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Abstract A global image restoration scheme using non-
negative matrix factorization (NMF) is proposed in this
paper. This NMF-based image restoration scheme can be
used for inspecting the defects in directional texture
surfaces automatically. Decomposing the gray level of
image pixels into an ensemble of row vectors, we first
reduce the data set from original data space into a lower-
dimensional NMF space. The repetitive and periodical
primitives are well reconstructed by two lower-dimensional
basis and weight matrices with nonnegative elements,
named nonnegative matrix approximation (NMA). Then
the local defects will be revealed by applying image
subtraction between the original image and the NMA. As
a consequence, the directional textures are eliminated, and
only local defects are preserved if they initially are
embedded in the surface. A supervised heuristic, elbow of
residual curve rule, is devised which helps users to
determine a proper basis space size of a specific image.
Experiments on a variety of directional texture surfaces are
given to demonstrate the effectiveness and robustness of the
proposed method.

Keyword Directional texture . Nonnegative matrix
factorization . Defect inspection .Machine vision

1 Introduction

Directional texture is a set of line primitives in some regular
or repetitive arrangement over an entire texture region.
Directional texture has a homogeneous configuration and is
commonly found on machined parts, semiconductor prod-
ucts, nature woods, and fabric textiles. Detecting local
defects embedded in a directional texture surface is a
common application of computer vision. Numerous
approaches to the problem have been proposed, including
statistical, structural, spatial domain filtering, spectral
domain filtering, and model-based approaches [1, 2]. The
methods which are less affected by noise and are immune
to the limitations of local feature extraction or template
matching are always recommended such as the Fourier
transform [3, 4], the wavelet transform [5], the Gabor filter
[6, 7], the golden-block-based self-refining algorithm [8],
the singular-value decomposition [9], the anisotropic kernel
[10], the independent component analysis [11], and the
principal component analysis [12]. These are widely used
in surface quality control.

This paper proposes a new defect inspector for direc-
tional textures based on the nonnegative matrix factoriza-
tion (NMF). NMF factors a matrix X into two submatrices,
W and H, where W has far fewer columns than X, and H
has far fewer rows than X. A nonnegative matrix
approximation (NMA) can be generated to determine the
latent structure in the data. In general, negative elements of
the factored matrix will contradict the physical realities in
many applications. The pixels in a grayscale image are one
example; they must have nonnegative intensities—other-
wise, they cannot be interpreted rationally. To tackle this
philosophical dilemma, NMF enforces the constraint that
the elements of the two submatrices must be nonnegative
such that this factoring technique can be used more readily
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with digital image processing. For a directional texture
surface, the two decomposed lower-dimensional submatri-
ces involve the texture basis; they are ideally suited for
characterizing the repetitive and periodic line primitives in
grayscale images. Local defects are preserved by image
subtraction of the original image from the reconstructed
NMA.

Underspecification or overspecification of the basis
space size, however, distorts the results. The obvious
problem of underspecification involves the loss of texture
information in the NMA. The effects of overspecification
may incorrectly result in including the defects in the
NMA. This paper describes a supervised heuristic elbow
of residual curve (ERC) rule that is developed to enable
users to extract the proper basis space size automatically.
Some preliminary experiments are discussed to demon-

strate that the proposed NMF-based image restoration
scheme with the ERC rule is effective and robust when
used for inspecting various defects on distinct directional
texture surfaces.

The rest of this paper is organized as follows. In
Section 2, we review the NMF applications to computer
vision. In Section 3, we describe the proposed NMF-based
image restoration scheme. In Section 4, we present the
experimentation and corresponding results. Our concluding
remarks are discussed in Section 5.

2 NMF applications to computer vision

NMF comes from studies of positive matrix factorization
(PMF) in the middle 1990s [13]. The goal was to use factor

Fig. 1 (a1–a4) Four artificial images with different linear primitives; and (b1–b4) the corresponding residual curves
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analysis on environmental data to find a small number of
root causes that explained a large set of measurements.
PMF then became more widely known as NMF after
the seminal paper of Lee and Seung [14] that demon-
strated how to obtain a parts-based representation for
facial image data. Many researchers subsequently used
NMF to map samples into a low-dimensional and most-
expressive feature space in the application of facial
representation and recognition [15–17]. Other NMF
applications in computer vision exist as well. Guillamet
et al. introduced NMF to the context of image patch
classification and recognition [18]. Liu and Zheng used
NMF for object recognition [19]. Zhang et al. presented an
image fusion method based on NMF [20]. In the field of
real-time medical image analysis, Lee et al. showed that
NMF would be feasible for image segmentation and factor
extraction from dynamic image sequences in nuclear
medicine [21]. Ahn et al. extended NMF to a multilayer
network model for dynamic myocardial positron emission
tomography image analysis [22]. Lee et al. used NMF to
select discriminative features in the time–frequency
representation of motor imagery electroencephalograms
[23].

Fig. 2 a Artificial spot defective image; and b–h NMAs with k=1, 2,..., 7, respectively

Fig. 3 a Moving range control chart of Fig. 1 (b2) in the training
stage; and b restored image of Fig. 2a in the inspection stage
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3 NMF-based defect detection

3.1 Nonnegative matrix factorization

We first slice image X of size m×n into an ensemble of
m row vectors, X=[x1, x2, …, xm]

T, and prespecify a
positive integer k < min(m, n). NMF factors matrix X into
two nonnegative submatrices, W of size m × k and H of
size k × n,

X � WH ð1Þ
where k is the basis space size that represents the intrinsic
data dimensionality. Columns of W are the underlying
basis vector, i.e., each of the n columns of X can be
determined from k columns of W. The columns of H
contribute the weights associated with each basis vector.
The fact that both W and H must be nonnegative is a
natural requirement for image analysis.

The conventional approach to finding W and H has been
to minimize the difference between X and WH,

min
W ;H

f W;Hð Þ ¼ 1
2 X�WHk k2F

s:t:wia � 0;hbj � 0;8i; a; b; j
ð2Þ

where ||˙||F is the Frobenius or Hilbert-Schmidt norm. There
are several algorithms for solving the bound-constrained
optimization problem of Eq. 2, including the multiplicative
update method [24] and the alternating nonnegative least
squares with projected gradient (ANLSPG) method [25].
With faster convergence and strong optimization properties
from the empirical experiments in [25], the ANLSPG
algorithm is attractive for NMF learning and is used in this
paper. The NMF k-dimensional decomposition with the
ANLSPG learning algorithm is represented as a function of
NMFk(X) in the following sections.

The four artificial images containing well-defined peri-
odic line structures either in unidirectional or in orthogonal
form and with or without rotation shown in Fig. 1 (a1–a4)

were used to demonstrate the approximation ability of
NMF. We applied NMF to these images using basis space
sizes of W and H from 1 to 10 and then calculated the
corresponding Frobenius norm of the residuals between the
original image and the reconstructed NMA simplified as a
residual in the following sections. The residual curves
resulting from Fig. 1 (a1–a4) for increasing basis space size
are shown in the corresponding Fig. 1 (b1–b4). Note that
the contours of Fig. 1 (b1–b4) decrease monotonically as
the basis space size increased. In other words, the four
NMAs were reasonably reconstructed closer and closer to
the corresponding original images as the basis space size is
larger and larger.

We also demonstrated the effect of basis space size on
the approximation ability of NMF for faulty texture
surfaces. Figure 2a is the same as Fig. 1 (a2) with artificial
spot defects on it. We transformed Fig. 2a into NMF space
and then reconstructed the NMAs using various basis space
sizes. Figure 2b shows the NMA obtained by reconstructing
the two nonnegative submatricesW and H with sizes of m×1
and 1×n, respectively. Figure 2b is a uniformly reconstructed
result where the background texture of Fig. 2a was not
shaped at all. For k=2, the rotated line primitives of Fig. 2a
were not well shaped, and only horizontal linear textures
appeared, as shown in Fig. 2c. For k=3, the background
texture of Fig. 2a was approximated as shown in Fig. 2d but
accompanied by some blurring. The phenomena shown in
Fig. 2b–d are the result of underspecification of k and involve
a loss of texture information in NMA. For k=4 or k=5, the
background texture of Fig. 2a was approximated relatively
well, as shown in Fig. 2d, e, even if a few defects and some
noise were present. These relatively structured results signify
the directional texture of Fig. 2a, which was sufficiently
represented for k=4 or k=5. For even larger values of k, the
background texture was polluted with increasingly significant
spot defects, as shown in Fig. 2f, g. These phenomena are the
result of overspecification of k; defects in the NMA were
wrongly included.

Fig. 4 Binarized image of
Fig. 3b with a c=3, b c=5, and
c c=7
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Fig. 5 (a1–a4) Nondefective training samples of the OLED, internal thread, PLED, and contact lens dioptric pattern, respectively; (b1–b4)
residual curves corresponding to (a1–a4); and (c1–c4) moving range control charts corresponding to (b1–b4)
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3.2 NMF-based image restoration

As shown in Figs. 1 and 2, the NMF approximation may be
regarded as a kind of self-refining scheme that can self-
reconstruct a referential golden template of the original
directional texture surface. The aim of the surface defect
inspection application is to obtain a restored image XR to
be used in template matching for background texture
removal. We initially reconstructed a close approximate
texture of the original image, i.e., NMA, by properly
selecting the value of k and then highlighting the discrep-
ancies between the original image and the NMA by image
subtraction. The above idea can be formulated as,

XR ¼ X� NMFk Xð Þ ð3Þ
Compared with the available template-matching meth-

ods, the proposed scheme does not require a pretraining
stage to build up a golden template; it requires only the
sample itself without constraint on horizontal and vertical
shifting or changes in illumination. These are discussed in
detail in Sections 4.2 and 4.3.

3.3 Basis space size

As shown in Fig. 2, underspecification or overspecification
of the basis space size definitely distorts the NMA. For this
reason, we must select an appropriate value for k in
NMFk(X) in Eq. 3 that will sufficiently approximate the
texture structure so that subtraction can be used to obtain

the restored image. However, even once the value of k is
selected, there is still the unresolved issue remaining that no
optimal rule for NMF decomposition is available. There-
fore, the value of k is generally predetermined either
empirically by trial and error or though some heuristic
approaches. We design a supervised ERC rule to determine
the k value that indicates an elbow in the plot of the basis
space size as a function of the residual. In general, an elbow
signifies the basis space size at which NMF shows its
limiting approximation ability for the original image.
Below the dimensionality of the elbow point, the residual
curve has a steeper slope, which indicates significant
improvements due to capturing the most latent organization
and structure within the given image. However, above the
dimensionality of the elbow point, the residual curve has a
flatter slope, which indicates insignificant improvements
and waste of computation time. The ERC rule eliminates
human intervention for the choice of the proper basis space
size for a particular directional texture image. A defect-free
training image must be prepared for the ERC rule.
Residuals for basis space sizes of 1 to N in increments of
1 are generated first, i.e., R1

F, R2
F, …, RF

N. Next, the
absolute value of the difference between two consecutive
residuals is calculated by

MRi ¼ RF
i � RF

iþ1 ð4Þ
where i=1, 2, …, N−1. The physical meaning of MRi is the
residual curvature between RF

i and RF
i+1. The residual

curvatures are then fed into a moving range control chart

Fig. 6 a–d Histogram of correct detection rate as a function of c for the OLED, internal thread, PLED, and contact lens dioptric pattern,
respectively
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that is well suited to individual measurements and tracking
the variation of the residual sequences. The upper control
limit (UCL) in the moving range control chart is

UCL ¼ 3:267�MR ð5Þ

where MR is the average of all the residual curvatures. Note
that the physical meaning of this moving range control
chart procedure is to detect the special cases of the residual
curvatures that indicate potential elbows of a residual curve.
If no MRi exists outside the UCL, the shape of the residual
curve is very smooth without an elbow. In that case, the
basis space size of the image is equal to 1. If only one MRi

exists outside the UCL, then an elbow appears. That is, the
residual curve tends to be smooth after i+1 and can be used
to represent the basis space size for the given image. If

more than one MRi exists outside the UCL, then many
elbows appear. That is, the residual curve tends to be smooth
after the elbow with the largest index. Finally, the index of the
elbow is used as the basis space size in the following
inspection stage. However, the proposed scheme is hampered
by image rotation because the basis space size for a given
defect-free image is determined in a supervised manner.
Details of this are discussed in Section 4.4. We used Fig. 1
(a2) as the defect-free training sample and Fig. 2a as the trial
defective one. In the training stage, we first decomposed
Fig. 1 (a2) to generate NMAs for basis space sizes from 1 to
10. Empirically, N=10 was sufficient for a given directional
texture surface. As shown in Fig. 1 (b2), we calculated the
residual array (RF

1, R
F
2, …, RF

10) between Fig. 1 (a2) and
the ten reconstructed NMAs. Next, a series of residual
curvatures (MR1, MR2, …, MR9) was fed into the moving

Fig. 7 (a1–a4) One nondefective OLED panel and three defective ones with a hole, scratch, and erosion; (b1–b4) corresponding restored images;
and (c1–c4) corresponding binarized images
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range control chart for elbow detection. In Fig. 3a, MR2 and
MR4 were outside the UCL and regarded as multielbow
cases. The k value of Fig. 1 (a2) was therefore set to 5, i.e.,
W of size m × 5 and H of size 5 × n were sufficient for
global texture approximation in the inspection stage.
Figure 2f shows the NMA of the trial sample Fig. 2a based
on a basis space size equal to 5. Figure 3b shows the
corresponding restored image generated from Eq. 3. The
global texture was removed or blurred, and the local dark
spot defects were distinctly preserved.

3.4 Statistical process control binarization

Since the intensity of the pixels in the restored image has
little variation, we can use the statistical process control
(SPC) binarization method [3] to establish the upper and

lower control limits for highlighting defects. The SPC
binarization method can be described by

XB ¼ 255 if m� c � s < XR < mþ c � s
0 otherwise

:

�

ð6Þ
where c is a control constant, and μ and σ are the mean and
standard deviation, respectively, of the gray levels of XR. If
a pixel has a gray level that falls between the upper and the
lower limits, it is shown as white and is considered to be a
texture element that should be removed. Otherwise, it is
shown as black and is considered to be a defective element
that should be preserved. We examined the effect of three
different values of c in Fig. 3b; the results are shown in
Fig. 4a–c. Figure 4a gives the binarized result of Fig. 3b for

Fig. 8 (a1–a4) One nondefective internal thread and three defective ones with a scratch, collapse/flaw, and collapse/scratch; (b1–b4)
corresponding restored images; and (c1–c4) corresponding binarized images
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c=3. We observed that the directional textures were not
fully white when the control constant was too small; Fig. 4a
contains much noise. Figure 4b gives the binarized result of
Fig. 3b for c=5. An appropriate constant control value
produced white directional textures and dark defects more
precisely. Figure 4b shows the defects clearly. Figure 4c
gives the binarized result of Fig. 3b for c=7. We observed
that both the directional textures and the defects became
white when a large control constant was used. The defects
were almost eliminated in Fig. 4c.

We select the parameter c in Eq. 6 in another training
stage after determining the appropriate value of k. A set of
training images with approximately equal numbers of
defective and defect-free samples must be prepared. The
confusion matrices are then recorded to determine the
number of correct and incorrect detections in a supervised
manner for various values of c. Finally, the c value with
highest correct detection rate is selected.

The detailed procedure of the proposed scheme is
summarized as follows.

Training k: 
01      Input a defect-free training image XT; 
02      Generate the first ten residuals: RF

i = ||XT  NMFi(XT)||2F, i = 1, 2, , 10; 
03      Calculate the residual curvatures: MR i = RF

i  RF
i+1, i = 1, 2, , 9; 

04      Feed  the  residual  curvatures  into  moving  range  control  chart  for  elbow 
detection; 

Training c: 
01    Input M defect-free and defective testing images {XTi} with closely balanced

sample size and the corresponding supervised class labels; fix the k value; 
02   FOR i = 1 to M
03            Global texture approximation: NMFk(XTi); 
04            Global texture removal: XRi = XTi  NMFk(XTi); 
05           FOR j = 0.5 to 8.0 with step of 0.5 

06                    Local defects extraction: XBi = 255, if  j  XRi + j

; XBi = 0, otherwise; 
07                    Update the confusion matrix: Cj; 
08           ENDFOR 
09     ENDFOR 
10     c = j, if 

j
max (trace(Cj)/M); 

Inspecting: 
01    Input inspected image XI; fix the k and c values; 
02    Global texture approximation: NMFk(XI); 
03    Global texture removal: XR = XI  NMFk(XI);

04    Local defects extraction: XB = 255, if  c  XR + c  XB = 
0, otherwise.

4 Experiment results

In Section 4.1, we implemented the proposed scheme and
conducted experiments to evaluate its performance in
detecting defects for different product surfaces which were
imaged with size 180×180. Several types of directional
texture patterns with defective or defect-free samples were
used, including the organic light-emitting diode (OLED)
panel, the internal thread, the polymer light-emitting diode
(PLED) panel, and the contact lens dioptric pattern. In

Sections 4.2 to 4.4, some preliminary and quantitative
experiments were also conducted to demonstrate the effects
on the proposed scheme of shifting, illumination changes,
and image rotation. Furthermore, a sensitivity analysis of
the parameters k and c is given in Section 4.5. The
inspection algorithm was implemented on AMD Athlon
64 X2 dual-core processor 3600+ (2.01FHZ) PC with 2GB
RAM and was programmed by MATLAB in which the
ANLSPG source code for NMF learning was adopted from
[26] in which the tolerance for a relative stopping condition
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and the limit of iterations were set as 0.00001 and 500,
respectively.

4.1 Directional texture surface inspection

For the k training stage, we prepared four defect-free
training images with distinct directional texture; these are
shown in Fig. 5 (a1–a4) as follows: an OLED panel with a
periodic unidirectional line structure in Fig. 5 (a1); an
internal thread with a periodic, unidirectional, and rotation-
al line structure in Fig. 5 (a2); a PLED panel with a periodic
and orthogonal line structure in Fig. 5 (a3); and a contact
lens dioptric pattern with a periodic, orthogonal, and
rotational line structure in Fig. 5 (a4). The corresponding
residual curves are shown in Fig. 5 (b1–b4), and the related
corresponding moving range control charts are shown in

Fig. 5 (c1–c4). As shown in Fig. 5 (c1 and c3), there was
no residual curvature outside the UCL, which means that no
elbow appeared. Thus, both the OLED and PLED panel
could be approximated well by only NMF1(X). In Fig. 5
(c2 and c4), one of the residual curvatures was outside the
UCL, which means that the residual curve did have an
elbow. This was because a rotated directional texture
always needs a larger basis space size to represent the
latent structure. The elbow in Fig. 5 (c2) was equal to 6, so
the internal thread was approximated by NMF7(X). The
elbow in Fig. 5 (c4) was equal to 3, so the contact lens
dioptric pattern was approximated by NMF4(X).

After obtaining the k value of each training sample in
Fig. 5 (a1–a4), we prepared another 15 individual training
samples (seven defect-free and eight defective samples) to
determine the c value. As shown in Fig. 6a–d, we recorded

Fig. 9 (a1–a4) One nondefective PLED panel and three defective ones with a dark point, particle, and scratch; (b1–b4) corresponding restored
images; and (c1–c4) corresponding binarized images
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the corresponding number of correct detections in a
supervised manner for c=0.5, 1.0, …, 8.0 using histo-
grams. The highest bar of the histogram was chosen as the
individual optimal c. (In the case where there was more than
one highest bar, the smallest value of c was selected.) In
other words, we set c=5.5, 4.0, 6.5, and 4.5, respectively,
for the OLED, the internal thread, the PLED, and the
contact lens dioptric pattern in the SPC binary formulas.

After the above k and c training stages, we tested some
images for defect inspection. Figures 7 (a1–a4), 8 (a1–a4),
9 (a1–a4), and 10 (a1–a4), respectively, show one defect-
free and three defective product surfaces with distinctly
different defects. Figures 7 (b1–b4), 8 (b1–b4), 9 (b1–b4),
and 10 (b1–b4) show the corresponding images restored by
the NMF-based image restoration scheme with k=1, 7, 1,
and 4, respectively. Note that the directional textures of

these product surfaces were almost eliminated. Figures 7
(c1–c4), 8 (c1–c4), 9 (c1–c4), and 10 (c1–c4) show the cor-
responding images binarized by SPC binarization with c=
5.5, 4.0, 6.5, and 4.5. Note that Figs. 7 (c1), 8 (c1), 9 (c1),
10 (c1) show a clear response; Figs. 7 (c2–c4), 8 (c2–c4), 9

Fig. 10 (a1–a4) One nondefective contact lens dioptric pattern and three defective ones with a twist, eddy, and dark point; (b1–b4) corresponding
restored images; and (c1–c4) corresponding binarized images

Table 1 The quantitative inspection results on different products

Products OLED Internal
thread

PLED Contact lens
dioptric
pattern

Items

Sample size 30 40 30 50

Inspection rate (%) 93.33 92.50 93.33 92.00

Average inspection time of
an image (sec.)

0.124 0.927 0.141 0.754
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(c2–c4), and 10 (c2–c4) show the defects that were initially
embedded in these product surfaces.

A number of samples were used for evaluating the
accuracy and time of defect detection of the proposed
scheme including 30 OLEDs, 40 internal threads, 30
PLEDs, and 50 contact lenses; half of each kind of samples
is defect-free while the other half is with defect. The
quantitative data on different products were summarized in
Table 1. The successful inspection rate of each kind of
product, respectively, was up to 93.33%, 92.50%, 93.33%,
and 92.00%. It took less than 1 s to inspect an image of
each kind of sample. The larger the basis space size (k) is,
the longer the learning time of NMA will be. All of the
above experiments demonstrated that the proposed scheme
can detect the defects on directional textures accurately,
efficiently, and robustly.

4.2 Effect of the image shifting

We evaluated the effect of the proposed NMF-based image
restoration scheme under varying shifting conditions. Illus-
trated samples for this experiment were taken from Fig. 9 (a1
and a2). Because the PLED is composed with 10×10 rectan-
gular pattern, we only tested the proposed scheme on 1, 5,
and 9 pixel(s) vertical or horizontal shifting versions (shown
in Fig. 11 (a1–a6) and Fig. 12 (a1–a6), respectively) with the
fixed parameters k=1 and c=6.5. As shown in the correspond-
ing Figs. 11 (b1–b6) and 12 (b1–b6), the proposed scheme
produced clear results and highlighted defects on the surfaces,
regardless of the amount of shifting, because of the self-
reference golden template generation discussed in Section 3.2.

We tested all samples of different products, mentioned in
Section 4.1, by randomly shifting the image. The quanti-

Fig. 11 (a1–a3) and (a4–a6) horizontal and vertical shifting versions of Fig. 9 (a1) by 1-, 5-, and 9-pixel(s); and (b1–b3) and (b4–b6)
corresponding binarized images
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tative data of the shifting experiments were summarized in
Table 2. The successful inspection rate of the four kinds of
products was up to 93.33%, 92.50%, 93.33%, and 92.00%,
respectively, which was the same as Table 1. This confirms
that the proposed scheme is invariant to horizontal and
vertical shifting.

4.3 Effect of the changes in illumination

We evaluated the effect of the proposed NMF-based image
restoration scheme under varying illumination conditions.
Illustrated samples for this experiment were taken from
Fig. 9 (a1 and a2), for which some illumination changes are

Fig. 12 (a1–a3) and (a6–a10) horizontal and vertical shifting versions of Fig. 9 (a2) by 1-, 5-, and 9-pixel(s); and (b1–b3) and (b4–b6)
corresponding binarized images

Table 2 The quantitative inspection results on different products with varying shifting, illumination, or rotation conditions

Products OLED Internal thread PLED Contact lens dioptric pattern
Items

Sample size 30 40 30 50

Inspection rate of the shifting images (%) 93.33 92.50 93.33 92.00

Inspection rate of the illumination changed images (%) 93.33 92.50 93.33 92.00

Inspection rate of the rotated images (%) 50.00 50.00 50.00 50.00
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shown in Fig. 13 (a1, a2 and a3, a4, respectively). We
tested the proposed scheme on those images with the fixed
parameters k=1 and c=6.5. As shown in the corresponding
Fig. 13 (b1–b4), the proposed scheme produced clear
results and highlighted defects on the surfaces even if the
optimal parameters k and c were determined under a
specific illumination level. The NMF adaptively learned
two submatrices to reconstruct an NMA whose latent
structure (including shape and intensity) was very similar
to the original image.

We tested all samples of different products, mentioned in
Section 4.1, by randomly changing the image illumination.
The quantitative data of the illumination experiments were
summarized in Table 2. The successful inspection rate of
the four kinds of products was up to 93.33%, 92.50%,
93.33%, and 92.00%, respectively, which was the same as
Table 1. This confirms that the proposed scheme was
invariant to changing illumination.

4.4 Effect of the image rotation

We evaluated the effect of the proposed NMF-based image
restoration scheme for varying image rotations. For this
experiment, Fig. 14 (a1, a2 and a3, a4) was obtained by
rotating Fig. 9 (a1 and a2) by 9° and 18°, respectively. We
then applied the proposed scheme to the images with the

fixed parameters k=1 and c=6.5. Many undesirable
textures remained in the restored images, as shown in
Fig. 14 (b1 and b2). Those preserved textures were then
eliminated by SPC binarization in the binarized images of
Fig. 14 (c1 and c2). Superficially, image rotation seemed
not to cause any problems for defect-free samples. In fact,
the “pass claims” in Fig. 14 (c1 and c2) should be regarded
as spurious correct results due to the high intensity and high
contrast in Fig. 14 (b1 and b2) that yielded large mean and
standard deviation values and relaxed the control limits for
Eq. 6. Consequently, the intensities of remaining texture in
Fig. 14 (b1 and b2) were fortunately classified as
removable elements. As shown in Fig. 14 (b3 and b4),
not only the undesirable texture but also the dark point
defects remained in the restored images. All of them were
then eliminated in Fig. 14 (c3 and c4). The pass claims of
Fig. 14 (c3 and c4) should be regarded as missed detections
for a reason similar to that of the preceding defect-free case.
Consequently, the intensities of dark points in Fig. 14 (b3
and b4) were also unfortunately classified as removable
elements.

We tested all samples of different products, mentioned in
Section 4.1, by randomly rotating the image. The quanti-
tative data of the rotation experiments were summarized in
Table 2. The successful inspection rate of the four kinds of
products was degraded to 50.00% which was dramatically

Fig. 13 (a1, a2) and (a3, a4) are Figs. 9 (a1) and 9 (a2), respectively, with relatively darker and brighter illumination; and (b1–b4) are the
corresponding binarized images
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distinct with that given in Table 1. Thus, based on the
results from Fig. 14 and Table 2, we found that the
proposed scheme was sensitive to image rotation.

4.5 The sensitivity analysis of the parameters k and c

We further demonstrated the sensitivity analysis of the
parameters k and c of each kind of sample. In order to give
more informative data, we separately recorded the correct
inspection rates based on defective-free and defective
samples. The former was listed in the top of each cell,
while the latter was listed at the bottom of each cell in
Tables 3, 4, 5, and 6. The suggested combinations of (k, c)
were marked in italics. In terms of this experiment, the
concluding remarks about the parameters effect on the
inspection results of defect-free and defective samples were
summarized in Table 7.

5 Conclusions and discussions

We have described a new global NMF-based image
restoration scheme for detecting defects in directional
textures. The scheme first determines the latent structure
of a given directional texture by making a good approxi-
mation. The texture then becomes a uniform gray level by
subtracting the original image from the NMA. The texture
is removed in the binarized image while any original
defects are distinctly preserved. A nondefective directional
texture surface image resulted in a clear response in our
experiments; otherwise, distinct defects were clearly indi-
cated with rough shapes and actual locations. This
demonstrated the ability of the proposed scheme to detect
defects in surfaces with various periodic patterns.

Experiments showed that the proposed scheme was
insensitive to horizontal and vertical shifting and changes

Fig. 14 (a1, a2) and (a3, a4) are Figs. 9 (a1) and (a2), respectively, with rotations of 9° and 18°; (b1–b4) are the corresponding restored images;
and (c1–c4) are the corresponding binarized images
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Table 3 The parameters k and c vs. inspection rate (%) of the OLEDs

c 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
k

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 26.7 86.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.0 0.0 0.0 0.0 0.0 6.7 13.3 20.0 46.7 60.0 86.7 86.7 80.0 80.0 66.7 60.0

2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 26.7 86.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.0 0.0 0.0 0.0 0.0 0.0 13.3 13.3 20.0 20.0 26.7 40.0 40.0 53.3 53.3 46.7

3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.3 80.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.0 0.0 0.0 0.0 0.0 0.0 13.3 13.3 20.0 20.0 26.7 40.0 40.0 46.7 46.7 40.0

4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 73.3 80.0 86.7 100.0 100.0 100.0 100.0 100.0

0.0 0.0 0.0 0.0 0.0 0.0 13.3 13.3 13.3 20.0 20.0 20.0 33.3 40.0 33.3 33.3

5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 46.7 80.0 86.7 93.3 100.0 100.0 100.0 100.0

0.0 0.0 0.0 0.0 0.0 0.0 13.3 13.3 13.3 20.0 20.0 20.0 26.7 26.7 20.0 20.0

6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 40.0 80.0 86.7 93.3 100.0 100.0 100.0 100.0

0.0 0.0 0.0 0.0 0.0 0.0 13.3 13.3 13.3 20.0 20.0 20.0 13.3 13.3 6.7 6.7

7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 40.0 73.3 86.7 93.3 100.0 100.0 100.0 100.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.7 6.7 13.3 13.3 13.3 13.3 13.3 6.7 6.7

8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 40.0 73.3 86.7 93.3 100.0 100.0 100.0 100.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.7 6.7 6.7 13.3 6.7 6.7 0.0 0.0 0.0

9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 40.0 73.3 86.7 93.3 100.0 100.0 100.0 100.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.7 6.7 6.7 6.7 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 40.0 73.3 86.7 93.3 100.0 100.0 100.0 100.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.7 6.7 6.7 0.0 0.0 0.0 0.0 0.0

Table 4 The parameters k and c vs. inspection rate (%) of the internal threads

c 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
k

1 0.0 0.0 0.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 0.0 70.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3 0.0 0.0 0.0 0.0 30.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4 0.0 0.0 0.0 0.0 0.0 45.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.0 0.0 0.0 0.0 0.0 25.0 40.0 15.0 10.0 5.0 5.0 0.0 0.0 0.0 0.0 0.0

5 0.0 0.0 0.0 0.0 0.0 15.0 75.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.0 0.0 0.0 0.0 0.0 25.0 40.0 15.0 10.0 5.0 5.0 0.0 0.0 0.0 0.0 0.0

6 0.0 0.0 0.0 0.0 0.0 0.0 35.0 90.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.0 0.0 0.0 0.0 0.0 0.0 30.0 55.0 30.0 10.0 5.0 0.0 0.0 0.0 0.0 0.0

7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 85.0 95.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.0 0.0 0.0 0.0 0.0 0.0 15.0 90.0 90.0 75.0 55.0 5.0 5.0 0.0 0.0 0.0

8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 50.0 90.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.0 0.0 0.0 0.0 0.0 0.0 15.0 60.0 70.0 65.0 55.0 5.0 5.0 0.0 0.0 0.0

9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 35.0 65.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 30.0 60.0 55.0 55.0 5.0 5.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.0 50.0 90.0 100.0 100.0 100.0 100.0 100.0 100.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 20.0 50.0 50.0 40.0 5.0 5.0 0.0 0.0 0.0
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Table 5 The parameters k and c vs. inspection rate (%) of the PLEDs

c 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
k

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.3 100.0 100.0 100.0 100.0

0.0 0.0 0.0 0.0 13.33 13.33 13.33 20.0 33.3 40.0 73.3 86.7 86.7 80.0 53.3 40.0

2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.3 86.7 86.7 100.0 100.0

0.0 0.0 0.0 0.0 13.3 13.3 13.3 20.3 26.7 40.0 73.3 80.0 86.7 66.7 46.7 40.0

3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 80.0 80.0 100.0 93.3

0.0 0.0 0.0 0.0 13.3 13.3 13.3 20.3 26.7 40.0 53.3 73.3 80.0 60.0 46.7 33.3

4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 46.7 53.3 53.3 80.0

0.0 0.0 0.0 0.0 13.3 13.3 13.3 13.3 26.7 33.3 46.7 73.3 66.7 46.7 40.0 26.7

5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 46.7 46.7 53.3 66.7

0.0 0.0 0.0 0.0 13.3 13.3 13.3 13.3 20.0 20.0 33.3 40.0 40.0 33.3 20.0 20.0

6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 33.3 40.0 53.3 60.0

0.0 0.0 0.0 0.0 6.7 6.7 6.7 6.7 13.3 20.0 33.3 40.0 40.0 26.7 20.0 20.0

7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20.0 26.7 33.3 40.0

0.0 0.0 0.0 0.0 6.7 6.7 6.7 6.7 6.7 20.0 33.3 33.3 33.3 26.7 20.0 13.3

8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.7 20.0 33.3 40.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.3 26.7 33.3 33.3 20.0 13.3 13.3

9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.3 26.7 33.3

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.3 26.7 26.7 13.3 13.3 13.3 13.3

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.3 26.7

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.3 20.0 20.0 13.3 13.3 0.0 0.0

Table 6 The parameters k and c vs. inspection rate (%) of the contact lenses

c 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
k

1 0.0 0.0 0.0 0.0 64.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.0 0.0 0.0 0.0 12.0 16.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 0.0 0.0 72.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.0 0.0 0.0 0.0 16.0 20.0 12.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3 0.0 0.0 0.0 0.0 0.0 0.0 56.0 88.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.0 0.0 0.0 0.0 16.0 20.0 12.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4 0.0 0.0 0.0 0.0 0.0 0.0 24.0 92.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.0 0.0 0.0 0.0 24.0 40.0 72.0 92.0 84.0 72.0 16.0 0.0 0.0 0.0 0.0 0.0

5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20.0 76.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.0 0.0 0.0 0.0 28.0 36.0 60.0 72.0 80.0 72.0 16.0 0.0 0.0 0.0 0.0 0.0

6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.0 60.0 76.0 92.0 100.0 100.0 100.0 100.0 100.0

0.0 0.0 0.0 0.0 8.0 20.0 52.0 64.0 72.0 72.0 0.0 0.0 0.0 0.0 0.0 0.0

7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 44.0 72.0 84.0 100.0 100.0 100.0 100.0 100.0

0.0 0.0 0.0 0.0 0.0 20.0 24.0 64.0 72.0 68.0 0.0 0.0 0.0 0.0 0.0 0.0

8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 32.0 52.0 80.0 100.0 100.0 100.0 100.0 100.0

0.0 0.0 0.0 0.0 0.0 0.0 24.0 64.0 68.0 48.0 0.0 0.0 0.0 0.0 0.0 0.0

9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20.0 52.0 80.0 96.0 100.0 100.0 100.0 100.0

0.0 0.0 0.0 0.0 0.0 0.0 8.0 64.0 64.0 40.0 0.0 0.0 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.0 40.0 76.0 84.0 96.0 100.0 100.0 100.0

0.0 0.0 0.0 0.0 0.0 .0 0.0 60.0 64.0 40.0 0.0 0.0 0.0 0.0 0.0 0.0
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in illumination. Those two characteristics enhance the
practicality of the scheme for industrial inspection. The shift
invariance could be quite useful in the inspection of large
object surfaces in real-world applications. In such a situation,
single or multiple charge-coupled devices (CCDs) must
capture a sequence of subimages under different fields of
view. When the actuator is triggered to move the CCD to the
next uncharted portion, the textures in each subimage will
generally not be oriented in exactly the same manner and
may be accompanied by slight shifting. The shift invariance
characteristic of the proposed scheme will be useful for
separately inspecting subimages of large objects more easily.
In addition, illumination invariance makes the NMA suitable
for illumination changes in the inspected image. This would
reduce the false alarm or missed detection rate if the
automatic optical inspection (AOI) system encounters unex-
pected light source instability in real-world applications, i.e.,
temporary underexposure or overexposure. Finally, experi-

ments showed that the proposed scheme would be disturbed
by image rotation because the trained basis space size is no
longer suitable. In real-world applications, a precise fixture
on the AOI hardware for object placement or an effective
algorithm in the AOI software for image calibration would
be a practical addition worth developing.
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