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Abstract—In multiple-input–multiple-output (MIMO) com-
munications, the notion of asymmetric channel refers to the
situation when the number of transmit antennas is strictly larger
than the number of receive antennas. Such channels can often
be found in MIMO downlink transmissions. While existing
cyclic-division-algebra (CDA)-based codes can still be employed
to achieve the optimal diversity–multiplexing tradeoff (DMT) at
high signal-to-noise ratio (SNR) regime, such codes cannot be
directly decoded using, for example, the pure sphere decoding
method. Although other means of decoding methods such as
minimum mean square error generalized decision feedback equal-
izer (MMSE-GDFE) with lattice search and regularized lattice
decoding are available, an alternative approach is to constrain the
number of active transmit antennas in each channel use to be no
larger than the number of receive antennas. The resulting system
is coined constrained asymmetric MIMO system. Two general types
of asymmetrical channels are considered in this paper, namely, 1)
when there are two receive antennas and the number of transmit
antennas is arbitrary, and 2) when the number of transmit an-
tennas is one larger than the number of receive antennas. Explicit
optimal transmission schemes as well as the corresponding code
constructions for such constrained asymmetric MIMO channels
are presented, and are shown to achieve the same DMT perfor-
mance as their unconstrained counterparts.

Index Terms—Constrained asymmetric multiple-input-mul-
tiple-output (MIMO) channels, cyclic-division algebra, diver-
sity–multiplexing tradeoff, transmit antenna selection schemes,
space-time codes..

I. INTRODUCTION

T HE use of multiple antennas in wireless communication
has been proven to be able to linearly increase the channel

capacity [1], improve the diversity gain, and provide better re-
liability [2]. In an multiple-input–multiple-output
(MIMO) communication channel consisting of transmit and

receive antennas, most of the existing literature [3]–[13] has
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focused on the case of , and the corresponding code
designs have been extensively investigated. However, in MIMO
downlink transmissions, it is often found that there can be more
transmit antennas available at the base station than receive an-
tennas at mobile user ends. That is, it corresponds to the case
of . Such MIMO channel is commonly referred to as
an asymmetric MIMO channel [14] or as an underdetermined
system [15].

If all the transmit antennas are active during each channel
use and if the channel state information (CSI) is known com-
pletely to the receiver but not to the transmitter, Telatar [1]
showed that the ergodic channel capacity of such
MIMO channel approximates at high
signal-to-noise ratio (SNR) regime, regardless of the relation
between and . Furthermore, assuming the transmitter com-
municates at rate bits per channel use (bpcu),
where , is termed multiplexing gain,
Zheng and Tse [16] proved that given , the smallest bit error
probability that can be achieved by any coding schemes is given
by , where by , we mean the ex-
ponential equality defined in [16, Def. 1]. The negative exponent

is termed diversity gain. For quasi-static Rayleigh fading
channels where channel remains fixed for at least uses,
is a piecewise linear function in and is given by [9], [16]

(1)

for integral values of . represents an optimal tradeoff be-
tween the multiplexing gain and the diversity gain. It is, there-
fore, termed the diversity–multiplexing tradeoff (DMT) [16].

Motivated by this remarkable result, a considerable amount
of research activity has been devoted to constructing coding
schemes to achieve the optimal tradeoff ; see, for example,
[8]–[10], [12], [17], and [18]. In particular, for any , using a
cyclic division algebra (CDA) with degree over its center

, where , Elia et al. [9] have provided an alge-
braic construction of matrix codes meeting the optimal
tradeoff .

While all the aforementioned coding schemes are DMT op-
timal, they do require all the transmit antennas to be active
during all channel uses. Such requirement could result in some
difficulty in decoding if , i.e., the case of asymmetric
channels. To see this, note that the channel matrix is of size

with . has no left multiplicative matrix
inverse, hence it is impossible to use zero-forcing (ZF) decoder
for decoding. Similarly, pure sphere decoding [3] of full lattices
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would also fail since the sphere decoder relies on the QR de-
composition of channel matrix , and has linearly depen-
dent column vectors. For linear minimum-mean square error
(MMSE) detector, Ahmadreza and Aria [19] showed that at high
spectral efficiencies the diversity gain achieved by linear MMSE
receiver is at most . Hence, the performance of MMSE
decoding might not be good when . To improve the per-
formance of MMSE-based receiver, Damen et al. [15] proposed
a three-stage receiver that consists of a minimum mean square
error generalized decision feedback equalizer (MMSE-GDFE)
[8] front-end, a lattice reduction with a greedy ordering tech-
nique, and a lattice search stage. This receiver is significantly
less complex than the original sphere decoder. Through sim-
ulations, it was found [15] that it can offer error performance
within fractions of a decibel from the maximal-likelihood (ML)
receiver. Early termination of the last search stage is possible
for further complexity reduction, but it would result in a perfor-
mance loss. Recently, Jaldén and Elia [20], [21] proposed a class
of regularized lattice decoders that includes the MMSE-GDFE
receiver as a special case, and showed these regularized lattice
decoders are DMT optimal.

An alternative solution to the problem of decoding in asym-
metric channels, if one still wishes to employ the simple sphere
decoders, is to restrict the number of active transmit antennas
in each channel use to be . With this additional con-
straint, the resulting system is termed constrained asymmetric
MIMO system in this paper, and coding schemes satisfying
this additional requirement are coined constrained asymmetric
space–time codes. Similarly, codes without this constraint will
be termed unconstrained codes. An additional advantage of
constrained asymmetric MIMO system is a significant reduc-
tion on the number of radio frequency (RF) chains required at
the transmitter end. Typically the multiple antennas (patch or
dipole) needed in a MIMO system are cheap, and the additional
digital signal processors are even cheaper. But, the RF chains,
including low-noise amplifiers, up- and downconverters, and
digital-to-analog and analog-to-digital converters, are expen-
sive and do not follow Moore’s law [22]. The constrained
system can reduce the required RF chains at the transmitter
from to at most , and therefore, offers a significant cost
reduction.

In [14], Hollanti and Ranto considered different asymmetric
coding methods. As a special case, they considered four transmit
and two receive antennas, i.e., and , and pro-
posed a block-diagonal coding method for constructing con-
strained asymmetric space–time codes. They first partition the
four transmit antennas into two groups, each consisting of two
transmit antennas, and then perform a joint-encoding between
these two groups by making use of a multiblock space–time
code [23] with two blocks. As the entries of the channel matrix

are independent identically distributed (i.i.d.), given multi-
plexing gain , following [16] and [23] it can be easily shown
that the DMT achieved by this scheme is .
Therefore, the achieved DMT performance is far from being
optimal for all , compared to that of unconstrained
system which has DMT in this case.

In this paper, we will investigate the optimal DMT of some
constrained asymmetric MIMO systems, and in particular, we
will focus on the following two cases.

1) : it corresponds to the case when there are two
receive antennas and when the number of transmit antennas
is strictly larger than two.

2) : it is the case when the number of transmit
antennas is one larger than the number of receive antennas.

These two cases cover many practical MIMO downlink sce-
narios, for example, the , , and asym-
metric MIMO channels that can be widely found in existing
MIMO-based wireless communication standards [24]–[27].

As for the case of , we remark that by re-
garding the asymmetric MIMO channel as a single-
input–single-output (SISO) channel with independent fading
blocks, it can be easily shown [16], [23] that the optimal DMT
of this multiblock fading channel is , for

, and is exactly the same as that of unconstrained channel.
To achieve , one can employ a multiblock single-antenna
vector code of length as proposed in [23]. Each entry is trans-
mitted by one of the transmit antennas in one channel use. Then,
the DMT achieved by such scheme is exactly .

This paper is organized as follows. In Section II, we will
present DMT optimal transmission schemes for constrained
asymmetric MIMO systems with or with

, and show that these constrained schemes can
achieve the same DMT in (1) as the unconstrained. Thus,
if the codes are properly designed, there will be no performance
loss in the DMT sense even when we limit the number of active
transmit antennas in each channel use. Our proposed scheme
is reminiscent of the antenna selection method proposed by
Molisch and Win [22] except that we do not require any CSI
at the transmitter end.1 For the ease of presentation, detailed
proofs of the DMT optimality of the proposed transmission
schemes will be relegated to Appendixes I and II. Having
obtained the optimal transmission schemes, the corresponding
DMT optimal codes will be given in Section III.

II. DMT OPTIMAL TRANSMISSION SCHEME FOR SOME

CONSTRAINED ASYMMETRIC MIMO SYSTEMS

Given an constrained asymmetric MIMO channel
with , in this section, we present several DMT optimal
transmission schemes in which at most transmit antennas are
used for transmission at any instant. We focus on two cases: 1)
when , and 2) when . For both cases,
we present DMT optimal transmission schemes that can achieve
the same optimal DMT of the unconstrained asymmetric
channels. To describe our schemes, we first define the following.

Definition 1: In an constrained asymmetric MIMO
channel, let be the set of indices of
transmit antennas. We say is a
transmit antenna selection (TAS) scheme if the antenna selec-
tion patterns are distinct proper subsets of and have size

1It is also worthwhile to note that if CSI is known to transmitter, then DMT
stops being a fundamental performance measure in such systems.
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for all . Moreover, each antenna selection
pattern will be used for transmissions and it is assumed
that the MIMO channel remains fixed for channel uses with

.

The block-diagonal coding method proposed in [14] for the
constrained asymmetric MIMO channel can be regarded

as a TAS scheme with .
We have already seen in Section I that scheme is not DMT
optimal in the constrained asymmetric MIMO channel.
However, it should be noted that can achieve almost the
same ergodic capacity as the unconstrained system. In partic-
ular, for any TAS scheme with

, it is easy to see the ergodic channel capacity achieved
by equals and differs from
the capacity of the unconstrained system only in the part.
For example, the ergodic capacity achieved by is roughly
only 1.3 bpcu less than that of the unconstrained system at high
SNR regime.

We remark that the challenge of designing coding schemes
for constrained asymmetric channels lies more on the design
of good TAS scheme than the design of space–time codes. The
best space–time code can still perform poorly if the TAS scheme
has poor DMT performance since the DMT behaves as a perfor-
mance upper bound for any space–time codes.

A. Proposed Optimal Transmission Scheme for

While scheme fails to be DMT optimal, for any
below we provide another transmission scheme and we

will show it achieves the same optimal DMT as the un-
constrained system. Clearly, the maximal value of multiplexing
gain is upper bounded by , hence .
The proposed scheme is the following.

Theorem 1: In an constrained asymmetric MIMO
system with , let be the set of in-
dices of transmit antennas. Given the desired multi-
plexing gain , if , then the TAS scheme

achieves
the optimal DMT of (1). If , then the scheme

achieves DMT .

The only difference between and is that when
, the sets and are used twice more

than the other sets. Thus, compared to or the unconstrained
CDA-based space–time codes, the proposed scheme re-
quires two more channel uses for and six more for .
However, the price of using more transmissions is well paid
off by having a much better DMT performance (compared to

) or having lesser RF chains (compared to unconstrained
CDA codes). Furthermore, the proposed constrained scheme
can achieve the same DMT performance as the unconstrained
codes.

The proof of Theorem 1 involves the outage performance
analysis of the proposed transmission scheme and is relegated to
Appendix I for the ease of reading. In particular, we will prove

Fig. 1. DMT performances of schemes � and � for the ��� �� constrained
asymmetric MIMO system.

in Appendix I that the DMTs achieved by and are given
by

(2)

for , and

(3)

for . In Fig. 1, we show the DMTs of schemes and for
the constrained asymmetric MIMO system. It can be
easily seen that each scheme is DMT optimal in its designated
region.

B. Proposed Optimal Transmissions Schemes for

Now we move our attention to the case of . Let
be the set of transmit antennas. The

proposed scheme is a two-phase transmission. In the first phase,
we use the set of transmit antennas
for the first round transmission. During the second phase, we
change the transmission set to .
This scheme can be applied to signal transmission in, e.g.,

, , or constrained asymmetric MIMO com-
munication systems. It turns out that the above scheme is DMT
optimal and achieves the same DMT performance as the uncon-
strained ones. We have the following theorem.

Theorem 2: In an constrained asymmetric MIMO
system with , let be the set of
indices of transmit antennas. Given the desired multiplexing
gain , the TAS scheme achieves the
optimal DMT of (1), where and are defined as the
above.

Proof: The proof is relegated to Appendix II for the ease
of reading.

Unlike the case of presented in Theorem 1
where we have to use two different TAS schemes to achieve the
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optimal DMT for different values of multiplexing gain
, here for the case of in Theorem 2, only one

TAS scheme is sufficient for achieving for all values of
.

Compared to the unconstrained CDA-based space–time
codes [9] where only channel uses are required for code
transmission, the TAS scheme proposed in Theorem 2 requires

channel uses. For example, in the constrained
asymmetric MIMO system, scheme would require four
channel uses, which is only one more than the unconstrained

CDA code.
Before concluding this section, we remark that the TAS

schemes , and proposed in Theorems 1 and 2 are
not approximately universal in general. A simple way to see
this is to note that any coding method derived from these TAS
schemes would have a code matrix with zero entries; see, for
example, the code given in Example 1. Then, following [28,
Prop. 5], we see such codes (as well as the TAS schemes)
cannot be approximately universal. In fact, it is straightforward
to extend this argument to show that any constrained TAS
schemes cannot be approximately universal at all in general.
On the other hand, albeit not explicitly shown, it can be inferred
from the proofs in Appendixes I and II that the TAS schemes

, and are still able to achieve the same optimal DMT
performance as their unconstrained counterparts as long as
the entries of the channel matrix are i.i.d. and have a joint
probability distribution function that is invariant under unitary
transformations. Hence, these schemes should be regarded as
partially approximately universal.

III. DMT OPTIMAL CODES FOR CONSTRAINED ASYMMETRIC

MIMO SYSTEMS

In Section II, we have identified two DMT optimal transmis-
sion schemes for the constrained asymmetric MIMO systems.
These schemes use only out of transmit antennas during
each transmission, and therefore can be decoded by simple de-
coding methods, such as ZF, sphere, and MMSE decoders. Fur-
ther, the proposed schemes successfully transform the underde-
termined system [15] into a determined system and significantly
reduce the number of required RF chains at the transmitter end
without any performance loss in the DMT sense. In this section,
we aim at providing explicit code constructions that are specif-
ically dedicated to such TAS schemes.

A. Proposed Code Constructions

To achieve the optimal DMT performance promised
by Theorems 1 and 2, we simply employ the multi-
block space–time codes proposed in [23] with certain
necessary modifications. Specifically, given any TAS
scheme with patterns and

, we assume without loss of
generality that divides for all . Otherwise, we could
replace by for some suitable and the resulting scheme
will have the same DMT performance as the original scheme.

Given the multiplexing gain , the space–time coding over
the TAS scheme calls for a number field that is cyclic Ga-
lois over of degree , where

is an integer by construction. Let be the generator of Ga-
lois group . Methods for constructing such number
fields can be found in [9] and [23]. Next, let be the interme-
diate number field that is fixed by the Galois group ,
i.e., we have . Since is cyclic Galois over

, with proper choice of , we can construct a CDA
, where is some

indeterminate satisfying . We refer the interested readers
to [6], [9], and [23] for details on constructing .

Let be the map of left-regular representa-
tion [9] of elements in ; then following [23], the multiblock
space–time code for scheme is

(4)

where

is an integral basis for is a
quadrature amplitude modulation (QAM) constellation set of
size , and is the desired multiplexing gain.

is a constant.
It was proven in [23, Th. 2] that the multiblock code is actu-

ally approximately universal and can achieve the optimal DMT
performance of the underlying MIMO channel. Thus, to adapt

to the TAS scheme , we propose the following transmission
method. Note that each codeword of consists of blocks, and
each block is a matrix of size . As divides for all
by construction, we can partition these blocks into groups,
each of size . Then, for each group , the code
matrices within that group will be transmitted via transmit an-
tennas in set . In this manner, the code will be transmitted
exactly according to the TAS scheme , hence will achieve the
DMT performance associated with due to the approximately
universal property of shown in [23, Th. 2]. We have proven
the following result.

Theorem 3: Given the TAS scheme , let be the multiblock
code constructed as the above. By transmitting according to
scheme , it achieves exactly the DMT performance of .

In particular, following the steps outlined above one can
easily construct multiblock space–time codes for the TAS
schemes , and proposed in Section II. Below we give
an example construction for the constrained asymmetric
MIMO system.

Example 1: For the constrained asymmetric MIMO
system, one could follow either Theorem 1 which gives the
scheme for and

for , or Theorem
2 that suggests . Clearly,
both approaches offer the same DMT performance

. To minimize decoding delay, we will choose
. Such scheme calls for a multiblock space–time code

with blocks, and it can be constructed from a number
field that is cyclic Galois over with degree . So,
we may choose where is a complex, primitive
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fifth root of unity. In this setting, , and it is easy
to see . To construct the CDA, we can set

, which can be shown to be a suitable non-norm element.
Then, for any , we get

where are column vectors of length . The actual transmitted
code matrix, when reformulating as a matrix to corre-
spond to the three transmit antennas and four channel uses, is

To decode using sphere decoders, note that can be regarded
as a 16-dimensional real lattice with full rank . On the other
hand, multiplying the code matrix by the channel
matrix gives a received signal matrix of size over
complex field , hence can be written as a real vector of length

. Now, as entries of are i.i.d. and is of full rank with
probability one, decoding the 16 coordinates of the lattice code

using sphere decoder is straightforward.

B. Simulation Results

In Fig. 2, we present simulation results of the example code
given in Example 1 for the asymmetric MIMO Rayleigh
block fading channel. Two transmission rates, 4 and 6 bpcu, are
simulated. Error performance of the proposed code is compared
to that of the unconstrained CDA-based space–time code
[9]. The CDA code can be regarded as a full-rank real
lattice of 18 dimensions, however, when it is sent through the

channel, the received signal matrix, when written as
a real vector, has dimension only 12. Hence, direct sphere de-
coding of the code is not possible. While it still can be
decoded by various MMSE–GDFE-based receivers [15], [20],
[21], these receivers have different complexities and error per-
formances. As pointed out in [15], the error performances of
these receivers can differ by a few decibels. Therefore, here in
Fig. 2, we resort to the ML decoding of the CDA code,
and the resulting performance can be seen as a benchmark for all
MMSE–GDFE-based receivers. Another reason for using ML
decoders is that we wish to focus on the difference in error per-
formance between the constrained MIMO system and the un-
constrained one, neither the performance nor the complexity of
decoders. In Fig. 2, it is seen that the example code is roughly
1.7 dB better than the CDA at 4 bpcu, but is about 0.7
dB worse at 6 bpcu. The reason for such disagreement is the
following. At 4 bpcu, the proposed code uses 4-QAM as the
underlying QAM set. On the other hand, we have to randomly
puncture six out of 18 dimensions from the lattice of
CDA code such that it has the same rate of 4 bpcu. Probably
due to puncturing, the code does not perform well at
this rate. For 6 bpcu, the CDA uses all 18 dimensions
available with binary phase-shift keying (BPSK) signaling, and
the proposed code uses its all eight complex dimensions (or
equivalently 16 real dimensions) with an amplitude-modulated

Fig. 2. Error performances of the proposed and the �� � �� CDA codes over
��� �� asymmetric MIMO channel.

phase-shift keying (AM-PSK) signaling of .
Thus, from Fig. 2, we conclude that the proposed TAS scheme
when transmitted using multiblock space–time code can achieve
an error performance close to that of the unconstrained code, and
in particular, achieves the same diversity gain and DMT.

Finally, we remark that both codes, proposed and uncon-
strained CDA, can be further optimized by using
techniques such as ideals and maximal orders [17] to improve
their error performance.

APPENDIX I
PROOF OF THEOREM 1

As and differ only in the number of channel uses for
each , to simplify notations here we focus on the general
scheme ,
where the th selection will be used times
during transmission. Moreover, for each , let
be a length- , zero-mean, complex Gaussian random vector
with covariance matrix . The subindex

, represents the th use of selection pattern
. Thus, given , the received signal vector is

(5)

where and is length- vector consisting of
the fading coefficients between the th transmit antenna and
the receive antennas. is the corresponding additive complex
Gaussian noise with entries. Given the channel matrix

, the mutual information between the transmit and receive
signal vectors is
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where dropping the constant factor of does not affect the
asymptotic mutual information at high SNR regime. Given the
desired multiplexing gain , the outage probability of is

(6)

where is the total number of channel uses. We
begin by analyzing the sum of mutual information in (6). First,
the summand associated with , i.e., , can be rewritten
as

where is the eigendecomposition of the rank- ma-
trix is the Frobenius norm of vector , and where

. Since is a complex Gaussian matrix with i.i.d.
entries, has the same joint probability density func-

tion (pdf) as . Furthermore, we rewrite the outage probability
in the following form:

where is the joint pdf of complex Gaussian vector , and
where (i) follows from that is random and independent of .
Equality (ii) is because is fixed and unitary, and because
and have the same joint pdf. Hence, transforming
to does not affect the value of outage probability (6). On the
other hand, in evaluating , given
the fading coefficients and , the channel matrix associated
with the second pattern changes to ,
and following the same reasoning the second summand in (6)
becomes

where is the eigendecomposition of the rank- matrix
and . Again, we could replace the random

vector by , and then proceed to investigate the conditional
probability . Literally, the
above process is closely related to the chain rule of condi-
tional probability. Instead of handing all the channel vectors

to the receiver to determine whether an outage

occurs, in the above derivation, we first reveal to the receiver.
Given , hence is fixed, there is no difference in probability
whether we tell the receiver the second fading vector is or

, and so on. The whole process does not change value of
outage probability since and are of the same pdf. By
repeating the above process, we see

, where is the indicator function,
i.e., telling whether an outage does occur. Thus, given the
channel vectors , we can rewrite the overall
mutual information resulting from as

(7)

where we have set for convenience. Set
; then, at high SNR, we can rewrite (7) as

where . Thus, following the Laplace
method as in [16], the diversity gain achieved by scheme is

(8)

where the constraint set is

While minimizing over appears to be a nonlinear op-
timization problem, below we show how it can be converted to a
linear programming problem. First note that each has prob-
ability exponentially zero if . Second, to minimize ,
it suffices to consider only as for

and setting minimizes the cost . Thus,
we have the following sets of linear constraints:

for all (9)

Next, for , we set
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and (9) implies . As by definition, we
see . Hence, it follows that

(10)

(11)

(12)

Similarly, for

and this leads to the following linear constraints:

(13)

(14)

(15)

To achieve the desired multiplexing gain , the constraint on the
is given by

(16)

Prior to minimizing of (8) subject to constraints (9)–(16),
we observe the following.

O1) is the only variable appearing in inequalities (10)
and (11) for and , and does not appear any-
where else. Adding these two inequalities suggests

, and we will set to its
maximal possible value to minimize .

O2) There is a symmetry between the variables and
for in (10), (11), (13), and (14) for
both schemes and . So we may set these variables
at the same value.

With the above observations in mind, we now begin to find the
minimal possible .

1) For the scheme , i.e., for all , we have
and we will show

(17)

and

(18)

To show the above, from O1 and (16), the maximal possible
value for is . That is, for , we
have and for the remaining. Hence,

for all and . Thus, the
diversity gain in this interval is

and shows (18). When
. By observation O2, we set

for simplicity. As
for all , again by symmetry, we can without loss of

generality set . Then, we can rewrite (16) as

(19)

and from (10)–(16) we have , and

, and for all other values of
and . Combining the inequality with
the ones for other ’s, we get

, where the last inequality
follows from constraint (19). Similarly, following the same
approach with inequality , we end up with

. As
appears in negative in both inequalities, we will set
to its maximal value. Together with observation O1, we set

. It is easy to verify that
with the above, (18) remains to hold. For ,
such setting gives and for

. Equation (19) is replaced by
. Combining with the

remaining inequalities gives
, and proves

(17).
We remark that it is also possible to solve the linear pro-
gramming (10)–(16) directly using any linear program-
ming computer packages and verify the results (17) and
(18). Finally, we see for , the DMT achieved by

is given by

for (20)

2) For scheme , i.e., the case when and
the remaining , we have , and we will
show

(21)

and

(22)

First, again from observation O1, for , we
can set and obtain

. This shows (21) in this interval
of interest. For , we will set ,
and due to observation O2.
Constraint (16) now changes to

(23)

Adding the inequalities of
, and the remaining ones

gives

,
where the last inequality follows from (23). Hence, we
will make as small as possible. From (23), we can set

whenever and
if . Thus, for , we see

, and this gives (21). On
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the other hand, combining
, with the others gives

.
This suggests that we will maximize . Pushing to
requires from (23). With , (23) gives

. Fur-
ther, setting gives

, and .
Hence,

, and one should
bear in mind that in this interval of
interest. It then suggests that we should set to its
maximal, i.e., . Finally, with the above, we
have and this gives (22). In par-
ticular, it is easy to show that when we
can set as its optimal value in this region. Fi-
nally, for the region of , the DMT achieved by
scheme is given by

for (24)

The proof is now complete after noting that the DMTs (20)
and (24) achieved, respectively, by schemes and in
the region of and match exactly the
optimal DMT given in (1).

Remark 1: To help the readers understand better the DMT
analysis presented in this section, below we show how our
method can be applied to analyze the DMT of conventional

MIMO system. The result will be a rediscovery of
the DMT found by Zheng and Tse [16], but our approach
is rather elementary in the sense that we do not require the
knowledge of the complicated eigenvalue distribution of
Wishart matrices as in [16]. To this end, substituting
into linear constraints (9)–(16) gives

, and with
. Adding all the linear constraints of gives

. It shows
that we will maximize and set it as .
Thus, for , we see and and this
gives . For , we then have
and . Hence, the minimal is achieved at

and , and
this gives . Overall, we show the DMT of
system equals . This agrees with
the DMT shown by Zheng and Tse [16].

APPENDIX II
PROOF OF THEOREM 2

First note that in the proposed transmission scheme , the set
of transmit antennas is used for both
transmissions, and in each channel use, we add a new transmit
antenna to the set , i.e., for .

With a similar argument as in Appendix I, the channel outage
probability of scheme is given by

where , random matrix represents the fading
coefficients between transmit antenna set and receive an-
tennas, and is the channel vector associated with transmit an-
tenna .

Let be the eigendecomposition of with non-
decreasing eigenvalues ,
where with probability . As ,
following similar arguments as in Appendix I shows

(25)

where . Clearly, since entries of
are i.i.d. random variables, and are the same

joint pdfs. Set and ; then
we can rewrite the outage event as

(26)

Following [16] and [29], the joint pdf for
and ’s is given by

if any
otherwise

where

Note that there is a symmetry between the in the above and
in (26). Hence, in finding the dominant case of ’s, we are
free to set and the diversity gain achieved by

equals
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where
. For , it can be shown

that when for some positive integer , the
infimum is achieved at

if
if
if
if
if and
if and

and the resulting diversity gain . This completes
the proof.
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