverse quantization
method works nearly same as the original non-linear com-
putation of the AAC standard.

Table 6 shows the results of the complexity reduction
efficiency of the proposed method as compared to the ones
of the original method. By applying the proposed inverse
quantization method, the average computational complex-
ity is reduced by 41.51 % as compared to the original one.
Therefore, the proposed simplified method cost about only
124 bytes space but can achieve about 40 % reduction of the
computational complexity.

2.4 Memory Reduction

Because memory reduction is also an important issue in em-
bedded application, this study presents three schemes to ad-
dress this problem, as follows:

e A Buffer re-usage scheme, which considers the life
span of data memory

¢ A Huffman Tables reduction scheme based on the sta-
tistical analysis

e The use of various sizes of data types for storing the

Table 5  The percentage of the inputs located in the first section.
Test Samples Percentage

AlwaysOnY ourSide 100%
AFondFarewell 100%
Lifetime 100%

RedMorning 99.99%

Sandee 99.99%
Soprd4 1 100%
quar48 1 100%

horn23 2 99.99%
trpt21 2 100%

gspi35 2 99.99%

Average 99.99%

Table 6  Results of the complexity reduction efficiency of the proposed
method as compared to the ones of the original method.
Test Samples Percentage

AlwaysOnYourSide 41.82%
AFondFarewell 41.23%

Lifetime 41.38%

RedMorning 40.85%

Sandee 40.60%

Soprd4 1 40.59%

quar48 1 41.87%

horn23 2 41.92%

trpt21 2 43.69%

gspi3s5 2 41.14%

Average 41.51%
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length and the codeword information of Huffman Ta-
bles

To efficiently implement the AAC codec on an embed-
ded platform with limited resources, the declared memory
blocks are first thoroughly analyzed and examined as they
are used. In general, the time duration for data processing
is called the “life cycle” or “life span.” For a DSP-based
platform, dynamic memory allocation must be removable.
Therefore, this subsection presents an efficient framework
for static memory management in a DSP-based platform.
Figure 5 illustrates the concept of buffer re-usage for various
life spans, where buf,, denotes the given buffers; s, and e,
denote the start and the end usage of buf,,, respectively; and
S, represents the status of buf, at duration T,. Using this
framework, a set of the buffers which exist in different life
spans can share and be declared in the same memory space.
Once a given buffer buf,,; ends its usage in the correspond-
ing life time T, its occupied space can be immediately used
by the other buffer buf,;.

The 12 Huffman tables used by the AAC encoder con-
sume a large memory space. The Ist — 11th codebooks are
used for encoding the quantized spectral values, while the
12th codebook is specified for coding the scalefactors. Ta-
ble 7 shows the maximum absolute value of the quantized
coefficients that can be coded according to each Huffman
codebook and the number of coefficients in each n-tuple
associated with each codebook. Generally speaking, two
tables will be provided as candidate choices for quantized
spectral coefficients. The encoder will compute the required
bit cost of each table, and the table with minimum required
bits will be chosen.

Therefore, regardless of the codebook selected, audio
quality is not affected within the same range of the maxi-
mum absolute value. However, the total statistical results of
test samples, which are listed in Table 1, in Fig. 6 indicated
that it is unnecessary to provide whole tables as candidate
choices. For instance, the coefficients with the maximum
absolute value ranging from 5~12 only need the 8th and
10th codebooks, and thus the 7th and 9th codebooks can be
removed. By removing the 7th and 9th codebooks and sep-

Initial |« Fixed buffer size————]

status |

— Sto buf; [ buf, [BUf] ]
buffer | ST buf; [ buf, [bufy [ bufy |
Stz [ buf, [bufa[l bufy |
St [ LTV |
Sq €4
3 Sz =3 -]
S3 S4 (-7 e3
0 T, t T, ], T, t T,— 4 tife

Fig.5 Illustration of buffer re-usage.
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arating the elements in Huffman tables, the Huffman tables
can be reduced from 4,278 Bytes to 3,579 Bytes. Though
this scheme optimizes memory consumption, it may expand
the encoded AAC bitstream. To achieve the best tradeoff,
Table 8 illustrates the results of the memory reduction and
the size increase of the encoded files when economizing dif-
ferent sets of codebooks. The tradeoff analysis presented
in Table 8 suggests that the 7th and 9th codebooks should

Table 7  Huffman codebooks.
Maximum
Codebook n-Tflp le Absolute | Signed
Index Size
Value

0 0

1 4 1 Yes
2 4 1 Yes
3 4 2 No
4 4 2 No
5 2 4 Yes
6 2 4 Yes
7 2 7 No
8 2 7 No
9 2 12 No
10 2 12 No
11 2 16 (ESC) No

34

Counts

1 2 3 4 5 B 7 g 9 10
Huffman codebook

Fig.6  The counts of the Huffman codebooks used by the tested audio
samples.
Table 8 Tradeoff between reducing the codebooks and inflating the en-
coded files.
The average The average
Codebooks percentage of percentage of
being removed | memory reduction in inflation in
Huffman tables encoded AAC files
Remove half of
the candidate 33.18% 14.55%
codebooks
Remove
codebooks 7 16.34% 1.10%
and 9
Remove
codebook 9 11.85% 0.08%
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be removed for the best tradeoff between memory reduction
and coded file inflation.

2.5 Fast MDCT and IMDCT

This section introduces the optimizations of MDCT/IMDCT
transforms, which are the core architecture of the filter bank
module in the AAC codec. Previous studies [23], [24] pro-
vided faster approaches called the Odd-time Odd-frequency
Discrete Fourier Transform (O2DFT) for odd transforms
such as MDCT/IMDCT. The MDCT/IMDCT can be com-
puted using only one N/4-point FFT/IFFT and some pre-
and post-rotation operations of the sample points. Accord-
ing to the O2DFT computation process, the FFT/IFFT is
the most computationally demanding task in the filter bank.
This study will adopt the O2DFT in the filter bank module
and also propose the optimization of the FFT/IFFT for em-
bedded applications.

The modified FFT is performed by adopting the sym-
metric characteristics of FFT and IFFT. Figure 7 shows that
the implementation of FFT involves three sub parts. Part
A will compute the twiddle factors required to perform the
butterfly manipulation and the general FFT as depicted in
(6). Equation (6) also shows that the twiddle factors in the
FFT can be partitioned into cosine and negative sine compu-
tations. In (6), x, and X; represent the nth input and the kth
output of the FFT, respectively. In this application, the co-
sine and negative sine coefficients are calculated in advance
and the look-up tables of these coefficients are obtained by
(7), where costbl[i] and negsinbl[i] represent the cosine and
negative sine tables, respectively. Part B performs the in-
place decimation of input samples, and Part C is the butterfly
construction.

N-1 N-1
szzxne*Z"k/N = Z X, (cos 2tk /N — j sin 27tk /N) (6)
n=0 n=0

costbl[i]=cos(2r - i/N); i=0~255,forN=512 7
negsintbl[i]=—sin(27-i/N); i=0~63, for N=64

To reduce the computational complexity of FFT, this

FFT/IFFT start

v

Part A

Part B

Part C

FFT/IFFT end

Fig.7  The sub parts in the implementation of the FFT/IFFT.
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study presents a look-up table based approach to replace
the computation of part A. This design achieves a 30 %
reduction in computational costs. To reduce the memory
requirements of the twiddle factors, the symmetric and anti-
symmetric relationship of the cosine and sine computations
are applied with only a little addressing overhead in part
C. Equations (8) and (9) describe the long and short win-
dow case, respectively, and (10) expresses the relationship
between them. To more clearly describe the computation
process of the proposed approach, Fig. 8 illustrates the long
window case. For both cosine and negative sine tables,
Equation (10) shows that the values are symmetric with
i = 128. Moreover, their values are equal in certain indices.
Equations (11), (12), (13), and (14) show the correspond-
ing values, which are drawn with red, green, blue and violet
lines in Fig. 8, respectively.

cos(2m - i/N) = —cos(2m - (256 — i)/N),
i=1~127,N=512 .

§in(2r - i/N) = sin(2r - (256 — i)/N), ®)
i=1~127.N =512

cos(2r - i/N) = —cos(2n - (32 — i)/N),
i=1~15N=64 9

sin(2r - i/N) = sin(2x - (32 — i)/N), ®)
i=1~15N=64

sin(2r - (128 — i)/N) = cos(2m - i/N) - (=1),
i=1~127,N =64

sin(27 - (16 — )/N) = cos2r - i/N) - (<1), 10
i=1~16,N = 64
(=1)-sin(x - 1/N) = cos(2 - 127/N) (11)
(=1)-sin(2 - 125/N) = cos(2r - 3/N) (12)
(=1) -sin(2m - 126/N) = cos(2x - 2/N) (13)
(=1)-sin(2r - 127/N) = cos(2r - 1/N) (14)

Therefore, the proposed optimization effectively re-
duces the required memory usage from (2 x 256 (index) +
2 % 32 (index)) X 4 (bytes for short) = 2,304 (bytes) to (129
(index) + 17 (index)) X 4 (bytes for short) = 584 (bytes).

The purpose of Part B in Fig.7 is to perform the in-
place decimation of input samples. However, pre-storing
the bit-reverse index requires a lot of memory. This study

cosine table 128 index
126127 129130 255

L] |
|

w128

01 " 12512612771 129130 255
|1
\

|
index
1
7
|
I

d HEREN |

A

+1

Fig.8 The symmetric and anti-symmetric properties.
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applies a fast bit-reversal permutation algorithm proposed
in [25] to optimize a bit-reversal. As a result, the program
loop can be reduced from N-g(N = 27) to N, and the storage
space for bit-reverse indexing can also be omitted.

3. Experimental Results

By applying the proposed techniques, the AAC codec were
implemented on the OMAP platform, which includes a dual
core processor, ARM9 and C55x DSP. This section con-
ducts a performance evaluation of the computational com-
plexity and audio quality of the proposed AAC codec tech-
niques, demonstrating the efficiency and feasibility of the
proposed techniques.

3.1 Comparative Results of Encoding and Decoding Tim-
ings

The experimental results in this subsection are simulated
on a PC platform with a Pentium IV 2.8 GHz platform
and 768 MB RAM. One of the audio files is a pop-song
performed by a female singer, the others, including artifi-
cial signals, single instruments, vocal, and speech sounds,
are obtained from Sound Quality Assessment Materials
(SQAM) [26]. Table 9 lists the length and characteristics
of these test audio files. The proposed AAC with Low
Complexity (LC) Profile encoder is simulated at a bitrate
of 96kb/s and compared with an open source MPEG-2/4
AAC encoder called FAAC [27], which is the only open
source AAC encoder. Additionally, FAAC has the feature
of portable and reasonably fast while providing the equiv-
alent quality as the AAC standard. Table 10 compares the
FAAC and the proposed AAC codec in terms of computa-
tional timings for critical modules, including the filterbank,
Temporal Noise Shaping (TNS), Mid/Side (M/S) stereo cod-
ing and bitstream encoding modules. Because the proposed
design omits the block-switching scheme from the Psycho-
Acoustic Model (PAM), Table 10 does not include the com-
putational timing results for the PAM. Results show that
the proposed software-based and algorithmic optimization
schemes and the fixed-point modification perform 3.5 times
better than those of the FAAC. This means that the pro-
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Fourier Transform based (O2DFT-based) Inverse Modified
Discrete Cosine Transform (IMDCT) and optimized inverse
quantization modules. As above, this section compares the
decoding performance of the proposed AAC decoder with
that of the FAAD2 [27], which can provide faster and bet-
ter quality than the ISO reference coder [28]. In fact, the
FAAD?2 with floating point manipulation is fast enough for
PC-based platforms. However, it is still not suitable for
applications on low-power handheld and portable embed-
ded systems, such as DSP-based platforms. Although the
FAAD?2 somewhat supports fixed-point decoding, its com-
putational costs are still too high for embedded applica-
tions. Table 11 compares the computational timing results
of the heavy computational modules, including the inverse
filterbank and dequantization modules, for the fixed-point
FAAD2 and the proposed AAC decoder. The test audio
samples are 96 kbps AAC files encoded by FAAC of LC Pro-
file. Table 11 shows that the decoding speed of the proposed
AAC decomposer is more than twice that of the FAAD2.

Table 10  Comparative results on simulated encoding timings with criti-
cal modules.
. ., . Total
Audio Metho Filter NS MS Bitstr time )
sampl d bank (ins) (ns) eam (seco Gain
es (ms) (ms) nds)
FAAC | 1073 | 329 362 356 | 10.27
frer07 P 401
1 rzg"s 903 124 16 220 2.56 :
. FAAC | 559 204 500 410 5.92
gspi35 P 323
2 rgg"s 594 32 15 156 1.83 :
FAAC | 1763 218 620 316 8.59
horn2 P 333
32 ’ZE"S 607 77 16 265 2.58 :
FAAC | 649 233 561 248 7.26
quar48 P 308
1 “e’g"s 749 139 31 235 2.36 :
FAAC | 390 159 391 342 5.36
spfe49 P 276
1 rzg"s 468 125 16 126 1.94 :
FAAC | 422 216 424 264 5.55
wp2l 3.34
2 rgg"s 419 96 15 63 1.66 :
FAAC | 5473 | 1544 | 4038 | 3080 | 61.3
sandee Prgg"s 7085 | 1414 79 2007 | 257 | F¥

posed one works on the same quality as AAC standard with Table 11  Comparison of simulated decoding times with critical mod-
superior coding speed. ules.
Furthermore, this study implemented the proposed Audio Method f’l"“]’)'sfk Inverse Total Gai
. . . etho. filterban uantization fime ain
AAC decoder with Odd-time Odd-frequency Discrete samples (ns) 1 (ns) (seconds)
FAAD2 4999 202 8.39
frer07_1 1 oposed 1610 156 3.14 2.67
Table9  Tested audio samples with their song length and characteristics. gspi35 2 FAAD2 2612 127 3.94 2.45
Proposed 936 91 1.61
Audio samples Characteristics Length hom23 2 |_FAAD2 3690 171 5.59 265
frer07 01 Electronic tune 0:34 - PF’/‘;l‘X’Szd 3935835 17;; ?;é
gspi3s 2 Glockenspiel 0:19 quards 1 Proposed 158 9 Tal 2.06
horn23 2 Horn 0:25 ofedo | |_FAAD2 2366 169 3.64 507
quar48 1 Quartet 0:23 P%" [ Proposed 813 110 176 :
spfe49 1 Female speech in English 0:19 trpt21_2 FAAD2 2211 126 342 2.09
21 2 01 — Proposed 904 79 1.64
trpt Trumpet :17 . FAAD2 | 24406 1550 40.16 0
sandee Female voice pop-song 3:42 sancee [ proposed 10000 1466 19.92 :
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3.2 Encoding Quality Evaluation

To evaluate the audio quality of the proposed coder, this
study adopts ITU-R Recommendation BS 1378 [29] as the
Objective Difference Grade (ODG) measurement. The ref-
erence codecs are the floating-point FAAC and FAAD2 [27],
respectively. The test audio samples listed in Table 1, Ta-
ble 4 and Table 9 are encoded by FAAC and the proposed
encoder, and then both the encoded files are decoded by
FAAD2. Two reconstructed audio sequences are compared
with the source sequences to obtain the ODG grades using
Evaluation of Audio Quality (EAQUAL). The ODG grades
range from [—4; 0], where —4 is “very annoying,” and O re-
flects “imperceptible” differences between the source and
reconstructed signals. Table 12 shows the ITU-R 5-grade
impairment scale.

To perform a comprehensive comparison, this study
uses a set of different bitrate settings ranging from 32 K bps
to 320 K bps, and divides the audio samples into two groups,
namely the high-level group and low-level group. The high-
level group contains half of the test items with higher signal
levels, whereas the low-level group contains the remaining
samples [30]. This subsection conducts two experiments to
assess the encoding quality of the proposed encoder.

The first experiment compares the encoding quality of
the FAAC with that of our proposed encoder. Figure 9
presents the results, where each curve indicates the average
ODG grades obtained by the two encoders under different
bitrates, and Hi and Lo denote the ODG results of the high-
level and low-level group, respectively. These results show
that the proposed encoder achieves similar quality in the re-
sults of low-level group compared with the results encoded

Table 12  The ITU-R 5-grade impairment scale.
ODG rating Meaning
0 Imperceptible
-1 Perceptible but not annoying
-2 Slightly annoying
-3 Annoying
-4 Very Annoying

32 40 48 56 64 80 96 112 128 160 192 224 256 320

z
g 15 -
=
o
S
=4
& a5
===Original FAAC Lo
-3 =@l=Proposed Lo
35 - Original FAAC Hi
== Proposed Hi

Bitrate«

Fig.9 Comparative results of the sound quality between our proposed
encoder and the floating-point FAAC.
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by the FAAC with floating point computation. In the high-
level group, the proposed encoder also produces acceptable
quality for human hearing. For example, the average ODG
rating of the proposed encoder in the high-level group at
160 K bitrate is around —0.7, which means that on average
the encoding quality of the proposed encoder at 160k bi-
trate is better than the quality of “Perceptible but not an-
noying,” as Table 12 indicates. The quality grades of the
proposed encoder in high-level group are somewhat lower
than those of the original FAAC. This is because the FAAC
is performed using the floating-point architecture, while the
proposed encoder is implemented on a fixed-point architec-
ture to increase computational effectiveness on the OMAP
platform.

To perform a fair comparison, we implement a fixed-
point FAAC, where the filterbank and quantization modules
are modified to adapt for the fixed-point architecture. Ac-
cordingly, the second comparative experiment compares the
encoding quality of this fixed-point FAAC with that of our
proposed encoder. Figure 10 illustrates the results, which
show that the proposed encoder can achieve similar qual-
ity grades compared to those obtained by the fixed-point
FAAC in both high-level and low-level groups. These re-
sults demonstrate that the encoding quality of the proposed
encoder is comparable with that of the FAAC in the fixed-
point architecture. Moreover, the results in Sect. 3.1 showed
that the proposed encoder can provide significantly bet-
ter computational efficiency than that of the FAAC, and is
highly effective in fixed-point embedded DSP platforms.

3.3 Performance for DSP

It is very important for technical feasibility and market
acceptance that the AAC coding algorithm can be imple-
mented on embedded systems such as DSP-based platforms.
DSPs have very low power consumption, which enables
small, handheld, and even battery-driven devices without
cooling fans. On the other hand, developers of multime-
dia applications will experience several unexpected difficul-
ties when using a DSP as the target platform instead of a
desktop personal computer. These difficulties arise from the
architectural limitations of DSPs, including limited mem-

32 40 48 56 64 80 96 112 123 160 192 224 256 320

1
I s
s
"E 2
=
i~
T oas
= —=— Fixed-pointFAAC Lo
3 —8— Proposed Lo
35 Fixed-pointFAAC HI
—— Proposed Hi
4
Bitrate
Fig.10  Comparative results of the sound quality between our proposed

encoder and the fixed-point FAAC.
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ory resources, lower CPU clock frequencies, and fixed point
architectures. Thus, some platform-based optimizations as-
sociated with the DSP-based systems are necessary for effi-
ciently implementing our proposed AAC codec on the sys-
tem. In this subsection, we demonstrate the proposed AAC
codec on the DSP-based platform. Before porting the pro-
posed codec to the target platform, it is necessary to do the
fixed-point modifications to the proposed codec. In the clas-
sical fixed-point modification, the range and shifted value
of the data are assumed to be known a priori and deter-
mined beforehand. However, the data in the AAC coding
process are mostly random and vary from frame to frame,
and applying a fixed shifted value applied to all data will
waste resources unnecessarily. Therefore, this study imple-
ments a dynamic fixed-point modification method for the
AAC codec. The dynamic fixed-point modification focuses
on three blocks in the AAC coder, including the total energy
computation of each channel, the auotocorrelation for the
LDR in the TNS block, and the energy of each scalefactor
band.

In accordance with the hardware of the target platform,
TMS320C55x DSP, numerous platform-based optimization
techniques using C and various assembly programs can be
used to improve the performance. Platform-based intrin-
sic functions are applied to replace the original functions
and thus can be directly mapped onto inline C55x instruc-
tions using the compiler, Code Composer Studio (CCS). Be-
sides, although TT’s C compiler has sophisticated optimiza-
tion capabilities, programs generated from ordinary C code
may still suffer insufficient performance. Therefore, several
blocks should be optimized by substituting them with inline
assembly codes, such as the bit-reverse operations, the FFT
kernel processing, and the M/S stereo coding. With regard
to this issue, this paper adopts a useful library, known as the
DSP Library (DSPLIB) [31] provided by TI, to help increase
computational efficiency.

Table 13 lists the average coding Million Instructions
per Second (MIPS) and the memory usage needed for the
proposed AAC codec, where .text, .bss and .cinit represent
the size of the global and local variables, and the initial value
of the variables, respectively. Table 13 shows that the pro-
posed AAC encoder and decoder require about only 101 KB
and 46 KB, respectively.

Many studies have examined the implementation of
the AAC codec on different embedded platforms [31]-[38].
These studies performed their proposed AAC codec on var-
ious kinds of embedded platforms. Therefore, to perform
a fair comparative experiments, the comparative results of
cycle counts and memory shown in this subsection will be
normalized in Million Instructions/Operations per Second

Table 13

MIPS .text .bss .cinit others total

The summary of memory section size and MIPS.

Decoder | 12MIPS 9.4KB 23.8KB 12.4KB 0.4KB 46KB

Encoder | 84MIPS | 32.8KB | 59.4KB 8.1KB 0.7KB 101KB
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(MIPS/MOPS) and bytes respectively. Tables 14 and 15
present the comparisons of cycle counts and memory us-
ages of different AAC encoders and decoders [31]-[38] im-
plemented on different embedded platforms.

First, we perform the comparative experiments on
AAC encoding of the proposed method and the other ex-
istent techniques, as Table 14 shows. Huang et al.[31]
implemented an encoder with platform-based optimiza-
tions on a DSP-based platform with a computing speed
of 350.39 ms/frame, which equals 328 MIPS by (15)(16),
where the audio sampling rate is 48 KHz and DSP runs at
40 MIPS speed. Kim et al. [33] proposed a non-iterative
quantization method based on the direct noise shaping and
level matching and achieved their codec on ARM9 with
85.6 MIPS, which is slightly slower than that of the pro-
posed method. In [34], Huang et al. simplified the PAM
and ported it on a 16-bit fixed-point processor. However,
the computational efficiency and memory cost of the AAC
encoder could still be further enhanced by adopting the op-
timizations of the aforementioned critical modules. Thus,
the proposed encoder promotes more comprehensive algo-
rithmic and software-based optimizations for the AAC en-
coding flow. For encoding quality performance issues, only
Huang et al. [34] presented the quality difference between
their proposed codec and the AAC standard in ODG and
NMR evaluations. The encoding quality evaluations of the
encoders proposed by Huang et al. [31] and Kim et al. [33]
are unavailable. However, the experimental results of this
study show that although the encoding quality and computa-
tional efficiency is a tradeoff, the proposed encoder can still

Table 14  Comparison of cycle counts and memory in different AAC en-
coders.
Huang et Kim et Huang et
Proposed al.[31] al.[33] al.[34]
A 16-bit
ADSP
Platforms T&l\g?z%scg 5152x 21060 ARM 9 ﬁ’(‘:i
SHARC P
processor
MIPS | es | asosom | (S8 | 6
MOPS . MIPS MOPS
per frame)
Program Program Intra:3506
Code size:32.8KB size:78KB N/A Bytes
size Data Data Inter:4612
size:59.4KB size:256KB Bytes
Table 15  Comparison of cycle counts and memory in different AAC de-
coders.
Proposed Chen et Bang et Choi et Waston et
P al.[35] al.|37] al.|38] al.[36]
TMS320- Motorola
C5510 fixed-
Plath OKAASI;Z%IZ TMS320- Hybrid- with point DSP
atiorms 55X B C6201 architecture ARM9
RISC
core
MIPS/ 86 MIPS
MOPS 12 MIPS 29.65 MIPS 16.9 MIPS (80fps) 24 MIPS
Program Program Program Program
Code size:9.4KB size:14.7KB size:8.2KB N/A size:10KB
size Data Data Data Data
size:23.8KB | size:2.84KB | size:25.2KB size:24KB
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achieve well-optimized performance in both computational
complexity and memory costs, and also provide satisfactory
encoding quality, as Sect. 3.2 illustrates. Table 14 shows that
the proposed encoder can provide the best encoding speed
and the least memory cost.

40 x 10%instructions /sec x 350.39ms /frame

= 14 x 10°instructions /frame (15)
MIPS — cycle counts per frame  sample rate
samples per frame 100
14 x 10° 48000
= X =328 16
2048 100 (16)

Table 15 shows the comparisons between the proposed
and other techniques of the AAC decoders. Previous stud-
ies [35], [36] and this study design the AAC decoders with
the LC Profile, while other studies [37],[38] develop the
Main Profile AAC decoders. As depicted in Table 15,
the proposed decoder provides significantly better compu-
tational efficiency compared with those in [35] and [38],
which ports their algorithms on TI DSP embedded plat-
forms. Considering the decoding speed of presented work,
sets of look-up tables are adopted to replace and accelerate
numerous complex computations in the decoding flow, such
as the IFFT and the inverse quantization module. Therefore,
although the required memory storage of the proposed de-
coder is somewhat greater than those of the method in [35],
the memory cost is still acceptable for embedded applica-
tions. Bang et al. [37] implemented an optimized Main Pro-
file AAC decoder on their hybrid architecture, which con-
tained a fixed-point DSP core and hardwired logic modules.
Although hardware implementation is a good solution for
reducing the computational complexity and memory usage
requirements, its implementation costs may be significantly
higher. Choi et al. [38] presented an implementation of AAC
and MPEG4 decoders on a combined DSP and RISC plat-
form. Equations (17) and (18) show that the decoding speed
of [38] is approximately 86 MIPS where the working speed
of the TI C5510 DSP is about 320 MIPS. The comparative
results in Table 15 show that the proposed AAC decoder can
effectively perform with the least computational loading and
sufficiently low memory costs.

320x 10%instructions /sec

=4x10%nstructions /frame

80frames /sec
a7
MIPS = cycle counts per frame  sample rate
samples per frame 106
4x10° 44100
= X —— =86 18
2048 106 (18)

4. Conclusions

This study has been presented several software-based and
algorithmic optimization approaches on computational ef-
ficiency and memory reduction for the AAC codec, in-
cluding the optimization schemes of MDCT/IMDCT, TNS,
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M/S stereo coding, inverse quantization and Huffman cod-
ing modules. Based on the optimization to FFT computa-
tion above, the memory usage of this module has been re-
duced from 2,304 bytes to 584 bytes. To optimize the TNS
module, this study has presented a fast scheme, which sig-
nificantly reduces the computational complexity of TNS by
78.37 %, for the TNS flow in the encoder. To promote the
computational efficiency of the M/S stereo coding module,
this study has adopted an optimized M/S coding decision
scheme, which achieves a significant reduction (73.6 %) in
computational costs compared to the original one, by ana-
lyzing the energy of a single frame. Additionally, to im-
prove the inverse quantization module, this study has also
performed a mixed-up optimization of the look-up table
and the piecewise linear approximation method to substi-

1

tute the computation of |xq|§. In accordance with reduc-
ing the memory consumption of the Huffman coding mod-
ule, this study has proposed a reduction architecture, which
yields a 16.34 % reduction in memory usage and only costs
1.10 % expansion of encoded files, for the Huffman tables
based on statistical analysis results. Besides, We adopt 10
typical audio samples for statistical analysis, where 5 audio
samples are pop songs with long length and the others are
signals of single instruments and vocals, such as soprano,
quartet, horn, trumpet and glockenspiel, to ensure the pro-
posed optimizations for each module is effective and robust.
The variety of tested audio samples covers various frequen-
cies of signals and certifies the proposed method for confi-
dence. Accordingly, the computational speeds of the pro-
posed fixed-point encoder and decoder are about 3.5 times
and 2.3 times faster than those of the FAAC and FAAD?2,
respectively. Audio quality evaluation demonstrates that the
performance of the presented AAC encoder is also compara-
ble to the fixed-point FAAC for embedded applications. To
more effectively perform the proposed AAC codec on em-
bedded systems, this study has also adopted platform-based
optimizing techniques, such as the dynamic fixed-point and
DSP-based modification, for DSP-based embedded systems.
With the dynamic fixed-point modification, the proposed en-
coding architecture only requires about 84 MIPS computa-
tional costs and 101 KB memory usage, while the decoding
process requires only 12 MIPS computational costs and ap-
proximately 46 KB memory storage. Experimental results
demonstrate that the proposed AAC codec is computation-
ally efficient, and is suitable for various embedded and hand-
held multimedia applications, such as video codecs, auto-
motive entertainment and surveillance applications.
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