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The continuation method is a useful numerical tool for solving differential equations to
obtain multiform solutions and allow bifurcation analysis. However, when a standard
continuation method is used to solve a type of time-independent m-coupled nonlinear
Schrödinger (NLS) equations that can be used to model nonlinear optics, nearly singular
systems arise in the computations of prediction and correction search directions and
detections of bifurcations. To overcome the stability and efficiency problems that exist in
standard continuation methods, we propose a new hyperplane-constrained continuation
method by adding additional constraints to prevent the singularities while tracking the
solution curves. Aimed at the 3-coupled DNLS equations, we conduct theoretical analysis to
the solutions and bifurcations on the primal stalk solution curve. The proposed algorithms
have been implemented successfully to demonstrate numerical solution profiles, energies,
and bifurcation diagrams in various settings.

© 2010 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

We intend to study bound state solutions of the following time-independent m-coupled nonlinear Schrödinger (NLS)
equations numerically,

�φ j(z) − λ jφ j(z) + μ j
∣∣φ j(z)

∣∣2φ j(z) +
m∑

i �= j, i=1

βi j
∣∣φi(z)

∣∣2φ j(z) = 0, (1a)

φ j(z) > 0 in R
n, j = 1, . . . ,m, (1b)

φ j(z) → 0, as |z| → ∞, (1c)

where λ j,μ j > 0 are positive constants, n � 3, βi j = β ji (i �= j) are coupling coefficients, and z is the spatial variable. The
NLS equations may be used to model a physical phenomenon in nonlinear optics [1]. In such a case, the solution φ j denotes
the j-th component of the beam in Kerr-like photorefractive media. The positive constant μ j is for self-focusing in the j-th
component of the beam. λ j is referred to as the chemical potential. The coupling constant βi j is the interaction between
the i-th and j-th component of the beam. For βi j > 0, the interaction is attractive; otherwise, the interaction is repulsive.
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To solve the NLS equations (1) numerically, we consider the corresponding m-coupled discrete nonlinear Schrödinger
(DNLS) equations⎧⎪⎪⎨⎪⎪⎩

Au j − λ ju j + μ ju
2©

j ◦ u j +
m∑

i �= j, i=1

βi ju
2©

i ◦ u j = 0,

u j > 0, u j ∈ R
N , for j = 1, . . . ,m,

(2)

where u j ∈ R
N denotes the approximation of φ j(z), for j = 1, . . . ,m. Here, A ∈ R

N×N is the standard central finite difference
discretization matrix of the Laplace operator with homogeneous Dirichlet boundary conditions. Additionally, it can be seen
that A is an irreducible and symmetric negative definite matrix. The size of N depends on the computational domain and
grid sizes. For example, if a uniform grid size h is applied on a square finite domain [−d,d] × [−d,d] for n = 2, we have
N = ( 2d

h − 1)2. For u = (u1, . . . , uN )	 and v = (v1, . . . , v N )	 ∈ R
N , u ◦ v = (u1 v1, . . . , uN v N )	 denotes the Hadamard product

of u and v, and u r© = u ◦ · · · ◦ u denotes the r-time Hadamard product of u.
While continuation methods may act as an effective technique for finding multiple solutions of the NLS equations, one

particular characteristic of Eq. (1) prevents standard continuation methods from being practical. Since the solution domain
is unbounded in (1), a shift in any solution of the system remains a solution of the system. Consequently, a small shift in
a numerical solution of an m-coupled DNLS equations (on a bounded computational domain) can also be an approximate
solution to another m-coupled DNLS equations with a small residual. This phenomenon prevents classical continuation
methods from being applicable or efficient for solving the target problem. First, improper prediction directions may be
obtained as the prediction directions cannot be uniquely determined by numerics. Second, the Jacobian matrix may be
nearly singular and the corresponding Newton’s correction process becomes inaccurate and inefficient. Third, the numerical
singularity also makes detections of bifurcation points difficult. Finally, these improper search directions may result in
undesired solution curves in continuation methods.

Aiming at the m-coupled DNLS equations, we make the following contributions to both numerical scheme development
and numerical analysis.

• To circumvent the obstacles mentioned above, we propose a novel hyperplane-constrained continuation method to
compute all possible positive bound states of m-coupled DNLS equations by adding additional hyperplane constraints.
By doing so, the prediction directions can be uniquely determined and the correction directions can be computed
efficiently.

• Aiming at the 3-coupled DNLS equations, we characterize the primal stalk solutions and show that the primal stalk
solution curve has at least N − p bifurcation points at finite values of coupling constants β . Here, N is the number of
grid points and p is the number of nonnegative eigenvalues of a specified matrix.

• By using the proposed hyperplane-constrained continuation method, we conduct numerical experiments to explore the
versatility of numerical solutions by presenting solution profiles, bifurcation diagrams, and the corresponding energies
for various settings.

The target problem has been considered in several cases. For n = 1, i.e. the spatial dimension is one, the system (1)
is integrable. Many analytical and numerical results on solitary wave solutions of m-coupled NLS equations have been
well-studied [10,14–16]. For n = 2 and m = 1, physical experiments in [22] are conducted to observe 2-dimensional pho-
torefractive screening solutions and a 2-dimensional self-trapped beam. It is natural to believe that there are 2-dimensional
m-component (m � 2) solutions and self-trapped beams. A general theorem for the existence of higher dimensional m-
component solutions was first proved in [21]. The sign of coupling constants βi j ’s is crucial for the existence of ground state
solutions. For m = 3, when all βi j ’s are positive, there exists a ground state solution that is radially symmetric. Furthermore,
a positive bound state solution that is non-radially symmetric is also found. See [21] for details.

It is worth mentioning that if the NLS equations are equipped with trap potentials, the difficulties resulting from solution
shifting no longer exist and the following numerical methods can be used to solve the equations. Bao proposed a normalized
gradient flow method [3,4] and a time-splitting sine-spectral method [3]. For the time-independent case, a Gauss–Seidel-
type iteration has been proposed in [9]. Furthermore, a continuation BSOR–Lanczos–Galerkin method has been developed in
[8,18]. More recently, the technique of Liapunov–Schmidt reduction and continuation method has been developed in [7].

This paper is organized as follows. In Section 2, we develop a hyperplane-constrained continuation method to compute
positive bound state solutions of m-coupled DNLS equations. In Section 3, we prove the existence of the bifurcation of a
3-coupled DNLS equations at finite values of the coupling constant β . Numerical results of positive bound states of some
3-coupled DNLS equations are presented in Section 4. We conclude the paper in Section 5.

Throughout this paper, we use boldfaced letters or symbols to denote a matrix or a vector. For u = (u1, . . . , uN )	 ,
�u� := diag(u) denotes the diagonal matrix of u and ‖u‖4 = (u 2©	u 2©)1/4. For A ∈ R

N×N , A > 0 (� 0) denotes a positive
(nonnegative) matrix with positive (nonnegative) entries, A � 0 (with A	 = A) denotes a symmetric positive definite matrix,
σ(A) denotes the spectrum of A, and N (A) and R(A) denote the null and range spaces of A, respectively. Finally, we define
the energy functional
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E(φ) =
m∑

j=1

(
1

2

∫
Rn

|∇φ j|2 + λ j

2

∫
Rn

φ2
j − μ j

4

∫
Rn

φ4
j

)
− 1

4

m∑
i, j=1
i �= j

βi j

∫
Rn

φ2
i φ2

j ,

where φ = (φ1, . . . , φm) ∈ (H1(Rn))m . The corresponding energy functional for the m-coupled DNLS equations (2) is defined
as

E(x) =
m∑

j=1

(
−1

2
u	

j Au j + λ j

2
u	

j u j − μ j

4
u

2©	
j u

2©
j

)
− 1

4

m∑
i, j=1
i �= j

βi ju
2©	

i u
2©

j , (3)

where the vector x = (u	
1 , . . . ,u	

m)	 ∈ R
Nm .

2. The hyperplane-constrained continuation method

In this section, we develop a novel hyperplane-constrained continuation method to solve the m-coupled DNLS equa-
tions (2). We assume that the variable βi j is changeable and then introduce the continuation method parameter β � 0 into
Eq. (2) by rewriting

βi j = ζi jβ (4)

for i, j = 1, . . . ,m and i �= j. Here ζi j ’s are nonzero constants and ζi j = ζ ji . If ζi j > 0, the interaction between the i-th and
the j-th components is attractive; if ζi j < 0, the interaction is repulsive. Furthermore, to fit the framework of a continuation
method better, we rewrite the m-coupled DNLS equations (2) as

G(x, β) = 0, (5a)

where x = (u	
1 , . . . ,u	

m)	 ∈ R
Nm and G = (G1, . . . ,Gm) : R

Nm × R → R
Nm is a smooth mapping with

G j(x, β) = Au j − λ ju j + μ ju
2©

j ◦ u j + β

m∑
i �= j, i=1

ζi ju
2©

i ◦ u j, j = 1, . . . ,m. (5b)

We let DG denote the Jacobian matrix of G; in particular,

DG = [Gx,Gβ ] ∈ R
M×(M+1),

where M = Nm. We define the solution curve of (2) as

C = {
y(s) = (

x(s)	, β(s)
)	 ∣∣ G

(
y(s)

) = 0, s ∈ R
}
. (6)

Here we assume a parametrization via arc-length s is available on C . By differentiating Eq. (5) with respect to s, we obtain

DG
(
y(s)

)
ẏ(s) = 0, (7)

where ẏ(s) = (ẋ(s)	, β̇(s))	 is a tangent vector to C at y(s).
Eq. (7) suggests that the tangent vector to C at y(s) is the natural nontrivial solution of the M × (M + 1) homogeneous

system DG(y(s))w = 0, when DG(y(s)) is of full row rank. However, if DG(y(s)) is not of full rank at a certain s, then the
continuation algorithm is not well defined. In this case, typical continuation methods may not follow the solution curve
successfully.

The motivation for our hyperplane-constrained continuation method can be illustrated in a straightforward way by ob-
serving the NLS equation for n = 1 as follows. Based on the observation, we then return to the DNLS equations for n = 2.
Afterwards, we discuss how we may circumvent the obstacle for general cases in Section 2.1.

Considering the 2-coupled NLS equations (1) with n = 1 and a fixed β12, we differentiate both sides of (1a) with respect
to the spatial variable z defined in (1c) to obtain

Gx
(
y(s)

) [φ′
1

φ′
2

]
=

[
L1 2β12φ1φ2

2β12φ1φ2 L2

][
φ′

1
φ′

2

]
= 0, (8)

where L1 = d2

dz2 −λ1 +3μ1φ
2
1 +β12φ

2
2 and L2 = d2

dz2 −λ2 +3μ2φ
2
2 +β12φ

2
1 . Eq. (8) implies that the matrix Gx(y(s)) is actually

singular with the corresponding singular vector (φ′
1, φ

′
2)

	 . Consequently, we may have a one-dimensional solution set with
tangent vector (φ′

1, φ
′
2)

	 of (1) for a fixed β12{
φr(x)

∣∣ φr(x) = (
φ1(x − r),φ2(x − r)

)
, r ∈ R

}
(9)

that contains all the translation invariant solutions.
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Fig. 1. Effect of “near singularity” due to computational domain size. The two smallest singular values of Gx of 1-dimensional 2-coupled DNLS that λ1 =
λ2 = 1, μ1 = μ2 = 1, β12 = β21 = β for 0 < β < 1, and grid size h = 0.2. The computational domains are (a) [−5,5], (b) [−10,10], and (c) [−15,15].

Fig. 2. The norm of difference between dx and v1. Here dx is the derivative vector and v1 is the singular vector of Gx . We consider three various computa-
tional domains: (a) [−5,5]; (b) [−10,10] and (c) [−15,15]. Note that both dx and v1 have been normalized before computing the differences.

To illustrate such singularity phenomena arising in the corresponding DNLS equations, we solve Eq. (2) by continuation
method with λ1 = λ2 = 1, μ1 = μ2 = 1, β12 = β21 = β for 0 < β < 1, and grid size h = 0.2. The initial of the continuation
method is computed by solving the decoupled DNLS using the fixed point iteration method described in [19]. Fig. 1 shows
two smallest singular values of Gx for various β in three different computational domains. From the figure, it is clear that the
second singular value is of O (10−1) and is insignificantly dependent on domain size. In contrast, the smallest singular value
decades quickly as the domain size increases. The results suggest the “near singularity” effect in numerical computations,
especially in a larger computational domain. Furthermore, we verify that the singular vector v1 of Gx is close to the vector
dx numerically. Here dx = [(Du1)

	, (Du2)
	]	 and D is the discretization matrix of d

dx . Note that dx is also an approximation
of the vector (φ′

1, φ
′
2)

	 in Eq. (8) based on D. Fig. 2 shows that v1 and dx are getting close as the domain size increases.
Note that the computed differences will decrease further in larger computational domains if we use smaller grid size h in
computations. This observation will be applied while we want to rule out the singular vectors in the search directions.

Similarly, singularity can be observed in the discrete version of the m-coupled NLS equations (2) with n = 2. We consider
a bounded domain [−d,d] × [−d,d], where the size d is sufficiently large and the uniform grid size h is sufficiently small.
Let

D = 1

2h

⎡⎢⎢⎢⎣
0 1 0

−1
. . .

. . .

. . .
. . . 1

0 −1 0

⎤⎥⎥⎥⎦ ∈ R

√
N×√

N

be the central difference operator. We define

D̂x = D	 ⊗ I√ , D̂y = I√ ⊗ D ∈ R
N×N
N N
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Fig. 3. Conceptual illustration of (a) translation invariant solutions and (b) ε-solutions.

as the discretization matrices of the differential operators ∂
∂x and ∂

∂ y , respectively. Then one can check that, similar to the

operator d
dx in (8),

Ks = span
{

Dxx(s),Dyx(s)
}

(10)

forms a numerical null space of Gx(x(s), β(s)), where

Dx = diag{D̂x, . . . , D̂x}, Dy = diag{D̂y, . . . , D̂y} ∈ R
Nm×Nm.

In other words, Gx(x(s), β(s)) is nearly singular and therefore may result in numerical difficulties in practice.
If we use p ≡ a[(Dxx(s))	,0]	 + b[(Dyx(s))	,0]	 (a2 + b2 = 1) as the prediction direction, then, numerically, the “new

solution” x(s̃) (s̃ ≈ s) computed by the continuation method is a small shift of x(s) in the p-direction. These new solu-
tions generally have very small residual ‖G(x(s), β(s))‖ < ε and are called “ε-solutions”. Note that as the domain of (2)
is bounded, the residual gets larger if we keep shifting x(s) along the p-direction, where (x(s), β(s)) is the solution of
G(y(s)) = 0.

The above arguments pose the following two difficulties that may be encountered by a standard continuation method.
First, the near singularity may cause accuracy and efficiency problems while solving the resulting linear system. Second,
a continuation method may be trapped, or become hard to keep moving ahead correctly, due to the near singularity. Fig. 3
further conceptually illustrates the effects of ε-solutions. The solid curves in part (a) of the figure represent translation
invariant solutions of the NLS equations on an unbounded domain. One example is defined in (9). In contrast, no such
translation invariant solution exists in exact arithmetic on a bounded computational domain. However, in a standard con-
tinuation method, any of the ε-solutions (dashed curves in part (b)) may be considered to be a reasonable approximation of
the target solution (solid curve) and a particular ε-solution would be accepted as a new solution. Here, the target solution
is the one that is supposed to be located on a certain solution curve being tracked. Unfortunately, the chosen solution is
actually the exact solution of another solution curve. Therefore, the computed solutions may simply jump between different
solution curves, rather than follow a certain solution curve.

We now summarize that such ε-solutions result in the following challenges to the prediction–correction scheme of a
standard continuation method.

C1. In the prediction step, we cannot compute a unique prediction direction by solving (7).
C2. In the correction step, since the Jacobian matrix Gx is nearly singular, Newton’s correction will lose quadratic conver-

gence and accuracy.
C3. The bifurcation points are difficult to detect due to the numerical singularity of the Jacobian matrix.
C4. Since the solution manifold C in (6) contains a 2-dimensional ε-solution set and the “good” prediction direction cannot

be uniquely computed, the solutions computed by the continuation method may appear to be random or trapped in
the ε-solution set. That is, we cannot follow the desired solution curve C in (6) efficiently by a standard continuation
method.

To overcome these difficulties, we develop a hyperplane-constrained continuation method for solving (5) in the following
subsections.

2.1. Prediction and correction with hyperplane constraints

Let yi = (x	
i , βi)

	 ∈ R
M+1 be a point that has been accepted as an approximation point for the solution curve C . A “good”

prediction direction ẏi = (ẋ	
i , β̇i)

	 should satisfy (7) and the vector ẋi at the arc-length parameter s = si should be in K ⊥
si

,

where Ksi is given in (10). It follows that the prediction direction ẏi ∈ R
M+1 should satisfy the bordered linear system⎡⎢⎢⎣

Gx Gβ

a	
x 0

a	
y 0
	

⎤⎥⎥⎦ ẏi =
⎡⎢⎣

0
0
0
1

⎤⎥⎦ , (11)
ci ci
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where ax = Dxxi , ay = Dyxi , and (c	
i , ci)

	 ∈ R
M+1 is a suitable constant vector. In other words, we first use the Euler

predictor

yi+1,1 = yi + hi ẏi

to predict a new point yi+1,1, where hi > 0 is the step length and ẏi is the unit tangent vector at yi that is obtained by
normalizing the solution of the bordered linear system (11). Note that Eq. (11) can be interpreted geometrically as follows.
The next solution yi+1 must pass through the two hyperplanes whose normal vectors are ax and ay . Furthermore, we ac-
cordingly coin the name “hyperplane-constrained continuation method” due to these two additional hyperplane constraints.

Now the solution curve C is determined by the underlying system of equations⎧⎪⎪⎪⎨⎪⎪⎪⎩
G(x, β) = 0,

a	
x (x − xi) = 0,

a	
y (x − xi) = 0,

ẋ	
i (x − xi) + β̇i(β − βi) = 0.

Starting from the predictor, the accuracy of the approximation yi+1,1 to the solution curve C can be improved by a correction
process. Typically, Newton’s method is chosen as a corrector. By setting yi+1,l+1 = yi+1,l + δl for l = 1,2, . . . , we solve the
bordered linear system⎡⎢⎢⎣

Gx(yi+1,l) Gβ(yi+1,l)

a	
x 0

a	
y 0

ẋ	
i β̇i

⎤⎥⎥⎦ δl = −
⎡⎢⎣

G(yi+1,l)

ρx,l
ρy,l
ρl

⎤⎥⎦ , (12)

with ρx,l = a	
x (xi+1,l − xi), ρy,l = a	

y (xi+1,l − xi), and ρl = ẏ	
i (yi+1,l − yi). If {yi+1,l} converges until l = l∞ , then we accept

yi+1 = yi+1,l∞ as a new approximation to the solution curve C .
The two linear systems (11) and (12) are overdetermined systems and can be solved by the least squares method with

very small minimal residual. Another efficient way to solve (11) and (12) is to rewrite them in the form⎧⎨⎩
[

B f
g	 γ

][
x
σ

]
=

[
q
ρ

]
,

x(M + 1) = x(M + 2) = 0,

(13)

where

B =
⎡⎣ Gx ax ay

a	
x 0 0

a	
y 0 0

⎤⎦ ∈ R
(M+2)×(M+2) (14)

is symmetric and f,g,q ∈ R
(M+2) . The linear system (13) can be easily solved with the well-known block elimination (BE)

algorithm (see e.g. [17]) when B is well-conditioned. However, near turning points or branch points, B in (13) becomes
nearly singular, i.e., B is ill-conditioned. In this case, the linear system should be solved by the deflated block elimination
(DBE) algorithm by Chan [6], or the more efficient and backward stable, mixed block elimination (MBE) algorithm proposed
by Govaerts [13,11] as shown below.

Algorithm 1 (Mixed block elimination).

(i) Solve ξ	B = g	;
(ii) Compute δ1 = γ − ξ	f, σ = (ρ − ξ	q)/δ1;

(iii) Solve Bv = f;
(iv) Compute δ = γ − g	v, q1 = q − fσ , ρ1 = ρ − γ σ ;
(v) Solve Bw = q1;

(vi) Compute σ1 = (ρ1 − ξ	w)/δ;
(vii) Compute x = w − vσ1, σ = σ + σ1.

We finally make the following remarks regarding Algorithm 1. (i) The main step in Algorithm 1 is to solve the linear
system of the form Bξ = g. (ii) Since linear systems (11) and (12) have very small minimal residuals, Eq. (13) is nearly
consistent. Thus, the solution x solved by Algorithm 1 satisfies x(M + 1) ≈ x(M + 2) ≈ 0 automatically. In the next section,
we discuss how we deal with the numerical singularity of the Jacobian matrix to find the bifurcation points.
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2.2. Testing for bifurcation

Let C be the solution curve defined in (6), y(s) ∈ C and

J(s) =
⎡⎣Gx(y(s)) Gβ(y(s))

a	
x 0

a	
y 0

⎤⎦ ∈ R
(M+2)×(M+1), (15a)

J(s) =
⎡⎣Gx(y(s))

a	
x

a	
y

⎤⎦ ∈ R
(M+2)×M . (15b)

As described in [2,12,17], a point y(s) ∈ C is said to be a regular point if rank(J(s)) = M (i.e., dim N (J(s)) = 1) and is a
singular point if rank(J(s)) � M − 1 (i.e., dim N (J(s)) � 2). For a regular point y(s), the tangent vector ẏ(s) is uniquely
determined by the linear system (11).

Now, our task is to design an algorithm to detect singular points of the solution curve C and to compute tangent vectors
if y(s) is a singular point. For simplicity, we here only consider the case that(

Gβ

(
y(s)

)	
,0,0

)	 ∈ R
(
J(s)

)
for each singular point y(s) ∈ C, (16)

i.e., dim N (J(s)) = dim N (J(s)) − 1 and dim N (J(s)) � 2. This case shows that the tangent vector at a singular point has a
nonzero component at β̇(s) and can be expected to appear in the solution curve C of (5). We denote B(s) as the matrix B
given by (13) at the point y(s) ∈ C .

Our strategy for detecting the singularity s∗ of C is summarized in Algorithm 2. Let s1 < s2 be two consecutive contin-
uation method parameters and μ(s1) and μ(s2) be the smallest eigenvalues in modulus of B(s1) and B(s2), respectively. It
is clear that if μ(s1) > 0 and μ(s2) < 0, then there is an s∗ ∈ (s1, s2) such that B(s∗) is singular. We use the secant method
to refine the interval (s1, s2). In the secant method loop, we use the inverse power method (in Step (ii-c)) to compute the
smallest eigenvalue. After convergence, we use Algorithm 3 described in Appendix A to compute the tangent vectors at the
singularity in Step (iii).

Algorithm 2 (Detection of singularity of C ).

(i) Given μ(si) the smallest eigenvalue in modulus of B(si), i = 1,2, where μ(s1) > 0, μ(s2) < 0.
(ii) Perform the Secant Method until convergence:

(a) Compute y1(s0) := y(s0) = y(s1) + tμ(s1)
μ(s2)−μ(s1)

, where t = y(s1) − y(s2).
(b) Perform the Newton Correction (12) until convergence (i.e.,  = ∞), solve⎡⎢⎢⎢⎣

Gx(y(s0)) Gβ(y(s0))

a	
x 0

a	
y 0

t	

⎤⎥⎥⎥⎦ δ = −
⎡⎢⎣

G(y(s0))

ρx,

ρy,

ρ

⎤⎥⎦
with ρx, = [a	

x ,0](y(s0) − y1(s0)), ρy, = [a	
y ,0](y(s0) − y1(s0)), and ρ = t	(y(s0) − y1(s0)), set y+1(s0) =

y(s0) + δ ,  ←  + 1, go to (b).
(c) Compute μ(s0) of B(s0) with y(s0) = y∞(s0) by using the inverse power method.
(d) If |μ(s0)| < Tol, then perform (iii), else if μ(s0) > 0, s1 ← s0, else s2 ← s0, go to (ii).

(iii) Compute the desired tangent vectors with y(s∗) = y∞(s0) by the methods suggested in [17, pp. 88–99].

2.3. Remarks about the method

It is worth noting that detecting the singular point of the solution curve C is equivalent to detecting the singularity of
symmetric matrix B in (14). It can be shown that, provided the condition (16) holds, then the following statements are
equivalent: (i) rank(J(s)) � M − 1, (ii) N (J(s)) �= {0}, (iii) B(s) is singular and there is a nonzero vector χ ∈ R

M such that
(χ	,0,0)	 ∈ N (B(s)). Therefore, in Step (ii-c) of Algorithm 2, instead of checking singularity of J(s) in (15a), we only need
to check the singularity of the square symmetric matrix B(s) in (14).

The complexity for solving linear systems actually accounts for the main computational complexity of the proposed
hyperplane-constrained continuation method. In each step of the hyperplane-constrained continuation method, it involves
computations of (i) one prediction direction, (ii) several correction directions that depends on the associated convergence
behavior, and (iii) test of bifurcation. Actually prediction and correction search directions can be computed by solving the
linear systems in the form of (13). For the test of bifurcation, we only need to check the singularity of the matrix B(s)
defined in (14) as mentioned above and under the assumption (16). Furthermore, as suggested in Step (ii-c) of Algorithm 2,
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we can compute the smallest eigenvalue of B(s0) by the inverse power method, which again requires solving the linear
systems with B(s0). Note that in Step (ii-b) of Algorithm 2, linear systems in the form of (12) are involved.

We have proposed a hyperplane-constrained continuation method that deals with the numerical challenges C1 to C4
listed on page 517. Specifically,

1. The prediction direction can now be computed uniquely by (11).
2. The efficiency of Newton’s correction is improved, thanks to the better conditioned Jacobian matrix (12).
3. The bifurcation points can be detected accurately from (15).
4. The enhancements listed in the first two points lead to the continuation method that is capable of following the desired

solution curves.

In the next section, we focus on the 3-coupled cases in both theoretical and numerical aspects. The results not only char-
acterize the solutions of DNLS equations analytically, but demonstrate the bifurcation diagrams and visualize the theoretical
predictions in Section 3.

3. Bifurcation analysis for 3-coupled discrete nonlinear Schrödinger equations

In this section, we study the 3-coupled DNLS equations theoretically by determining the corresponding primal stalk
solution curve and conducting a bifurcation analysis. Note that there is no bifurcation for 1-component DNLS equations due
to the uniqueness of the positive solution [20]. Furthermore, for 2-coupled DNLS equations, bifurcation analysis has been
studied by Kuo, Lin, and Shieh in [18].

Lin and Wei [21] have analyzed the NLS equations (1) and the corresponding ground state solutions. Denoting βi j = ζi jβ

(see (4)) and letting

Σ =
[ 1 |β12| |β13|

|β12| 1 |β23|
|β13| |β23| 1

]
,

some of their results regarding the 3-coupled NLS equations are categorized as follows.

Case 1 (All interactions are repulsive). If ζ12 < 0, ζ13 < 0 and ζ23 < 0, then the ground state solution does not exist.
Case 2 (All interactions are attractive). If ζ12 > 0, ζ13 > 0, ζ23 > 0 and Σ is positive definite, then the ground state solution

exists.
Case 3 (Two repulsive and one attractive interactions). If ζ12 < 0, ζ13 < 0, ζ23 > 0 and Σ is positive definite, then the ground

state solution does not exist.
Case 4 (Two attractive and one repulsive interactions). If ζ12 > 0, ζ13 > 0, ζ23 < 0, β � 1 and the ground state solution exists,

then it must be non-radially symmetric.

Now we use the same categories of ζi j ’s and consider the solution curve C of (2) by letting m = 3 and λ1 = λ2 = λ3 =
μ1 = μ2 = μ3 = 1. As Cases 1 and 2 are straightforward, we focus on the following two particular settings of Case 3 that
ζ12 = ζ13 = −1, ζ23 = 1 and Case 4 that ζ12 = ζ13 = 1, ζ23 = −1.

In the case that ζ12 = ζ13 = −1 and ζ23 = 1, the 3-coupled DNLS equations of (5) become

Au1 − u1 + u
3©

1 − βu
2©

2 u1 − βu
2©

3 u1 = 0, (17a)

Au2 − u2 + u
3©

2 − βu
2©

1 u2 + βu
2©

3 u2 = 0, (17b)

Au3 − u3 + u
3©

3 − βu
2©

1 u3 + βu
2©

2 u3 = 0, (17c)

where β > 0. It is clear that if we set β := −β , then (17) describes the 3-coupled DNLS equations for the case that ζ12 =
ζ13 = 1 and ζ23 = −1. Therefore, to investigate these two cases, we only need to consider 3-coupled DNLS equations (17)
for β ∈ R.

In the following two theorems, we first explicitly determine the solutions located on the primal stalk and then discuss
how other solution curves bifurcate from the primal stalk.

Theorem 1. The primal stalk of the solution curve

C = {
y(s) = (

x	(s),β(s)
)	 ∣∣ G

(
y(s)

) = 0 is given in (17) and s ∈ R
}
, (18)

for − 1
3 � β < 1, has the forms

u1 =
(√

1 + 3β

1 + β − 2β2

)
u∗ and u2 = u3 =

(√
1 + β

1 + β − 2β2

)
u∗, (19)
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where x(s) = (u	
1 (s),u	

2 (s),u	
3 (s))	 and u∗ is the positive solution of

Au − u + u 3© = 0. (20)

Proof. By letting

u2 = u3 = κu1 with κ > 0, (21)

it follows that Eqs. (17b) and (17c) are identical. Thus, equations in (17) can be reduced to{
Au1 − u1 + (

1 − 2βκ2)u
3©

1 = 0,

Au1 − u1 + (
κ2 − β + βκ2

)
u

3©
1 = 0.

(22)

The system of equations in (22) has a positive solution u1, if 1 − 2βκ2 = κ2 − β + βκ2. This implies that

κ = √
(1 + β)/(1 + 3β). (23)

Substituting κ in (23) into the first equation of (22) we have

Au1 − u1 + 1 + β − 2β2

1 + 3β
u

3©
1 = 0. (24)

It can be easily verified that if u∗ is a solution of Au − u + u 3© = 0, then

u1 =
√

1 + 3β

1 + β − 2β2
u∗ ≡ ηu∗ (25)

solves (24).
The applicable range of β is determined by the following facts. Since κ → √

1/2 as β → 1− (by (23)), we have

u2 = u3 = κu1 → ∞ (26)

by (21) and (25). On the other hand, since

u1 → 0 as β → −1

3

−
(27)

by (25), we have

u2 = u3 → √
3/2u∗

by (17b) and (17c). �
Theorem 2. The primal stalk described by (19) undergoes at least N − p bifurcation points at finite values 0 < β = β∗

q < 1, q =
1, . . . , N − p, where p is the number of nonnegative eigenvalues of A − I + 3�u

2©
∗ � and u∗ is the positive solution of (20).

Proof. Since (17) has a positive solution curve u2(β) = u3(β) = κu1(β), for 0 < β < 1, where κ is defined in (23), the
Jacobian matrix of (17) with respect to u is of the form

Gu
(
y(β)

) =
[B1 E1 E1

E1 B2 E2
E1 E2 B2

]
,

where B1 = A − I + �3u
2©

1 − 2βu
2©

2 �, B2 = A − I + �(3 + β)u
2©

2 − βu
2©

1 �, E1 = −2β�u1 ◦ u2 �, and E2 = 2β�u
2©

2 �. From (21),
(23) and (25), we have

u2 = u3 =
√

1 + β

1 + 3β
u1 =

√
1 + β

1 + β − 2β2
u∗, (28)

where u∗ is the positive solution of (20). Substituting (25) and (28) into B1, B2, E1, and E2, we get

B1 = A − I + 3 + 7β − 2β2

1 + β − 2β2

[[
u

2©
∗

]]
, B2 = A − I + 3 + 3β − 2β2

1 + β − 2β2

[[
u

2©
∗

]]
,

E1 = −2β

√
(1 + β)(1 + 3β)

2

[[
u

2©
∗

]]
, E2 = 2β + 2β2

2

[[
u

2©
∗

]]
. (29)
1 + β − 2β 1 + β − 2β
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Let Q =
[

I 0 0
0 I I
0 0 I

]
, then QGu(y(β))Q−1 =

[ B1 E1 0
2E1 B2+E2 0
E1 E2 B2−E2

]
. Hence

σ
(
Gu

(
y(β)

)) = σ

([
B1 E1

2E1 B2 + E2

])
∪ σ(B2 − E2). (30)

On the other hand,[
B1 E1

2E1 B2 + E2

]
=

[
B1 0
0 B1

]
− 2β

[
0 κη2 �u

2©
∗ �

2κη2 �u
2©

∗ � 1
2β+1 �u

2©
∗ �

]
=

[
1 0
0 1

]
⊗ B1 −

[
0 1
2 1

(2β+1)κη2

]
⊗ 2βκη2[[u 2©

∗
]]

=
[

1 0
0 1

]
⊗ B1 −

[
0 1
2 a

]
⊗ 2βκη2[[u 2©

∗
]]
, (31)

where κ and η are given by (23) and (25), respectively, and a = 1
(2β+1)κη2 . Since a+

√
a2+8

2 and a−
√

a2+8
2 are eigenvalues of[

0 1
2 a

]
, from (29), (30), and (31), it follows that σ(Gu(y(β))) = Λ1(β) ∪ Λ2(β) ∪ Λ3(β), where

Λ1(β) = σ

(
A − I + 4β + 3

2β + 1

[[
u

2©
∗

]])
,

Λ2(β) = σ

(
A − I +

[
3 + 7β − 2β2

1 + β − 2β2
− (

a +
√

a2 + 8
)
βκη2

][[
u

2©
∗

]])
,

Λ3(β) = σ

(
A − I +

[
3 + 7β − 2β2

1 + β − 2β2
− (

a −
√

a2 + 8
)
βκη2

][[
u

2©
∗

]])
.

Since (a + √
a2 + 8)βκη2 = −3 + 3+7β−2β2

1+β−2β2 , it holds that

Λ2(β) = σ
(
A − I + 3

[[
u

2©
∗

]])
. (32)

Hence

σ
(
Gu

(
y(β)

))∣∣
β=0 = σ

(
A − I + 3

[[
u

2©
∗

]])∪ σ
(
A − I + 3

[[
u

2©
∗

]])∪ σ
(
A − I + 3

[[
u

2©
∗

]])
.

As β → 1− , we have that Λ1(β) → σ(A − I + 7
3 �u

2©
∗ �) and 3+7β−2β2

1+β−2β2 − (a − √
a2 + 8)βκη2 → ∞. So there exists a β∗ with

0 < β∗ < 1 such that

Λ3(β) ⊂ R+, for β > β∗. (33)

If the number of nonnegative eigenvalues of Λ3(0) = σ(A − I + 3�u
2©

∗ �) is p, then from (32)–(33) we see that the
primal stalk of the solution curve C of (18) undergoes at least N − p bifurcation points at finite values 0 < β∗

q < 1, q =
1, . . . , N − p. �
4. Numerical results

In this section, we study numerical results of positive bound state solutions for the 3-coupled DNLS equations with λ1 =
λ2 = λ3 = μ1 = μ2 = μ3 = 1 by using the hyperplane-constrained continuation method developed in Section 2. The initial
point on the primal stalk of the solution curve C of the 3-coupled DNLS equations is computed by the fixed point iteration
method described in [19]. A squared domain [−5,5] × [−5,5] with the grid size h = 0.2 is used in the computations. The
results, including solution profiles, bifurcation diagrams, and corresponding energies, are summarized in the following two
simulations.

The hyperplane-constrained continuation method program is implemented by using Fortran 95 programming language
and compiled by the Intel Fortran compiler ifort with O3 flag. The numerical experiments are conducted on an HP
XW8000 workstation that is equipped with a 3.0 GHz CPU, 2 GB main memory, and the Red Hat Enterprise Linux 2.4.21-
37.ELsmp operating system. Timing performance of the program varies with the convergence behavior of linear system
solver, Newton’s correction process, and detection of singularity. Roughly speaking, it usually takes around 1 or 2 minutes
to move from one solution to the next one. If bifurcation test is necessary, it takes extra time, which is usually less than 10
minutes, to determine a bifurcation point.
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Fig. 4. Solution profiles and a bifurcation diagram of the solution curves C+ = {(x	, β)	 | G(x, β) = 0 is given in (17) for β ∈ R+}. (For interpretation of
colors in this figure, the reader is referred to the web version of this article.)

Fig. 5. Energy curves of C+ . (For interpretation of colors in this figure, the reader is referred to the web version of this article.)

4.1. Simulation 1

We consider the case in which ζ12 = ζ13 = −1 and ζ23 = 1. That is, we assume that one attractive and two repulsive
interactions occur among the components. This setting corresponds to Case 3 in Section 3. The positive bound state solutions
of the 3-coupled DNLS equations are computed and denoted by the set of solution curves

C+ = {(
x	, β

)	 ∣∣ G(x, β) = 0 is given in (17) for β ∈ R+
}
.

In Fig. 4, we plot the bifurcation diagram of the (conceptual) solution curves for β ∈ [0,1.2]. The intersection points of
the solution curves indicate the bifurcation points. The primal stalk solution curve, which is also described analytically in
(19), is plotted by the solid red curve. The curve starts from β = 0 and bifurcates at β = 0.237 and 0.385. The solution
curves bifurcated from the primal stalk while β = 0.237 are plotted as dashed blue curves. This solution curve bifurcates
again at β = 0.253. On the other hand, the solution curves bifurcated from the primal stalk while β = 0.385 are plotted as
dotted green curves. This solution curve bifurcates again at β = 0.387.

Furthermore, we characterize the solution curves by showing the corresponding nodal domains of three positive bound
state solutions. The nodal domains are attached in triples near the solution curves. Since the forms of the solutions remain
similar unless bifurcation occurs, we simply show one representative nodal domain triple for each of solution curves. Note
that in each of the nodal domain triples, the left, middle and right figures are the density plots of u1, u2 and u3, respectively.
In particular, triple A corresponds to the primal stalk (solid red curve); triples B, C, and D are associated with the dashed
blue solution curves; triples E and F are associated with the dotted green solution curves.

The energy defined in (3) is computed for all solutions. In Fig. 5, we plot the energy curves corresponding to the
solution curves for β ∈ [0,1.2] by using the same curve styles to indicate the corresponding solution curves. For example,
the energies corresponding to the primal stalk solutions are plotted as the solid red curve. Furthermore, the nodal domains
of u1, u2 and u3 (in the form of squared sums) are plotted in an overlapping format to show their relative positions. These
overlapping nodal domains are labeled from A to F to indicate their corresponding triples presented in Fig. 4.

4.2. Simulation 2

We consider the case in which ζ12 = ζ13 = 1 and ζ23 = −1. That is, we assume that one repulsive and two attractive
interactions occur among the components (i.e. Case 4 in Section 3). The positive bound state solutions are computed and
denoted by the set of solution curves
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Fig. 6. Solution profiles and a bifurcation diagram of the solution curves C− = {(x	, β)	 | G(x, β) = 0 is given in the 3-coupled DNLS equations with ζ12 =
ζ13 = 1 and ζ23 = −1, for β ∈ R+}.

Fig. 7. Energy curve of C− .

C− = {(
x	, β

)	 ∣∣ G(x, β) = 0 is given in the 3-coupled DNLS equations with

ζ12 = ζ13 = 1 and ζ23 = −1, for β ∈ R+
}
.

We plot the bifurcation diagram and the energy curve in Figs. 6 and 7, respectively, for β ∈ [0,0.5]. Similar to the results
reported in Simulation 1, nodal domains of positive bound state solutions are attached near the solution curve and the
energy curve. Note that there is no bifurcation in the solution curve C− , but a turning point is found at β = 0.333.

4.3. Remarks on the two simulations

We highlight the following observations from Simulations 1 and 2 that are consistent with the solution characters ob-
tained from theoretical analysis.

• In Fig. 4 of Simulation 1, the β ’s in the primal stalk approach, but never reach, β = 1. In contrast, Fig. 6 of Simulation 2
shows that a turning point is observed on the primal stalk at β = 0.333, which corresponds to the case of β = − 1

3 in
Theorem 1.

• As shown in Fig. 5, the primal stalk energy curve (plotted as solid red) keeps rising as β increases. This phenomenon is
consistent with (26).

• The computed solution profiles of C− not only have the property as shown in (27), Fig. 6 further shows that the u1
turns to negative side after passing the turning point.

• As Theorem 2 discusses the number of bifurcation points, we note that it is proved in [21, Lemma 1] that the number
of nonnegative eigenvalues of{

�φ − φ + 3ω2∗φ = λφ,

φ ∈ H2
(
R

n
)
,

is n + 1, where ω∗ is the unique solution of⎧⎨⎩
�φ − φ + φ3 = 0,

φ > 0 in R
n,

ω(x) → 0 as |x| → ∞.

In the 3-coupled DNLS equations (17) with a squared domain (n = 2), we can verify numerically that the number of

nonnegative eigenvalues of Λ1(0) = σ(A − I + 3�u
2©

∗ �) is 3, where u∗ is the positive solution of (20).
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5. Conclusion

Aiming at the coupled DNLS equations that are discretized from the NLS equations on the whole domain, we have de-
veloped a new hyperplane-constrained continuation method. The method overcomes the numerical difficulties that prevent
standard continuation methods from working or from being efficient due to the ε-solutions. We have also analyzed the
primal stalk solution curve for the 3-coupled DNLS equations and we have demonstrated numerical results showing the
versatility of the bound state solutions.

The proposed hyperplane-constrained continuation method can be extended to other discretization methods. For exam-
ple, by using a spectral method, we may take advantage of its higher accuracy or efficiency with less grid points. However,
we need to develop another suitable hyperplane for the corresponding discretization method accordingly.
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Appendix A

Algorithm 3 (Tangent vectors at singularity).

(I) For dim N (J(s∗)) = 1:

(i) Compute the unit right null vector φ = (φ̄
	
,0,0)	 of B(s∗), and solve J(s∗)φ̄0 = −(Gβ(s∗)	,0,0)	 with φ̄

	
φ̄0 = 0,

by using sparse SVDPACK [5] (or another suitable package);

(ii) Form φ1 =
(

φ̄

0

)
and φ2 =

(
φ̄0
1

)
;

(iii) Solve the real vector roots {(μ̂k, ν̂k)}2
k=1 of a11μ

2 + 2a12μν + a22ν
2 with

a11 = φ̄
	

Gxx(s∗)φ̄φ̄, a12 = φ̄
	[

Gxx(s∗)φ̄0 + Gxβ

]
φ̄,

a22 = φ̄
	[

Gxx(s∗)φ̄0φ̄0 + 2Gxβ(s∗)φ̄0 + Gββ(s∗)
];

(iv) Form tangent vectors ẏk(s∗) = μ̂kφ1 + ν̂kφ2, k = 1,2.
(II) For dim N (J(s∗)) =  � 2:

(i) Compute the unit right null vectors φ(1), . . . ,φ() of B(s∗) with φ(k) = (φ̄
(k)	

,0,0)	 , k = 1, . . . , , and solve

J(s∗)φ̄0 = −(Gβ(s∗)	,0,0)	 with φ̄
(k)	

φ̄0 = 0, k = 1, . . . , , by using sparse SVDPACK [5] (or another suitable pack-
age);

(ii) Form φk =
(

φ̄
(k)

0

)
, k = 1, . . . , , and φ+1 =

(
φ̄0
1

)
;

(iii) Form trial tangent vectors ẏk(s∗) = φk , k = 1, . . . , , and ẏ+1(s∗) = φ+1.
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