利用光纖光柵之穩頻DFB半導體雷射及其注入鎖定外腔式 半導體雷射之研究

研究生:陳沛霖

指導老師:潘犀靈 教授

國立交通大學光電工程研究所

在本論文中,我們利用一個簡單且有效的方法來做 DFB 半導體雷射的穩頻。利用 光纖布拉格光柵作為頻率的鑑別器,將雷射的頻率鎖在光纖光柵的穿透頻譜上。穩頻的 結果可分為短時間及長時間的衡量,對於短時間穩頻的結果,4分鐘之內可以將頻率擾 動降至 22MHz,而對於將近17小時的量測,雷射頻率的擾動仍在 50MHz 以下。

我們將上述穩頻好的 DFB 半導體雷射注入鎖定到外腔式半導體雷射內,並觀察外 腔式半導體雷射輸出頻率的變化。發現當外腔式半導體雷射操作在臨界電流之下,輸出 頻譜由 DFB 半導體雷射所決定,其頻率擾動可以降到大約 23MHz。而若外腔式半導體 雷射操作在臨界電流之上,我們發現在一開始注入鎖定時,外腔式半導體雷輸出波長可 以被 DFB 半導體雷射拉住,但是經過一段時間,輸出頻譜將出現波形分裂的現象,我 們推斷這是因為外腔式半導體雷射與 DFB 半導體雷射相互競爭的結果。

A Study of Frequency Stabilization of a DFB Laser Diode Using a Fiber Bragg Grating and Injection Locking of External-Cavity Semiconductor Laser

Student: Pei-Lin Chen

Advisor: Prof. Ci-Ling Pan

Institute of Electro-Optical Engineering College of Electrical Engineering and Computer Science National Chiao Tung University

A simple and effective method for frequency stabilization of distributed feedback (DFB) laser diode is proposed. By using a fiber Bragg grating (FBG) as a frequency discriminator, the wavelength of DFB is locked to the side of transmission profile of the FBG. The frequency fluctuation of the DFB laser LD reduced to 50 MHz after stabilization for a period of 17 hour. The square root of the Allan variance is 3.25×10^{-9} at sampling time of 60s.

At the second part of our experiment, we do the injection locking of the external cavity semiconductor laser (ECL) by using our stabilized DFB laser diode. When the ECL is operated at $(I/I_{th}) = 0.96$ below threshold, from the error signal, we get the frequency fluctuation of ECL is about 23MHz during one-hour measurement. When the ECL is operated at $(I/I_{th}) = 1.09$ above threshold, we find the waveform of ECL splits into two modes because the ECL competes with the DFB laser.

Acknowledgment

致謝

本論文得以順利的完成,在此感謝指導老師潘犀靈教授悉心教導,及口試委員 們:施宙聰教授、趙如蘋教授、林恭如教授所提出的意見與指正。

在這兩年研究生活中,我真的很感謝藍玉屏學姊在實驗上的協助及理論的教導, 使我獲益良多,也很感謝量測中心黃卯生室主任及黃銘杰學長對於實驗的裝置,提供 許多寶貴的意見。除此之外,也謝謝實驗室的:老劉、許菽芳、蔡宗儒、李晁逵、王 怡超、陳晉瑋、陳昭遠、湯宗達、小郭、小巫、林士軒、林建宏、石宗盛學長學姊們, 及同學們:奕帆、之揚、龍進、秉其、學智對於我課業和生活上的幫助,還有也謝謝 學弟們:宗翰、羅誠、冠文、照仁、弘倫、禎佑、沁融幫忙處理實驗室的事務及實驗 器材的協助,再來我要謝謝我所有的好朋友們:姻君、函岑、品嘉、晏妃、慧芬、雯 娟、衣凡、Mendy、Rex、怡瑱、Snoopy.....等,因為有你們的陪伴,我的研究生生活 才如此多采多姿,也因為有你們的鼓勵,我才能順利畢業,真的太謝謝你們了!另外, 我要特別謝謝垂詠這八年來的照顧,若沒有你的支持鼓勵與包容,我是沒有辦法拿到 我這夢寐以求的學位的,謝謝你!

最後,我要感謝我最親愛的爸爸、媽媽和妹仔,在我求學過程中,一路上給予我 無限的關懷與支持,使我無後顧之憂,順利完成碩士學位!耶!我愛你們!

~謹以此論文獻給我最親愛的爺爺奶奶~

于新竹 交大

2004/07/15

Content

Chinese abstract	i
English abstract	ii
Acknowledgment	iii
Content	iv
Graphic content	vi

Chapter 1 Introduction

		1

1.1 Background	1
1.2 Previous methods	6
1.3 Motivation and Objectives	8
1.4 Organization of the thesis	9
The second second	

Chapter 2 Basic Concept

10

2.1 Fiber Bragg grating	10
2.1.1 Introduction	10
2.1.2 Fabrication of fiber Bragg grating	11
2.1.3 Resonant wavelength for fiber Bragg grating	13
2.1.4 Coupled-mode theory	14
2.1.5 Strain and temperature sensitivity of fiber Bragg grating	16
2.2 Injection locked semiconductor laser	17
2.2.1 Introduction	17

Chapter 3 Circuit description and experimental results of frequency	23
stabilization for a DFB laser diode	
3.1 Experimental setup	23
3.2 Operation principle	25
3.3 Experimental results	31
3.3.1 Short-term measurement	31
3.3.2 Long-term measurement	33
3.3.3 Allan Variance	36
Chapter 4 Injection locking of external cavity laser (ECL) by the stabilized DFB laser	39
4.1 The characteristics of ECL	39
4.2 Experimental setup	43
4.3 Experimental results	44
4.3.1 ECL is operated below threshold	44
4.3.2 ECL is operated above threshold	52

2.2.2 Basic theory-----

18

Chapter 5 Conclusions

5.2 Eutore work	61
Reference	63

Graphic content

Fig. 1-1	Fig. 1-1 Two different multiplexing techniques for increasing the	2
	transmission capacity on an fiber. (a) Electronic or optical time division	
	multiplexing and (b) wavelength division multiplexing	
Fig. 1-2	Locking a DFB to a wavelength relative to atomic transition line	6
Fig. 1-3	Transmission spectrum of the vibrational-rotational line of ${}^{13}C_2H_2$	7
Fig. 2-1	Illustration of a fiber Bragg grating (reflection grating)	10
Fig. 2-2	Illustration of a fiber Bragg grating (transmission grating)	11
Fig. 2-3	A Bragg grating made by exposing a fiber with a UV pattern	12
Fig. 2-4	The diffraction of a light wave by a grating	13
Fig. 2-5	Reflection spectrum of fiber Bragg grating	15
Fig. 2-6	Injection locking of semiconductor laser	18
Fig. 3-1	The experimental setup of frequency stabilization of a DFB laser diode using	24
	a fiber Bragg grating	
Fig. 3-2	The transmission profile of fiber Bragg grating	25
Fig. 3-3	The L – I curve of DFB laser diode	25
Fig. 3-4	The spectrum of DFB laser diode	26
Fig. 3-5	(a) DFB wavelength tuning efficiency by driving current (b) DFB	26
	wavelength tuning efficiency by temperature controller	27
Fig. 3-6	DFB wavelength tuning efficiency by driving current at $T = 13^{\circ}C$	27
Fig. 3-7	Power variation of DFB going though FBG by tuning DFB driving current	28
Fig. 3-8	Principle of experimental scheme	29
Fig. 3-9	The power variation using function generator	30
Fig. 3-10	The difference of PD1 and PD2 illustrated in Fig. 3-9	30
Fig. 3-11	Error signal on unstable state and on stable state	31
Fig. 3-12	Wavelength variation of DFB on free running state	32
Fig. 3-13	Frequency stability measured by scanning Fabry-Perot interferometer	32
Fig. 3-14	Feedback voltage acquired by multimeter for a period of 2.5 hour	33
Fig. 3-15	Temperature variation for over two hours	34
Fig. 3-16	Error signal without stabilization over 10 mins	35
Fig. 3-17	Wavelength shift without stabilization over 10 mins	35
Fig. 3-18	Error signal on stable state over 18hr	36
Fig. 3-19	Relative square root of Allan variance by analyzering the data of feedback	37
	voltage	
Fig. 3-20	Relative square root of Allan variance by analyzing the data of error signal	37

Fig. 3-21	Relative square root of Allan variance by analyzing the data of error signal	38
	of more stable period	
Fig. 4-1	Two common configurations of ECL: Littrow (a) and Littman (b)	40
Fig. 4-2	L-I curve of the laser diode without external cavity	41
Fig. 4-3	Spectrum of the laser diode without external cavity	41
Fig. 4-4	L-I curve of the laser diode with external cavity	42
Fig. 4-5	Spectrum of the laser diode with external cavity	42
Fig. 4-6	Experimental setup of injection locking of ECL by the DFB laser diode	43
Fig. 4-7	Spectrum of ECL below threshold with DFB injected	44
Fig. 4-8	Spectrum of below-threshold ECL with tuning DFB driving current	45
Fig. 4-9	ECL wavelength tuning efficiency by varying the driving current of DFB laser	45
Fig. 4-10	Frequency fluctuation of ECL with unstabilized DFB injection locking	46
Fig. 4-11	Frequency fluctuation of ECL with unstabilized DFB injection locking	46
Fig. 4-12	Frequency fluctuation of stabilized DFB laser diode over 1 hour	47
Fig. 4-13	Error signal of stabilized DFB laser diode over 1 hour	48
Fig. 4-14	Wavelength variation of the commercial tunable laser measured by	48
	wavemeter over 30 mins	
Fig. 4-15	Frequency fluctuation of the commercial tunable laser measured by scanning	49
	Fabry-Perot interferometer over 30 mins	
Fig. 4-16	DFB power variation measured by Fabry-Perot interferometer on	50
	non-scanning state	
Fig. 4-17	Frequency fluctuation of below-threshold ECL with stabilized DFB injection	51
	locking	
Fig. 4-18	Error signal of DFB while injection locking before-threshold ECL over 1 hour	51
Fig. 4-19	Spectrum of above-threshold ECL with DFB injecting	52
Fig. 4-20	Spectrum of only ECL as blocking DFB laser diode	53
Fig. 4-21	Spectrum of only DFB laser diode as blocking ECL	53
Fig. 4-22	Spectrum of injection-locked ECL by DFB laser	54
Fig. 4-23	Result of scanning Fabry-perot interferometer of only ECL as blocking DFB	55
	laser diode	
Fig. 4-24	Result of scanning Fabry-perot of interferometer only DFB laser diode as	55
	blocking ECL	
Fig. 4-25	Scanning Fabry-perot interferometer results of injection-locked ECL by	56
	using DFB laser diode	
Fig. 4-26	Observation of ECL output wavelength as tuning DFB drrving current	57

Fig. 4-27	Frequency fluctuation of above-threshold ECL with stabilized DFB injection	58
	locking	
Fig. 4-28	(a) in the beginning of injecting locking of above-threshold ECL (b) 20	58
	minutes later after injecting locking of above-threshold ECL	
Fig. 4-29	Frequency fluctuation of ECL over 1 hour measurement	59
Fig. 4-30	Temperature variation while recording the frequency fluctuation of ECL	59
Fig. 4-31	Frequency fluctuation of above-threshold ECL with stabilized DFB injection	60
	locking over 1 hour	
Fig. 4-32	Error signal of DFB while injection locking above-threshold ECL over 1	60

hour