
Chapter 2 
Theory and Simulations of SG-DBR Lasers 

 
2-1 Analysis and Simulations of Sampled Gratings   

 The sampled grating shown in Fig. 2-1 is technologically simple of obtaining a 

reflection spectrum that has periodic maxima in the wavelength region of interest. The  

 

 

 
Fig. 2-1 The schematic sampled grating 

 

 

 

 

 

 

sampled grating is nothing more than a conventional grating at the appropriate 

wavelength multiplied by a sampling function, as shown in the left column of Fig. 2-2. 

The reflectivity of this structure can be obtained from coupled-mode theory. The Fourier 

component of the sampled grating can be obtained by convolving the single Fourier 

component of the grating at the Bragg wavelength with the comb of Fourier components 

in the sampling function, as shown in right column of Fig. 2-2. The nth Fourier 

component (n)ε∆  in the sampled grating spectrum is related to the sing rier 

component 
0 (n)

le Fou

ε∆  in the un-sampled grating spectrum by:  
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Fig. 2-2 Sampled grating and its spatial frequencies 

 

Besides, we can invoke coupled-mode theory, which predicts that the strength of  

the reflection from the Fourier component n increases with the coupling strength (n)κ , 

which is proportional to the Fourier component. The relationship (a) between grating 

and sampled grating Fourier components translates directly into a relationship between 

grating and sampled grating coupling coefficients. If the coupling coefficient of the 

un-sampled grating is
0κ , then the coupling coefficient corresponding to the nth Fourier 

component in the samp d grating is: 
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An analytic expression for reflectivity as a function of coupling coefficient is 

obtained by solving a pair of coupled-mode equations: 
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Λ
= wavelength detuning from order n 
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Lsg= length of sampled grating 
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Λ = grating pitch 

µ = refractive index 

α =loss 

 

flectivity spectrum of the sampled grating is simulated in Fig. 2-3 and a 

spe

 

The re

cial case for the order zero is simulated in Fig. 2-4. The reflectivity spectrum of the 

sampled grating is comb-like with multiple equally spaced peaks which reflectivities are 

different. Furthermore, the spectrum also led to several observations: 

1. For peak power reflectivity of order n 
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2. The spacing between reflectivity peaks is given by 
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Fig. 2-3 The simulation of sampled grating reflectivity  

 

Fig. 2-4 A special case for order zero of sampled grating reflectivity 
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3. The envelope of reflectivity peaks widens as Z1/Z0 is reduced. Thus small duty 

cycle gratings are required for a large number of peaks in the spectrum. Figure 2-5 

plots the number of peaks in the 3dB envelope of the reflectivity spectrum versus 

duty cycle. For small duty cycle, this number of peaks is approximately equal to the 

inverse of the duty cycle:  
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Fig. 2-5 Number of channels within 3dB envelope of sampled 

                grating reflectivity peaks versus duty cycle. 

4.  The bandwidth of the peak n is given by: 
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    For order zero in Fig. 2-4, the bandwidth is about 1.3 nm. The small effective 

coupling coefficient and long length of the sampled grating lead to very narrow 

bandwidth peaks.   
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2-2 Vernier Effect 
 The principle of Vernier is shown in Fig. 2-6. If we realize a laser structure where 

each end has a comb-like reflection characteristic, but where the two comb pitches are 

different, we can exploit the Vernier effect to expand the tuning range. The principle is 

illustrated in Fig. 2-7. By shifting the position of one reflectivity curve by the pitch 

difference δλ , the wavelength of coincidence shifts by λ∆ . λ∆  is equal to the 

wavelength pitch for the other reflector. 

 

 

 

 

 

 

 

 

 

Fig. 2-6 A Vernier using two scales with a 10% pitch difference 

 

 

 

 

 

 

 

 

 

Fig. 2-7 Laser structure where each end reflectivity has a comb characteristic 
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2-3 Operation Principles of SG-DBR Lasers 
 A schematic structure of the SG-DBR laser is shown in Fig. 2-8. The SG-DBR 

laser consists of an active region, a phase region, a front sampled grating (SG) reflector 

and a back sampled grating (SG) reflector. The two SG reflectors have comb-shaped 

reflection spectra and slightly different peak spacing. For stable single-mode operation, 

peaks of each reflection comb and the longitudinal mode have to be aligned. The SG 

reflectors can be tuned by current injection. If one of the reflectors is tuned, different 

pairs of reflector peaks will successively overlap and the lasing frequency will jump by 

approximately the peak spacing. Medium tuning is obtained by shifting both reflectors 

simultaneously. The frequency will then show smaller jumps, typically about 50 or 100 

GHz, corresponding to the cavity mode spacing. For fine tuning, the longitudinal modes 

are shifted by injecting current into the phase section. Consequently, by selecting an 

appropriate combination of front SG reflector, back SG reflector and phase currents, the 

laser can be tuned to any frequency within a range of a few THz. 

 

 

Fig. 2-8 The schematic cross-section of a SG-DBR laser 
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2-4 Oscillation conditions for SG-DBR lasers 
 In this section, we will prove oscillation conditions for the SG-DBR laser. Figure 

2-9 shows a schematic structure of the SG-DBR laser. First, assume facet reflectivities 

are zero (rx=0 and ry=0). Setting a reference plane at the interface between the active 

and the phase sections at z=0, we write the oscillation as 

 

 
Fig. 2-9 SG-DBR laser, rx and ry are the facet reflectivities 

 

 

L a fsg R p bsgr ( ,N ,N )r ( ,N ,N ) 1ω ω =  (1)

 

where 

L a fsg fsg fsg a a ar ( , N , N ) r ( , N )exp( j2k ( , N )L )ω ω ω= −  (2)

R p bsg bsg bsg p p pr ( , N , N ) r ( , N )exp( j2k ( , N )L )ω ω ω= −  (3)

ω = angular optical frequency 

Na= carrier density in the active section 
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Np= carrier density in the phase section 

Nfsg= carrier density in the front SG section 

Nbsg= carrier density in the back SG section 

La= length of the active section 

Lp= length of the phase section 

fsgr = reflectivity of the front SG section 

bsgr = reflectivity of the back SG section 

 

The complex wave numbers for the active and phase sections are given by 
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from (3) and (6) 
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Substitute (7) and (8) into (1), we obtain 
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where 

aβ =propagation constant in the active section  

pβ =propagation constant in the phase section 

we finish proving the oscillation condition for the SG-DBR laser. 
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2-5 Simulations of SG-DBR lasers 
 We use the parameters of simulations shown in Table 2-1. 

 

Parameter Symbol Value 

Length of SG-DBR section fsg bsgL L=  1000 mµ  

Width of waveguide layers fsg bsgW W=  1.2 mµ  

Thickness of waveguide layers fsg bsgD D=  0.23 mµ  

Index derivative wrt carrier density dn/dN -5.97*10-27 m3

Absorption derivative wrt carrier density dα /dN 2.56*10-21 m2

Bragg wavelength without current injection Bλ  1.55 mµ  

Nonradiative recombination coefficient A 1*108/s 

Radiative recombination coefficient B 8*10-17m3/s 

Auger recombination coefficient C 4*10-41 m6/s 

Loss in passive section p0 fsg0 bsg0α α α= =  10/cm 

Loss in active section aα  20/cm 

Coupling coefficient of the unsampled 

grating 

0κ  250/cm 

Grating burst length Z1 10 mµ  

Front grating burst period 

Back grating burst period 

Z0fsg 

Z0bsg

198 mµ  

200 mµ  

Equivalent refractive index p0 fsg0 bsg0µ µ µ= =  3.6875 

Grating pitch Λ  
B

fsg bsg2 ( )
λ

µ µ
 

Length of active section La 450 mµ  

Length of phase section Lp 200 mµ  

Confinement factor fsg bsgΓ = Γ  0.3 

Table 2-1 Parameters of simulations 
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2-5-1 How to Design Front and Back Sampled Reflectors? 
 The simulation of front SG reflector and back SG reflector spectra are plotted in 

Fig. 2-10. By using different burst period, peaking spacings are slightly different.  

 

Fig. 2-10 Spectra of front and back SG reflectors and total reflectivity 

 
 
2-5-2 Characteristics in Wavelength Tuning for SG-DBR 

Lasers 
From section 2-4, the oscillation condition for the SG-DBR laser is express as 
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The first equation denotes the gain condition, and the second denotes the phase 

matching condition. When current is injected into the passive section, such as the phase 

section or the SG section, the changes in refractive index µ∆ and internal 

absorption α∆ are given by 

fsg fsg bsg bsg p p

fsg fsg bsg bsg p p

dn dn dnN , N ,
dN dN dN
dn dn dn

N

N , N ,
d d

µ µ µ
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α α

∆ = Γ ∆ = Γ ∆ = Γ

∆ = Γ ∆ = Γ ∆ = Γ N
dα

 

where 

Γ = confinement factor in the passive section 

dn
dN

= index derivative with respect to carrier density 

d
dN
α = absorption derivative with respect to carrier density 

Np= carrier density in the phase section 

Nfsg= carrier density in the front SG section 

Nbsg= carrier density in the back SG section 

 

The carrier densities Np, Nfsg, and Nbsg are determined by the injection currents into 

phase, front, and back SG sections, respectively. 

2 3 3 2 p
p p p p p p p p

p

2 3 3 2 fsg
fsg fsg fsg fsg fsg fsg fsg fsg

fsg

2 3 3 2 bsg
bsg bsg bsg bsg bsg bsg bsg bsg

bsg

I
I eV (AN BN CN ) CN BN AN 0

eV

I
I eV (AN BN CN ) CN BN AN 0

eV

I
I eV (AN BN CN ) CN BN AN

eV

= + + ⇒ + + − =

= + + ⇒ + + −

= + + ⇒ + + − 0

=

=

 

where 

e= electron charge 

Vp= volume of the waveguide in the phase section 
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Vfsg= volume of the waveguide in the front SG section 

Vbsg= volume of the waveguide in the back SG section 

A= linear nonradiative recombination rate 

B= radiative recombination coefficient 

C= Auger recombination coefficient 

 

The wavelength detuning for front and back SG sections is expressed as 
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fsg

fsg0

bsg0 bsg bsg0 bsg
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Z grating periodof the front SG

Z grating periodof the back SG

grating pitch

=

=

Λ =

 

  

Without injection into the passive sections, the simulations of front SG reflector 

and back SG reflector spectra, total reflectivity of two SG reflectors, and threshold gain 

are plotted in Fig. 2-11. We find the peaks alignment of two SG reflectors is at Bragg 

wavelength. Therefore the total reflectivity has a maximum at Bragg wavelength. As a 

result of a maximum of the total reflectivity at Bragg wavelength, the threshold gain has 

a minimum at Bragg wavelength which is the lasing wavelength. 
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Fig. 2-11 Spectra of front and back SG reflectors, total reflectivity and threshold 

gain without current injection into the passive sections 

 

When the current injected into the SG section, the Bragg frequency Bω  is taken 

to a linear function of carrier density Nfsg or Nbsg: 

B0
B B0

dn N
dN sg

sg

ωω ω
µ

= −Γ  

where 

B0ω = Bragg frequency without carrier injection.  

 

The calculation of Bragg frequency under different current injections is shown in Fig. 

2-12. We realize that when grating current increases, Bragg frequency Bω  increases as 

a result of the increase of carrier density Nsg. 
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Fig. 2-12 The simulation of Bragg frequency under different grating currents 

 Therefore, when the current injected into the back SG section, the spectrum of the 

back SG reflector changes. Figure 2-13, Figure 2-14, and Figure 2-15 show the spectra 

of front and back SG reflectors, total reflectivity of two SG reflectors, and threshold 

gain under current injection into the back SG section. 

Fig. 2-13 Spectra of front and back SG reflectors under current injection into the 

back SG section 
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Fig. 2-14 Total reflectivity of two SG reflectors under current injection into the 

back SG section 

Fig. 2-15 Threshold gain under current injection into the back SG section 
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 With the increase of the current in the back SG section, the carrier density 

increases and simultaneously the refractive index decreases due to the free-carrier 

plasma effect. For the back SG reflector this leads to an increase in the Bragg frequency. 

However, the absorption also increases due to free carriers and this reduces the amount 

of feedback to the active section. Furthermore, the spectrum for the back SG reflector 

shifts to shorter wavelength. The total reflectivity’s maximum changes from Bragg 

wavelength to another. The threshold gain is the same condition as total reflectivity.  

 In addition, we discuss the lasing wavelength under current injection into one SG 

section. Basically, the coarse tunability of the SG-DBR laser is obtained by carrier 

injection in one SG section. This carrier injection induces a refractive index change 

leading to a wavelength shift of the reflector. With injection in one reflector, a 

coincidence between the main peak of the shifted reflector and another peak, different 

than the main one, of the other SG reflector is obtained, inducing the selection of 

another cavity mode as the lasing wavelength. With the current injection into the back 

SG section, the lasing wavelength shown in Fig. 2-16 changes from Bragg wavelength 

to shorter one as a result of the shorter peak spacing of the back SG reflector than that of 

the front SG reflector. On the contrary, with the current injection into the front SG 

section, the lasing wavelength shown in Fig. 2-17 changes from Bragg wavelength to 

longer one as a result of the longer peak spacing of the front SG reflector than that of 

the front SG reflector. 

 This vernier effect authorizes the enhancement of the tunability accessible in a 

waveguide by carrier plasma effect: a Bragg wavelength shift limited to the peak 

spacing difference between both SG reflectors is sufficient to produce a lasing 

wavelength shift equal to the peak spacing of the SG reflectivity comb. 
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Fig. 2-16 Lasing wavelength under current injection into the back SG section 

 

Fig. 2-17 Lasing wavelength under current injection into the front SG section 
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 Another wavelength tunability is observed when varying both SG section currents 

simultaneously, to keep the coincidence between two given reflectivity peaks of the 

front and back reflectors. Wavelength tuning as a function of the front and back SG 

section currents is shown in Fig. 2-18. In this case, the equivalent reflectivity of the 

SG-DBR laser is shifted to select the successive cavity modes, leading to a rather fine 

tuning, similar to that measured on conventional DBR lasers, with a higher channel 

density. The same behavior is observed on all the coincidences obtained during the 

coarse tuning, leading to enhanced tunability for the device compared to that available 

on a DBR laser.  

Fig. 2-18 Wavelength tuning as a function of the front and back SG section currents
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