Contents

Abstract (in Chinese)	i
Abstract (in English)	iv
Acknowledgements (in Chinese)	vii
Contents	viii
Table Lists	xiii
Figure Captions	xiv

•

Chapter 1 Introduction	1
1.1 Overview of Vacuum Microelectronics and its Applications	1
1.1.1 History of Vacuum Microelectronics	1
1.1.2 Theory Background	3
1.1.3 Applications of Vacuum Microelectronics	7
1.2 Cold Cathode Structure and Materials for Field Emission Displays	10
1.2.1 Spindt-type Field Emitter	10
1.2.2 Silicon-Tip Field Emitter	11
1.2.3 Low-Work-Function or Negative-Electron-Affinity Cold Cathodes	11
1.2.4 Carbon-Nanotube(CNT) Field Emitter	12
1.2.5 Surface Conduction- Electron Emitter	14

Chapter 2 Improvement of Field Emission Characteristics of Carbon Nanotube Field-Emission Arrays by Oxide Capping Layer 28

2.1	Introduction	29
2.2	Experimental Procedures	31
2.3	Results and Discussion	32
	2.3.1 Effect of Oxide Capping layer on Field Emission Properties of Carl	oon
	Nanotubes Grown by Microwave Plasma Chemical Vapor Deposit	ion
	(MPCVD)	33

 2.3.2 Effect of Oxide Capping layer on Field Emission Properties of Carbon Nanotubes Grown by Thermal Chemical Vapor Deposition (TCVD) 37
2.4 Conclusions 39

Chapter 3 Density Control of Carbon Nanotubes by Partial Oxidation of Catalyst Metals and its Field Emission Enhancement 60

3.1 Introduction

61

17

3.2	Experimental Procedures	62
3.3	Results and Discussion	63
3.4	Conclusions	64

Chapter 4 Improvement of Field Emission Characteristics through the Structures of Intermixture of Long and Short Carbon Nanotubes 69 4.1 Introduction 70 4.2 Effect of Different Pre-treatment Times 71 4.2.1 Experimental Procedures 71 4.2.2 Results and Discussion 72 4.3 Effect of H₂ Flow Rate during Pre-treatment 75 4.3.1 Experimental Procedures 75 4.3.2 Results and Discussion 77 4.4 Conclusions 78

Chapter 5 Field Emission Improvement from Pillar Array of Aligned Carbon Nanotubes 90

5.1	Introduction	91
5.2	Experimental Procedures	92
5.3	Results and Discussion	93
5.4	Conclusions	95

Chapter 6 Effect of High-Density Oxygen Plasma Post-treatment on the

Field	Emission	Characteristics	of	Carbon-Nanotube
Field-I	Emission Disp	lays ES		102
6.1 Introduction	THE	1896		103
6.2 Experimental	Procedure	A MILLING		105
6.3 Results and D	iscussion			106
6.4 Conclusions				112

Chapter 7 Fabrication and Characterization of Lateral Field Emission Devices of Carbon Nanotubes 125

7.1 Introduction

7.2	Experimental Procedures	128
7.3	Results and Discussion	130
	7.3.1 Effect of Anode to Emitter Gap	130
	7.3.2 Effect of Length of Carbon Nanotubes	132
	7.3.3 Breakdown Phenomena and Emission Sites of Carbon Nanotubes	134
	7.3.4 Stability of Field Emission Current	135
7.4	Conclusions	136

Chapter 8 Summary and Conclusions	147
Chapter 9 Future Prospects	153

References		155

Vita

Publication Lists