
Chapter 2   Theory and Calculation Method 

 

The same as all studies of the electromagnetism, analyses to the propagation of light in a 

photonic crystal start with four macroscopic Maxwell equations. In cgs units, they are 
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where E and H are the macroscopic electric and magnetic fields, D and B are the 

displacement and magnetic induction fields, and ρ and J are the free charge and current 

densities. Without free charges and currents in our calculation in periodic dielectric medium, 

the ρ and J in Eq. (2.1) are all set to be zero.  

 

2-1 Introduction 

 

Generally, the components Di of the displacement field D are related to the components 

Ei of the electric field E via a complicated power series, as follows [3]: 
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For many dielectric materials, we usually assume the field strengths are small enough so that 

we are in the linear regime, it means χ and all higher terms can be ignored. Besides, we also 

assume the material is macroscopic and isotropic, so that ),( ωrE  and ),( ωrD  are related 

by a scalar dielectric constant ),( ωε r . Any explicit frequency dependence of the dielectric 
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constant are also been ignored. The last assumption is that we focus only on low-loss 

dielectrics, which means we treat )(rε  as pure real. Hence, we have a brief expression as 

relating D and E fields 

 

).()()( rErrD ε=                                                      (2.3) 

 

Such a simplification process can also be performed in B and H. For most dielectric materials 

of interest, the magnetic permeability )(rµ  is very close to unity and we may set HB = .  

 

With four assumptions above, the Maxwell equations Eq. (2.1) become 
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In general both E and H are complicated functions of time and space, and the Maxwell 

equations are linear. We can separate out the time dependence by expanding the fields into a 

set of harmonic modes. We employ the familiar trick of using a complex-valued field for 

mathematical convenience, and the physical fields can be obtained by taking the real part. 

Hence we write a harmonic mode as a certain field pattern times a complex exponential. 
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Because there is no free charge and current, the electromagnetic waves considered to be 
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transverse. By eliminating Eq. (2.5) in Eq. (2.4) we can obtain the following equations: 
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Solving Eqs. (2.6) and (2.7) are the eigen-value problems, and we can easily prove that HΘ  

is a special type of linear operator known as a Hermitian operator. The eigenvectors H(r) and 

)(~ rE  (where )()()(~ rErrE ε= ) are the field patterns of the harmonic modes, and the 

eigenvalues 2)(
c
ω  are proportional to the squared frequencies of those modes. 

 

The Maxwell equations are th most important kernel of following calculations (both 

PWE and FDTD) and analyses in the next chapter except only the tight-binding 

approximation by solid-state physics we’ll discuss later.  

 

2-2 Plane-wave expansion method 

 

Photonic crystals have structural periodicity (i.e. the dielectric constant is periodic 

distribution), hence we can write its dielectric function as 

 

)()( iarr vvv += εε                                               (2.8) ,3,2,1=i

 

where  are the primitive lattice vectors of the photonic crystal. Because of the spatial 

periodicity, we introduce the primitive reciprocal lattice vectors {b

}{ iav

i ; i=1,2,3} and the 

reciprocal lattice vector can be defined as {G}: 
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ijji ba πδ2=⋅  

and ,332211 blblblG ++=                                               (2.9) 

 

where { } are arbitrary integers and il ijδ  is the Kronecker’s delta function. We can expand 

 into Fourier series as  )(1 rv−ε
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Due to the dielectric function is real, we have )(*)( GG κκ =− . As we discussed in section 2-1, 

the eigenfunctions which were derived from Maxwell’s equations should satisfy the next 

eigenvalue equations. 
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Because ε  is a periodic function of the spatial coordinate r , we can apply Bloch’s theorem 

to Eqs. (2.11) and (2.12).  and  are thus characterized by a wave vector k in the 

first Brillouin zone and a band index n and expressed as 

)(rE )(rH
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where  and  are periodic vectorial functions: )(rukn )(rvkn
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)()( ruaru knikn =+                                                   (2.15) 

)()( rvarv knikn =+ ,   for .3,2,1=i                                     (2.16) 

 

These periodic functions can be expanded in Fourier series like  in Eq. (2.10). This 

Fourier expansion leads to the following form of the eigenfunctions: 

)(1 r−ε
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Substituting Eqs. (2.10), (2.17) and (2.18) into Eqs. (2.11) and (2.12), we obtain the following 

eigenvalue equations for the expansion coefficients  and : )}({ GEkn )}({ GHkn
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where knω  denotes the eigen-angular frequency of  and . By solving one of 

these two sets of equation numerically, we can obtain the dispersion relation of the 

eigenmodes, or the photonic band structure. This numerical method, which is based on the 

Fourier expansion of the electromagnetic field and the dielectric function, is called the 

plane-wave expansion method. 

)(rEkn )(rHkn
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2-3 Finite-difference time domain method (FDTD) [28] 

 

In 1966 Yee [27] proposed a technique to solve Maxwell's curl equations using the 

finite-difference time-domain (FDTD) technique. The FDTD method belongs to the general 

class of differential time domain numerical modeling methods. Since it is a time-domain 

technique it can cover a wide frequency range with a single simulation run. That’s why the 

Finite-Difference Time-Domain (FDTD) is one of the most popular electromagnetic modeling 

techniques.  

 

When the differential form of Maxwell's equations is examined, it can be seen that the 

time derivative of the E field is related to the Curl of the H field ( ). This can be 

simplified to state that the rate of the change in the E field (the time derivative) is dependent 

on the change in the H field across space (the Curl). This results in the basic FDTD equation 

that the new value of the E field is related to the old value of the E field (hence the difference 

in time) and the difference in the old value of the H field on either side of the E field point in 

space. Naturally this is a simplified description, as illustrated in Fig. 2-1. 
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Fig. 2-1.  Interleaving of the E and H fields in space and time in the FDTD 
formulation. 
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2-3.1 One-dimensional simulation with the FDTD method 

 

Now we will start with simple one-dimensional differential equations. The 

time-dependent Maxwell’s curl equations in free space are 
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E and H are vectors in three dimensions. When we consider only in one dimension case, the E 

and H simply to Ex and Hy, so the Eq. (2.21a) and (2.21b) becomes 
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Above equations mean the electric field oriented in the x direction, the magnetic field oriented 

in the y direction, and traveling in the z direction. Taking the central difference approximation 

for both the temporal and spatial derivatives gives 
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In these two equations, “n” actually means a time ntt ⋅∆= . The term “n+1” means one time 
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step later. “k” actually means the distance kzz ⋅∆= . The formula of Eqs. (2.23a) and (2.23b) 

assumes that the E and H fields are interleaved in both space and time. H uses the arguments 

 and  to indicate that the H field values are assumed to be located between 

the E field values. Similarly, the 

2/1+k 2/1−k

2/1+n  or 2/1−n  superscript indicates that it occurs 

slightly after or before n, respectively. 

 

Eq. (2.23a) and (2.23b) can be rearranged to 
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Notice that the calculations are interleaved in both space and time. This is the fundamental 

paradigm of the finite-difference time-domain (FDTD) method. (2.24a) and (2.24b) are very 

similar, but because ε0 and µ0 differ by several orders of magnitude. This is circumvented by 

making the following change of variables: 
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Substituting (2.25) to Eqs. (2.24a) and (2.24b) gives 
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If the cell size  is chosen, the time step z∆ t∆  can be determined by 
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where c0 is the light speed in free space. The reason why we determined the time step t∆  to 

Eq. (2.27) related to the stability of the FDTD method. An electromagnetic wave propagating 

in free space cannot go faster than the speed of light. To propagate a distance of one cell z∆  

needs a minimum time of 
0c
zt ∆

=∆ . When we get to two-dimensional simulation, we have to 

allow for the propagation in the diagonal direction, which brings the time requirement to 

02c
zt ∆

=∆ . Obviously, three-dimensional simulation requires 
03c

zt ∆
=∆ . This is 

summarized by the well-known “Courant Condition” [29-30]: 
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where n is the dimension of the simulation. Hence we will determine  in Eq. (2.29). This 

is not necessarily the best formula! Therefore, 

t∆
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Rewriting Eq. (2.26a) and (2.26b) in C computer code we have 

 

ex[k] = ex[k] + 0.5*( hy[k-1] – hy[k] )                                  (2.30a) 

hy[k] = hy[k] + 0.5*( ex[k] – ex[k+1] ).                                 (2.30b) 

 - 14 -



To switch the source to a sinusoidal source, it is easy to obtain by replacing the parameter 

pulse with the following: 
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2-3.2 The absorbing boundary condition in one dimension 

 

To keep outgoing E and H fields from being reflected by the calculation boundary then 

back into the problem space, the absorbing boundary conditions (ABC) are necessary. The 

fields at the edge must be propagating outward. In one time step of the FDTD algorithm it 

travels 
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This equation basically explains that it takes two time steps for a wave front to cross one cell. 

So a common sense approach tells us that an ABC might be 
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Simply store a value of Ex(1) two time steps before in Ex(0). Boundary conditions such as 

these have been implemented at both ends of the Ex array. Below are the examples of C 

computer code in one-dimensional absorbing boundary conditions. Additional parameters are 

used to store the boundary value for two time steps during the calculation loop. 
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ex[0] = ex_low_m2; 

ex_low_m2 = ex_low_m1; 

ex_low_m1 = ex[1]; 

(2.34) 

ex[KE-1] = ex_high_m2; 

ex_high_m2 = ex_high_m1; 

ex_high_m1 = ex[KE-2]; 

 

2-3.3 Two-dimensional formulation and perfectly matched layer (PML) 

boundary condition 

 

We start again with the normalized Maxwell’s equations: 
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= . In two dimension cases, there exists two groups of 

three vectors. One is the transverse magnetic (TM) mode, which is composed of zE~ , , 

and . Another is the transverse electric (TE) mode, which is composed of 

xH

yH xE~ , yE~ , 

and . Here we work with the TM mode for example. Therefore, Eq. (2.35) are now reduced 

to 

zH
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The two-dimensional systemic interleaving of the calculated fields is more complex than one 

dimension. That is illustrated in Fig. 2-2 below. 
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the difference scheme results in the following Putting Eqs. (2.36a), (2.36c) and (2.36d) into 

difference equations: 
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Fig. 2-2.  Interleaving of the E and H fields for the 
two-dimensional TM formulation. 
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We have briefly mentioned the issue of absorbing boundary conditions (ABCs) in 

discussion of one dimension. In the two-dimensional simulations, the program contains 

two-dimensional matrices for the values of all the fields (i.e. dz, ez, hx and hy). Suppose we 

are simulating a wave generated from a point source (in the center of the calculation field) 

propagating in the free space. As the wave propagates outward, it will eventually come to the 

edge of the allowable space, which is dictated by how the matrices have been dimensioned in 

the program. If we had done nothing about this, reflections would have been generated that 

would go back inward. Then we will have no way to tell the real wave and the reflected wave. 

This is the reason for the existence of ABCs. The most flexible and efficient ABCs is the 

perfectly matched layer (PML) developed by Berenger [30]. The basic idea of how PML 

works can be easily understood by the following description. If a wave propagating in 

medium A and it impinges upon medium B, the amount of reflection can be determined by the 

intrinsic impedances of two media 

 

BA

BA

ηη
ηη

+
−

=Γ ,                                                       (2.38) 

 

 - 18 -



where the impedance is 

 

.
ε
µη =                                                           (2.39) 

 

If µ changed with ε so η still remained a constant, Γ would be zero and no reflection will 

occur. But this is still helpless to our problem, because waves will continue propagating in the 

new medium. We really want is a medium that is also lossy so the wave will die out before it 

hits the boundary. Hence we mark both ε and µ of complex due to their imaginary parts cause 

decay.  

 

In order to simulate a plane wave propagation in a 2D FDTD program, the space of 

problem will be divided up into two regions, the total field and the scattered field (Fig. 2-3). 

There are two reasons for doing this: (1) The propagating plane wave should not interact with 

the absorbing boundary conditions; (2) the load on the absorbing boundary conditions should 

be minimized. These boundary conditions are not perfect. By subtracting the incident field, 

the amount of the radiating field hitting the boundary is minimized, thereby reducing the 

calculation error. 
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PML
Incident plane wave 
is subtracted out 
here.

Total field 

Calculation samples 

Incident plane wave is 
subtracted out here. 

Scattered field 

Fig. 2-3.  Total field/scattered field of the two-dimensional problem space.
 

 

2-4 Tight binding method in solid state physics 

 

In the later discussion of energy transport in the photonic crystal waveguides we will 

apply the tight binding approximation to support our argument. Hence we here do a simple 

introduction of what is the tight binding method and its meaning in solid state physics [31]. 

 

When many atoms stay closely to become the crystal, their wave functions will overlap 

each other. If we consider only two atoms, their combined wave functions are BA ψψ ± . The 

electron energy of state BA ψψ +  is lower than one of state BA ψψ − . After they approach to 

each other, the Coulomb force between nucleuses and electrons can cause the energy level 

division and becomes energy band. The approximation method to obtain the energy band 

structure by calculating the free atomic wave functions is called tight binding approximation 

(TB) or linear combination of atomic orbitals (LCAD). Assume that an electron with ground 

state )(rϕ  exercises within a single atom’s potential , where the )(rU )(rϕ  denoted as s 

state. It is too complex if we solve the energy band problem by using degenerated atomic 
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energy levels. Therefore, we assume that the influence between two atoms is quite small, and 

then we can have an approximative wave function of the entire crystal: 
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If  in Eq. (2.40) is for a crystal with N atoms, the Bloch form of the above 

equation can be expressed as 

jrik
jk eNC ⋅−= 2/1

,

 

∑ −⋅= −

j
jk rrrikNr )()exp()( 2/1 ϕψ , )()exp()( rTikTr kk ψψ ⋅=+ ,           (2.41) 

 

where T is the primitive vector of connecting two lattice points. To calculate the 1st level 

energy by doing the Hamiltonian matrix diagonalization as follow: 
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where )( mm rr −≡ ϕϕ . Let jmm rr −=ρ , then 
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In Eq. (2.43), we do the integration to only an atom and other atoms nearby which are tied up 

by ρ . We can rewrite it as: 
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To set 1=kk , the 1st level energy is 
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The relation between overlapping energy γ  and atomic spacing ρ  in two hydrogen atoms 

which are both in 1s state can be clearly calculated. Using the Rydberg-energy unit, 

, we have 24 2/ hmeRy =

 

)/exp()/1(2)( 00 aaRy ρργ −+= .                                      (2.46) 

 

Considering to a simple cubic structure, the positions of the closest atoms are 

 

);0,0,( am ±=ρ   ));0,,0( a± ,0,0( a± .                                    (2.47) 

 

So the equation (2.45) becomes 
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Other example likes the fcc structure which has twelve closest atoms and its band structure 

can be described as 
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Hence the tight-binding approximation method provides a very simple way to do the atomic 
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energy band structure analysis. This way can also be applied to the discussion of the small 

coupling effect inside a photonic crystal coupled-cavities waveguides (CCWs).  

 

2-5. Mode coupling between PCWs 

 

A straightforward approach to the evaluation of the coupling length can be based on the 

FDTD. This method allows tracing the evolution of the EM field in real time. Launching an 

initialization field at the beginning of the first waveguide, we can observe the distance at 

which the EM field leaves the first waveguide and arrives at the second one. An example of 

such a calculation is given in Fig. 2-4.  

 

  

Fig. 2-4.  Typical field map in planar PhC with two parallel channel waveguides calculated 
using “FullWave” software. 

 

As was shown in [32], in the absence of the interaction between the two waveguides, a 

normal mode of one isolated waveguide is also a normal mode of the system of the two 

waveguides. Let us denote the mode localized in the first waveguide as 1ψ  and that in the 

second one as 2ψ . These two modes have the same frequency ω. They are degenerate states. 

Once a perturbation is switched on, this frequency splits into two frequencies ω1 and ω2, 

where ωωωω <<−=∆ 21 . Suppose we know exactly the normal modes 1ψ ′  and 2ψ ′  of 
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the perturbed system corresponding to these frequencies. Using perturbation theory, we can 

write 

 

.22111 ψψψ ′+′= CC                                                (2.50) 

 

Suppose that, at time t = 0, mode 1ψ  is launched into first waveguide. Time evaluation of 

the EM field in this case can be written as 
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In the case of identical waveguides, 21 CC = . Using this equation and (2.50), one can obtain 
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From Eq. (2.52), we can see that the time T of the transformation of state 1ψ  to state 2ψ  

is 0)/(5.0 T⋅∆⋅ ωω , where T0 is the period of the EM field oscillations. The value of the 

frequency splitting ∆ω due to the interaction between waveguides can be evaluated from MIT 

photonic-bands (MPB) calculation using the supercell approach, the supercell includes both 

interacting waveguides. We can then obtain time T by only evaluating the desired coupled 

length, group velocity dkdvg /ω= , in the waveguide. This can be easily obtained from the 

MPB band structure calculation for a single waveguide. Finally, we have the coupling length 

L, is given by 
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gvTL ⋅= .                                                         (2.53) 

 

Substituting the following Eq. (2.54) and dkdvg /ω=  into (2.53) 

 

0)(5.0 λ
ω
ω

⋅
∆

⋅=T ,                                                  (2.54) 

 

we can finally determine the desired coupling length which takes the form 

 

.5.0 0λω
ω

gvL
∆

=                                                     (2.55) 

 

Hence, if we replace the  by gv dkd /ω  and λ0 by 
f
1  (where λ0 and f are normalized 

wavelength and frequency) in Eq. (2.55). The desired coupling length can be expressed by 

using split normalized wave-vector (∆k) as following Eq. (2.56) 

 

kfdk
dL

∆
Λ

=⋅
Λ

⋅⋅
∆

=
2

1
2

5.0
π

ω
ω
ω .                                       (2.56) 

 

The Λ in Eq. (2.56) represents lattice constant of the PCW. In the later discussion of chapter 3, 

Eq. (2.56) will be used quite often to forecast the desired coupling length. 
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