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摘要 

 

光子晶體光纖是近年來熱門的研究主題，此種光纖是由纖核外包週期空氣陣

列所組成的結構，由於它的構造比傳統光纖富有變化，因此，我們可藉由設計光

纖外層的空氣陣列來達到不同的需求，像是寬頻單模傳輸、高非線性效應係數和

低色散值等功能都可藉由此種方式設計出來，也因為它的結構比傳統光纖複雜，

所以如何在製作前準確地模擬出它的光學特性就成了一個重要的課題。在本論文

中，我們利用參考文獻上提供的方法所發展出的程式去模擬此種光波導的特性並

和文獻上的一些結果對照，並針對由楕圓空氣洞所組成之新型光子晶體光纖進行

特性研究。 
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Abstract 
 

In recent years, photonic crystal fibers (PCFs) have attracted a lot of attention for 
their particular tailorable optical properties, such as wide-band single-mode 
transmission, high nonlinearity with small core area, and zero or flattened dispersion 
in optical communication window etc. Because of their holey cladding, a full-vector 
numerical analysis is needed to predict their actual optical properties accurately. In 
this thesis, the finite element method is employed to simulate and study the optical 
properties of various PCFs.   
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Chapter 1 Introduction 
 

1.1 Motivation of This Thesis  
 

Photonic crystal fibers ( or holey fibers) consisting of a central defect 
region surrounded by multiple air holes running parallel to the fiber axis 
have attracted a lot of research interest in recent years. Due to the array-like 
arrangement of the air-hole cladding, the holey structure of PCFs can 
provide more design flexibility than conventional fibers. It can be tailored 
for wide-band single-mode transmission, for high nonlinearity with small 
core area, or for zero or flattened dispersion in the optical communication 
window. Because of the large index difference between the cladding and the 
core, the scalar approximation for weakly guiding is not applicable and the 
full vector formalism is needed. Further more, owing to the curved structure 
of air holes, a numerical algorithm with high accuracy is also needed. 

The Finite Element Method (FEM) has become the trend of numerical 
simulation for studying the mode properties and propagation characteristics 
of waveguides with arbitrary cross section shapes. In contrast, for the Finite 
Difference Method (FDM), since the element mesh is rectangular, for   
structures with curved shapes one has to increase the number of grid points 
in order to achieve the specified accuracy. If the structure is large or 
complicated, this will result in much computational efforts. On the other 
hand, the finite element method permits users to choose the shape of mesh 
(e.g. triangular or curvilinear) and the order of interpolation functions 
according to the requirements. When the FEM is adopted, the triangular 
meshes can be utilized to match the curved boundary better than the 
rectangular meshes utilized in finite difference. Besides, one can refine the 
mesh in a specific region rather than in the whole region. The user also can 
impose high order interpolation functions to reach fast convergence of the 
solution. All of the above procedures of the finite element method can be 
introduced to attain higher accuracy with fewer unknowns. These are what 
FDM cannot easily achieve. 

In this thesis, the CT/LN edge element is applied in the simulation. The 
mathematical formulation will be described first. Then, the dispersion 
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property, leak  be studied 
and some sim results. 
 

c Crystal Fibers 

 radial 
la

 fiber, also named as holey fiber, is similar to 
th

age loss, and the birefringence of holey fibers will
ulation works will be compared with the published 

1.2 Introduction to The Photoni
 

Photonic crystal fibers (PCFs) have in recent years attracted much 
scientific research and technological development interest. Generally 
speaking, PCFs may be defined as the optical fibers in which the core and/or 
the cladding regions consist of micro structured air holes rather than 
homogeneous materials. The most common type of PCFs, which were first 
fabricated in 1996 [J. C. Knigh, 1996], consists of a pure silica fiber with an 
array of air holes extending along the longitudinal axis. Later on, the PCFs 
fabricated from other host materials [K. M. Kaing, 2002] or with 
incorporated sections of doped materials have been demonstrated. A 
considerable amount of modeling and experimental efforts have also been 
put into the design and fabrication of circularly symmetric PCFs with

yers of alternating index contrasts [G. Ouyan , S. G. Johnson]. 
Traditional optical fibers are limited to rather small refractive index 

difference between the core and the cladding (about 1.48:1.46). For 
photonic crystal fibers, this refractive index differences is significantly 
larger (1.00:1.46), and can be tailored to suit particular applications. It is this 
flexibility combined with the ability to vary the fiber geometry that enables 
the enhanced performance of the photonic crystal fibers. The PCFs can be 
designed to satisfy many specific purposes. For example, they can be single- 
mode over an extremely broad wavelength range, can support larger or 
smaller mode field diameters, can meet specific dispersion requirements, 
can increase or decrease nonlinearity, and can be highly birefringent for 
achieving improved polarization control.    

For conventional optical fibers, the electromagnetic modes are guided 
by total internal reflection in the core region where the refractive index is 
raised by doping the base material. In PCFs, two distinct guiding 
mechanisms are possible: index guiding and band gap guiding. The guiding 
mechanism of index guiding

at of conventional fiber. It features a solid core surrounded by a regular 
array of microscopic holes extending along the fiber length. The solid core 
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can be viewed as a defect within the surrounding periodic structure formed 
by the regular array of air holes. The holey structure acts as the cladding to 
onfine the fundamental mode within the core of fiber, while allowing the 

t arises because 
e periodic holey structure creates an effective index difference between 

th

ved control 
ov

into the desired pattern, fusing 
the

c
higher order modes to leak out of the core. The confinemen
th

e core and the surrounding material. On the other hand, the band gap 
guiding fibers, also termed as hollow core fibers, are constructed with a 
hollow core surrounded by a periodic structure of air-holes. The periodic 
structure generates a photonic band gap. When the light frequency is located 
within the band gap, the light can be confined in the core region and 
propagates along the fiber. In this study, the characteristics of holey fiber 
will be addressed. 
  Over the last seven years the PCFs have rapidly evolved from scientific 
curiosity to commercial products manufacturing and are sold by several 
companies. A central issue of PCFs from the early days to the present has 
been the reduction of optical loss, which initially was several hundred 
dB/km even for the simplest PCF design. Through the impro

er the homogeneity of the fiber structures and the application of highly 
purified silica as the base material, the loss has been brought down to a level 
of a few dB/km for the most important types of PCFs. The current world 
record is 0.37 dB/km [K. Tajima, 2003]. Thus, with respect to the optical 
loss, PCFs have undergone an evolution similar to that of standard fibers in 
the 1970s. Their application potentials have also increased accordingly. For 
some types of PCFs, the loss figures are still substantial and more work is 
definitely required. However, for many applications the optical loss has 
ceased to be a decisive barrier to the practical application of PCFs. 
  PCFs are most commonly fabricated by hand-stacking an array of doped 
or undoped silica capillary tubes or solid rods 

 stack into a preform , and then pulling the perform to a fiber at a 
temperature sufficiently low (~1900’C) to avoid the collapse of the holes. 
The vast improvements of the fabrication process made in recent years have 
not only served to bring down the optical loss, but have also greatly 
increased the diversity of the fiber structures available to the designer. 
Consequently, new PCF designs appear continuously, and it will probably 
take a few more years before the field can be said to have matured.   
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1.3 The Need of Full Vector Formulation    
 

The scalar approximation of the wave equation is adequate for weakly 
guiding problems. But when the index difference between the cladding and 
core is large enough such as in PCFs, the x, y, z field components are no 
longer independent, and will be coupled together. Therefore, the scalar 
approximation is no longer valid. This idea can be explain clearly with the 
following mathematical description. 

0EknE 22 =−×∇×∇
vv

           (1.1) 
In the above vector wave equation, n=n(x, y) is the transverse dielectric 

profile, and k is the wave vector in free space. The double curl E
v

 can be 
written as: 

E)Enln (E 22 vvv
∇−⋅∇∇=×∇×∇    (1.2) 

The E
v

field of the j-th eigen mode of wave guide is express as: 

z)exp(iβ)zy)(x,eyy)(x,exy)(x,(ez)y,(x,E j
z
j

y
j

x
jj ⋅++=

∧∧∧v
  (1.3) 

 By applying eq. (1.2) and (1.3) to eq. (1.1), the following three coupled 
full-vector equations can be obtained as follow 

(1.6)      ]
y
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x
nln [e

k
jβ        ]en

k
β
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For a weakly guiding wave-guide, the index difference between the core 

e. 

and cladding is very small and hence the right hand side of eq. (1.4) to eq. 
(1.6) can be neglected. These become the well known scalar Helmholtz 
equations. The filed components in x, y, z directions are all independent in 
this case. 

For wave-guide with large index difference, such as photonic crystal 
fibers, the coupling among the three polarization field components through 
the boundaries should be taken into consideration. Therefore, the full-vector 
wave equation is demanded for calculating precise modal fields and 
propagation constants. Note that there is no TE or TM mode in this cas
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Chapter 2 The Finite Element 
Method 

 
2.1 The Finite Element Procedure 
 

There are two approaches of finit on. One is the 
va

f the governing equation, and the solution corresponding to the 
equation should be the one which makes the varia functional to be 
ze  n the other 
hand, the Galerkin’s method needs a set of test functions to perform the 
projection. For more details, the readers may refer to [J. F. Lee
 

 
 The vector wave equation can be written as  

e element formulati
riationl method, and the other is the Galerkin’s method (or the weighted 

residual method). For the variational method, one should first determine the 
functional o

tion of the 
ro. In this thesis, the variational method will be introduced. O

, 2002]. 

2.2 The Variational Method 

( ) 0[q][s]k[p][s] 2
o

-1 =Φ−Φ×∇×∇   (2.1) 

where is the wave vector in the free space, and0k Φ is either the E field or 
the H field. 
For the E field 

⎢
rx
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⎢
⎣

=
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ry

ε00
0ε0]q[

For the H field 
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=
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00ε

µ00
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00µ
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All the [p], [q], [s] are in the tensor form. 

The functional of the vector wave equation eq. (2.1) is given as 
*2

o
Ω

Φ⋅ΦΦ (2.2) 

w
When the whole area is divided into elements, F can be expressed as the 

summation of the integration over each element 

o
i

. 
Here, 

([p][s]  )[(F -1*∫∫ ×∇⋅Φ×∇= dy dx  ] [q][s]k-)

here area nalcomputatio  theis Ω . 

 dydx  ] [q][s]k-)([p][s]  )[(F *2-1*∑∫∫ ⋅×∇⋅×∇= φφφφ  
Ωi

where  theis  iΩ areaelement th -i  
φ  is the field within each element, which is of the form 

  (2.3) 

the {U} and {V} are the vector edge interpolation functions, and {N} is the 
nodal vector interpolation functions listed in Table 1. The 

)exp(
}{}{
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}{}{   
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= β

φ
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φ

φ
φ
φ

φ

}{ tφ and }{ zφ are 
dal variable for each element respectively. 

The variatio
the edge and no

n Fδ of the functional F is given as 
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∫∫∫ Γ×∇×⋅−Ω−×∇×∇⋅= −

Ω Γ

*21* )]q][s][ ([n ])]][p([[)( ddksF o φδφφφδφφδ

whereΓ is the outward boundary of the regionΩ , n is the outward unit 
normal vector. When φ  is the solution of Fδ =0, the following relations are 
satisfied: 

=0    (2.4) ])]][p([[ 21 φφ oks −×∇×∇ −

)]q][s][ ([n φ×∇× =0    (2.5) 
 

eq. (2.4) is the vector wave equation. This proves the solution of Fδ =0 is 
also the solution of vector wave equation. 

By applying eq. (2.3) to the functional F , taking the first variation of F, 
and setting Fδ =0. The following matrix equation can be obtained: 
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2.3 The Hybrid Edge/Nodal Element 
  

Various types of finite element methods have been developed for the 

he existence of spurious modes. 
Sp

ean  solve all 
electromagnetic problems, because spurious modes would arise in the 
olution of the vector wave equation if the wrong differential form is used to 
pproximate the electric-field vector. Early thinking about spurious modes 

attributed this problem to a deficiency in imposing the solenoidal nature of 
the field in the approximation process. A series of papers, beginning with 
Konrad [A. Konrad, 1976] and followed by [M. Hara, 1983] expounded this 
idea. Many researchers have been influenced by the notion that spurious 
modes are caused by the non-solenoidal nature of finite element 
approximation procedures. Yet, the early thinking is wrong. The true reason 
of spurious modes is the incorrect approximation of the null space of the 
curl operator [M. Hano, 1984]. It has been shown that the hybrid edge/nodal 

ector elements with triangular shape imposing the continuity of the 
tangential field but leave the normal component discontinuous are very 
useful for eliminating the spurious solutions. 

In the method employed in this thesis, the word “hybrid,” means the order 
of interpolation functions is mixed. As for the term “edge/nodal,”, the 
former indicates a set of vector interpolation functions locate at the edges of 
the elements and are responsible for the transverse field interpolation, and 
similarly, the latter indicates another set of vector interpolation functions 
locate at the nodes of the elements and are responsible for the longitudinal 
field interpolation. Recently, curvilinear hybrid edge/nodal elements are 
introduced in the simulation of photonic crystal fibers [M. Koshiba et al.]. 

full-vectorial analysis of guided-wave problems. An important issue for 
full-vectorial finite element analysis is t

urious modes are numerical solutions of the vector wave equation without 
physical m ing. The scalar finite elements are not sufficient to

s
a

v
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The virtue of this kind element lies in the fact that they can match the 
curved boundary better than rectangular ones with more accuracy and fewer 
unknowns. 
  In our study, the CT/LN (constant tangential, linear normal and linear 
nodal) rectilinear element [M. Koshiba et al., 2000] is used for the 
imulation work. Fig.1 shows the CT/LN element which is composed of an s

edge element with three tangential variables, 1tφ  to 3tφ , based on constant 
gential and linear normal vector interpolation functions, and a linear 

no
tan

dal element with three axial variables, 1zφ  to 3zφ . The tangential 
component of a specific CT/LN interpolation function is constant along one 
edge of the triangle element and is zero along the other two edges, while the 
normal component is a linear function along the three edges. 

For elements with 2D triangular shapes, the Cartesian coordinate, x and y, 
in each element can be approximated with the linear local coordinate 
functions Li( i =1,2,3), as shown in Fig.2. 

 
332211  xL xL  xL x ++=  

332211 y Ly L y L y ++=  
 

Here ix  and iy  are the Cartesian coordinates at the nodal points within 
each element. Note that the relation between the local coordinates is defined 
as 1 L L  L 321 =++ . For 2D problem, 1L , 2L are usually selected as 
independent variables. The transformation for differentiation is given by 
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Where [J] is the Jacobian matrix. The transformation relation for integration 
of a function f(x,y) is given by 
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1
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−
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0 0

where |J| is the determinat of the Jacobian matrix and is called Jacobian.  
The following numerical integration can be applied directly to above 

integration 
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321321
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(i=1 to 7), and the local coordinates, iii LLL 321 , ,  are presented in Table 2 
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Where subscript i denotes the quantity associated with the sampling point i 
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Table 1. Interpolation functions 
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Table 2. Values of weighting coefficients and local coordinates 

 

                   iW iL1 iL2 iL2  i 

1a  1a  1a  
3

1
1 =a  1 0.225 

2a  3a  3a  05971587.02 =a  2 0.13239415 

3a  2a  3a  47014206.03 =a  3 0.13239415 

3a  3a  2a  79742669.04 =a  4 0.13239415 

4a  5a  5a  10128651.05 =a  5 0.12593918 

 
 
 
 
 

6 0.12593918  

 0.12593918  

5a  4a  5a  

7 5a  5a  4a  
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                Fig. 1  The basis functions of the CT/LN element. 
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1 

6

52 3

4 

Point  2 , 3
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3 (0,0,1) 
4 (0.5, 0.5, 0) 
5 (0, 0.5, 0.5) 
6 (0.5, 0, 0.5) 

 
       Fig. 2  The local coordinate of a element. 
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Chapter 3 The Perfectly Matched 
Layers 

 
3.1 Introduction to PML 
 
  The perfectly matched layer (PML) is an artificial medium which serves 
as an absorbing boundary condition (ABC). This absorbing boundary 
condition holds great promise for truncating the mesh efficiently in the 
numerical computation for EM wave problems. It can absorb radiation wave 
almost without reflection at the absorber interface for arbitrary angle, 
wavelength and polarization of incidence. In addition, 
linear lossy or anisotropic media eixeira, 1998]. Because of the 

it i ed as “perfe  matched layer,”.  
s originally proposed by Berenger for FDTD 

imulation [J. P. Berenger, 1994]. He used the so called “split field,” 
ch, for example, Hz is decomposed into Hzx and Hzy. This 

leads to a modified version of Maxwell equations, where the introduction of 
the split fields provides extra degrees of freedom that can be used to achieve 
a perfect reflectionless match at the absorber interface. This is fairly a 
revolution, since it was quickly shown that the PML outperforms other 
previous known boundary conditions.    

In the subsequent years, there are many d retations about the 
physical aning of PML . Chew et al., indicated that the Berenger’s PML 
an be derived from a more general way base on the concept of complex 

coordinate s  can be 
regarded as a regular isotropic medium  complex thickness. Sacks 
et al., [Z. Sacks, 1995] revealed that th  also can be considered as an 
anisotropic medium. In fact, Chew’s a d Sacks’ statements are equivalent 
mathematically [F. L. Teixeira, 1998]. 

Here, we adopt anisotropic PML n our simulation because in finite 
element analysis, it is convenient to specify the material parameters (i.e. 

it is also valid for any 
[F. L. T

ctlyreflectionless,  s term
The idea of PML wa

s
formalism, in whi

ifferent interp
me

c
tretching [W. C. Chew et al., 1997], in which the PML

 but with a
e PML
n
 

 i
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permittivity & permeability) of the PM  
 
3.2 The Concept of PML 
 

for a plane wave  

coordinate transformation to z 

L. 

The concept of PML is shown as follow 

nz0-jke  

One can apply the following 

zd )z(s z~  z
0

z ′′=→ ∫  

where ) z (sz ′  is so called complex stretched variable [W. C. Chew et al., 
1997]. 

Considering the following structure 
 

z

 
 

We can let )z(sz ′ =1 in non-PML region, and )z(sz ′ = 1- j*c in PML 
region. In consequence, z~ = z (real) in non-PML region, and z~ = z - j*c*z 
(complex) in PML region. 

z 

This implies that the propagation wave would be absorbed in the PML 
region. Base on this idea, after a series of transformations, the permittivity
and permeability tensors in the PML can be expressed as [F. L. Teixe
1998]: 

 
ira, 

][)(det 1 SSSPML ⋅⋅= − εε  

   ][)(det 1 SSSPML ⋅⋅= − µµ  

Note that the intrinsic impedance of the PML region is equal to that of the 
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non-PML region, namely, impedance match. So no reflection occurs at the 
absorber interface.  

)1(ˆˆ)1(ˆˆ)1(ˆˆ
zyx

zz
s

yy
s

xxSalso 
s

++=  is a diagonal tensor, and 

1)(det −S = zyx sss ⋅⋅  

The specification of are shown in Fig. 3, 

where 

                        

zyx sss  , ,  

2
ρ ⎞⎛

i
ii t

jα -1 s ⎟⎟
⎠

⎜⎜
⎝

=  , i = 1, 2…8. 

Here 
 the di
nuation of the field in PML regions can be controlled by choosing 

th

 
 
 
 
 
 
 

 

ρ is stance from the PML interface, and t is the thickness of PML. 
The atte

e value of iα  appropriately. 
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Fig. 3 The specification of s in the PML. 

   PML Region        
L 
ameter 

1 2   3   4   5   6   7   8 

1 1 1s  2s  1s  2s  1s  2s  
1 1 

1 1   1 1 1 1 1 1 

3s  4s  3s  3s  4s  4s  



 
3.3 Solution Issues 
 

In order to reliably predict the features of HFs, the full vector formulation 
is applied. Because of the losses resulted from the air holes and the finite 
transverse extent of the confining structure, the effective index is a complex 
value and its imaginary part is related to the losses. This is termed as a leaky 
mode. In order to evaluate propagation losses of leaky modes, an anisotropic 
perfectly matched layer (PML) is employed as an absorption boundary 
condition at the computational window edges.  

How to solve the large sparse generalized eigen value problem to get the 
leaky mode solution is an important issue in finite element procedure. 
Recently, Koshiba et al., employed the imaginary-distance beam 
propagation method (ID-BPM) based on the FEM to deal with the 
leaky-mode problems [K. Saitoh et al., 2002]. On the other hand, Selleri et 
al., used the Arnoldi method based complex modal solver t tain sev
eigen- des directly [S. Selle t al., 2001]. The ID-B  starts 
propagation with an initial approximate field and the field evolves into the 
exact eigen-mode after propagating a long distance. The drawback of this 
method is that it’s time consuming to achieve high accuracy and only one 
mode can be obtained each time. On the contrary, solving the eigen-value 
quation directly is much simpler than the ID-BPM method. For this reason, 

we use a modified Matlab built-in eigen-solver based on Arnoldi algorithm 
eat this problem

 propag n los f le ode is defined as  

o ob
PM

eral 
the mo ri e

e

to tr . 
The atio s o aky m

 

]Im[n
λ

2π
ln(10)

102 L eff

7

⋅ ⋅
⋅  (dB/m) 

 
 

Fig. 4 shows the cross section of the HF surrounded by the PML regions 

with thickness se plane, z is the 

ropagation direction, and and are the half computational window 

=

ρd . Here x and y are the axes of the transver

 xW yWp
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size respectively. The PML parameter S is complex for the leaky mode 
 as: analysis, which is given

αj-1 =S  

The parameter s controls the attenuation of the field in the PML region 
through the choice of the appropriate value of α  with the parabolic profile 

α =
2

max ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

pd
ρα ; 

where ρ is the distance in the PML region from its inner interface. 
Consider a PCF with two ring air holes with hexagonal (or triangular ) 

lattice arrangement, as shown in Fig. 4, the hole pitch Λ=2.3 mµ , silica 

index = 1.45, air filling ratio 5.0=
Λ
d , 3.2=ρd mµ , 7== yx ww mµ , and 

operating wavelength 5.1=λ mµ . Because of the six-fold symmetry of this 
PCF, for the fundamental mode, one-fourth of the fiber cross section 
combined with proper boundary conditions is taken into computational 
region. Fig.5 to Fig.8 are the E field distributions for x component, y 
component, z component and transverse component respectively. Fig.9 and 
Fig.10 are the effective indices and propagation losses compared with the 
published results respectively [K. Saitoh et al., 2002]. 
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Fig. 4  The computational window of the PCF. 
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Fig. 5 The  field. xE
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Fig. 6 The  field. 
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Fig. 7 The  field. zE
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Fig. 8 The transverse field. 
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Fig. 9 The effective index of two-ring air holes. 

(a) Published result in [K. Saitoh et al., 2002]. 
(b) Our simulation result. 
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Fig. 10
. Saitoh et al., 2002]. 

(b) Our simulation result. 

 The propagation loss of two-ring air holes. 
(a) Published result in [K

 24



 

Chapter 4 Optical Properties of 
PCFs 

 
4.1 Endless Single Mode 
 

The picture in fig. 11 shows the structure of a typical holey fiber. In [T. A. 
Brinks, 1997], the fiber was reported to be single mode over a remarkably 
wide wavelength range, form 458 to 1550 nm at least, and it is confirmed 
numerically that HFs are endless single mode for Λ/d <=0.43 [M. Koshiba, 
2002]. The cladding effective index, which is a very important design 
parameter for realizing a single-mode HF, is defined as the effective index 
of the infinite photonic crystal cla ing if the core is absent. Unlike 

nal fibers, the effective index of the HF cladding is very sensitive 
to the wavelength, and has to be estimated for different frequencies by 
finding the fundamental space filling mode (FSM) of a cladding unit cell, 
which is shown in Fig. 12.   

Just like conventional fibers, the effective index of the HF guided mode is 
between the core index and the effective index of the cladding. Fig. 13 (b) 
shows our simulation results for the fundamental mode of the PCF, and Fig. 
13(a) is the published results with the same structure parameters as in (b).  
Fig.14 (a) shows the published result of the effective index for the 
fundamental guided mode and cladding with pitch = 2.3

dd
conventio

mµ , hole diameter 
= 0.6 mµ . Fig.14 (b) shows the simulation result. The lowest solid line is the 

fective index, the middle is the fundamental mode effective index, 
and the user is the core index. We can find that this structure support single 
mode propagation because only one effective index is found in the region 
between the core index and the cladding effective index. Fig.15 shows the 
dispers on curve for different air hole diameters with a fixed pitch of 2.3

cladding ef

i mµ . 
One can see that, as the hole diameter increasing, the dispersion zero poin
shifts to the near part is 
approximately preser

 

t 
 higher frequency range, and the slope of their li

ved. 
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Here, the group velocity dispersion is defined as  

]Re[n
dλ
d

c
 D 2

2

⋅⋅
−

=
λ  eff
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Fig. 11 The endless single mode fiber. 
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                      Fig. 12 Unit cell for FSM estimation. 
 
 
 
(a) 
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(b) 

 
      Fig. 13 Contour plot of the fundamental mode in the PCF 

(a) Published results [M. Koshiba, 2002] 
(b) Our simulation results 

) (a
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Fig 15. Our simulation of dispersion curves for a fixed pitch with 
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4.2 Mode Classification 
 

When higher order modes or polariza on properties are considered, the 
full vector approach is crucial for assessing the true behavior of 
electromagnetic waves in complex wave g structures such as PCF. It 
is well known that the PCF is often strongly multimode in the visible and 
near-infrared regions when the filling factor is large enough. This may lead 
to a number of intermodally phase-matched nonlinear processes. As a 
consequence, it is necessary to investigate the modal properties of PCFs 
including their degeneracy, classification, and so on. 

Some studies have discussed the mode properties of PCFs [M. J. Steel et 
al., 2001], and the classification and degeneracy properties of higher-order 
modes were discussed further in [R. Guobin et al., 2003]. It is shown that 
the mode classification of a PCF is similar to that of a step-index fiber, 
except for modes with the same symmetry as the PCF. When the doublet of 
the degenerate pairs both have the same symmetry as the PCF, they will be 
split into two non-degenerate modes. 

In the scalar approximation, the characteristics of polarization in the PCF 
are hidden. With the full vector aroach, the vector modal behavior of the 
PCF ca e 
symmetry of a l important characteristics of the 

odes of the waveguide [T. P. White et al., 2002]. Determining the 
mmetry type of a particular waveguide enables one to classify the possible 

modes in terms of mode classes, a ode degeneracies 
between mode classes. Further, from the azimuthal symmetries of modal 
electromagnetic fields of a mode class inimum sector of 
waveguide cross section, together with associated boundary conditions for 
this sector, which is necessary and su icient for completely determining all 
the modes of that mode class. 

If a uniform wave-guide has n metry and also possesses 

precisely n reflection planes spaced azimuthally by 

ti

-guidin

n be predicted. From the theory of group representations, th
waveguide controls severa

m
sy

nd to predict the m
 
, one can specify a m

ff

-fold sym

n
π  radians, it is said to 

have symmetry. For the triangular lattice PCF, it has six-fold rotation 

ymmetry and 

nvC  

6
π  reflection symmetry, so the point group is . PCFs vC6s
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with the vC6  symmetry possess the following properties: all the modes can 
e divid o eight classes according to the minimum sector and boundary 

co

of these modes. Fig. 24 
to

 

 

b ed int
nditions. As shown in Fig. 16, class p = 1,2,7,8 are non-degenerate, which 

exhibit full waveguide symmetry, i.e. vC6  symmetry, while class p=3, 4 
and p=5, 6 are degenerate pairs, and they exhibit full waveguide symmetry 
in combination. 

Table 3 lists the first 14 modes of PCF (with pitch =2.3 um, air filling 
ratio =0.8, and wavelength = 0.633 um) with effective index, mode class, 
degeneracy, computation error, and label published in [R. Guobin et al., 
2003]. Fig. 17 to Fig. 23 shows the field distribution 

 Fig. 28 show the fundamental mode and some higher order modes 
simulated respectively by using the minimum sector with specific boundary 
conditions belonging to the mode class listed in Table 3  
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Fi

ble 3 Mode classes of the triangular-lattice PCF [R. Guobin et al., 2003]. 

g. 16 Minimum sectors for waveguides with vC6 symmetry, the modes of 
waveguides are classified into eight classes (p=1, 2, 3, …8). Solid lines 
indicate PEC boundary condition, and dashed lines indicate PMC boundary 
condition [R. Guobin et al., 2003]. 
 
 
 
Ta
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 (a)                                 (b)  

 
Fig. 17 mode [R. Guobin et al., 2003]. 

(a)                               (b) 
 

11HE  
 
 
 

 
Fig. 18 (a)  mode (b) mode [R. Guobin, 2003]. 

 
 
 
 
 
 
 

01TE 21HE  
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(a)                                 (b) 

 
Fig. 19  mo 2003]. 

 
 
 

(a) 21HE de (b) 01TM  mode [R. Guobin, 

(a)                                (b) 

 
Fig. 20 (a)  mode (b) mode [R. Guobin, 2003]. 
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(a) (b) 

 
F  m  mig. 21 (a) EH ode (b) HE ode [R. Guobin, 2003]. 11 312

 
 
 
(a) (b) 

 
Fig. 22 (a)  mode (b) H mode [R. Guobin, 2003]. 12HE 12E  
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(a)                                (b) 

 
 

Fig. 23 (a)  mode (b) mode [R. Guobin, 2003]. 
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Fig. 25 mode. 
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Fig. 26  mode. 
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Fig. 27  mode. 21HE 
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4.3 Dispersion Flattening 
 

Controlling the chromatic dispersion in optical fibers is a very important 
problem for communication systems. In both linear and nonlinear regimes, 
or for any optical systems using ultra short soliton-pulse propagation. In all 
cases, the almost-flattened fiber-dispersion behavior becomes a crucial 
issue. 

The most appealing feature of photonic crystal fibers is their high 
flexibility based on the particular geometry of their refractive index 
distribution. This fact allows us to manipulate the geometrical parameters of 
the fiber to generate enormous variety of different configurations. 

The form of dispersion relation of guided mode for PCFs is very sensitive 
to the 2D photonic crystal cladding. For this reason, one can expect to 
control, at least to some extent, the dispersion properties of guided modes 
by manipulating the geometry of the cladding. It was soon realized that the 
PCF exhibited dispersion properties very different than thos of 
conventional fibers. As an som configurations presenting 
ero dispersion point bellow that of slica at 1.3

e 
 example, e PCF 

mµ  z [D. Mogilevtsev, 1998; 
. J Bennet, 1999], and some others showing flattened dispersion (one point 
f zero third-order dispersion) or near zero ultra-flattened dispersion (one 
oint of zero fourth-order dispersion) profiles [A. Ferrando et al., 2000]. 
ince the number of different photonic crystal configurations is significant, 
ne can deduce that it must be possible to elaborate a procedure to tailor the 
ispersion of the PCF modes in an efficient way. A systematic approach to 
esign the dispersion properties of the PCF using a systematic procedure has 
een already suggested in [A. Ferrando et al., 2001]. The analogous design 
etails of dispersion flattened or dispersion compensation for triangular 
ttice PCFs and high-index-core bragg fibers were also proposed in [A. 
errando et al., 2000], and the dispersion properties of square lattice PCF 
ere discussed recently [A. H. Bouk 2004]. 
Fig. 29 and Fig. 30 show two sets of PCF geometrical dispersion curves: 

. Different pitches with a fixed air filling ratio. 

. Different air filling ratios with a fixed pitch. 
 set A, for different pitches, the dispersion zero point would shift and the 

lope of each curve in the linear region is different. In set B, for different air 

P
o
p
S
o
d
d
b
d
la
F
w

A
B
In
s
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filling factors, the curves are shifted and the slope of their linear part is 
pproximately preserved. 

D ~= Dg - (-Dm) 

 set to be 
pa

a
Fig. 31 shows the idea of dispersion flattening design. The line with open 

circle is the opposite sign of the material dispersion curve, the line with 
open diamond is the geometrical dispersion curve, and the triangle is the 
total dispersion, which is defined as 

The key factor to achieve the flattened dispersion curve is the control of 
the slope of the linear part Dg. The sign changed material dispersion -Dm is 
a smooth and almost linear curve in most of the infrared region. It is clear 
from Fig. 31 that if the linear part of geometrical dispersion can be

rallel with the material dispersion, therefore the total dispersion will 
achieve an ideal perfect flattened behavior.  

The strategy to obtain such a behavior is then straight forward. It can be 
started by determining the slope of material dispersion curve at some 
specific wavelength. In the region where the material dispersion curve is 
smooth, the slope is approximately the same for a reasonably wide 
neighborhood around the specific wavelength. Once the slope of the Dm is 
fixed, we can change the pitch and the air hole diameter with a fixed air 
filling factor to obtain a Dg curve having a linear region with the same 
given slope of Dm, as shown in Fig. 29. If both the linear part of material 
and geometrical dispersion curves overlap in a specific wavelength region, 
then the dispersion flattened curve can be obtained in the overlapping 
region.  

After that, we can fix the pitch and change the air hole diameter to get a 
shifted curve, as shown in Fig. 30. Then different widths of flattened region 
can be obtained.      
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Fig. 29 Dispersion curves with fixed air filling ratio. 
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Fig. 30 Dispersion curves with fixed pitch. 
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Fig. 31 Schematic mechanism spersion flattening design. 
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4.4 Birefringence 
 
 For conventional polarization-maintaining fibers, the birefringence is made  
elasto-optically by incorporating different materials close to the core which 
generate stress when the fiber cools down during the drawing process. The 
birefringence can also appear due to non-circular core symmetry. 

High Birefringence fibers serve as polarization-maintaining fibers (PMFs). 
In standard fiber transmission systems, imperfections in the core-cladding 
interface introduce random birefringence that leads to light being random 
polarized. In PMFs, the problems of random birefringence are overcome by 
deliberately introducing larger uniform birefringence throughout the fiber. 
Current PMFs, such as bow-tie and panda fibers [K. H. Tsai, 1991], achieve 
this goal by applying stress to the core region of the standard fiber, creating 
a modal birefringence up to  [K. Tajima, 1989]. 

 It is well known that PCFs have more flexibility than conventional 
fibers in the design of optical fiber properties. According to the recent
literatu
of asymmetric core and large core-c dding index contrast [I. K. Hwang, 
2004], air holes of two sizes around the fiber core [T. P. Hansen, 2001], and 
symmetry obtained by selective filling of air holes with polymer [C. 
ergage, 2002]. To-date, the birefringence is reported to be about one order 
f magnitude lager than conventional fibers, and the largest one is 
bou [A. O. Blanch, 2000]. 

In this section, we try to induce high birefringence by incorporating 
lliptical air hole that has not been proposed in the literature. Two aroaches 
re considered: 

A.  Different ellipticity (e) with fixe

4105 −⋅

 
re, for PCFs, high birefringence can be produced by the combination 

la

a
K
o

t -310 3.7 ⋅a

e
a

dΛ and fixed major axis. 
B.  Different stressing factor for an initially given PCF with pitch 

and circular air hole diameter d. 
or case A, as shown in Fig. 32, the ellipticity e (<=1) is defined as the ratio 
f the minor axis to the major axis, d is defined as hole diameter, and  is 
efined as the pitch or hole-to-hole distance. Table 4 shows the 

irefringence for e = 0.5 and e= 0.3 with 

Λ  

F
o Λ
d

Λ=2.32 mµ  and major axis = xrb
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2.088 mµ  at 1.5µλ = m. For case B, another parameter, s (<=1) is 

efine the stressing factor. As illustrated in Fig. 33, for a typical PCF d d as 
with circular air holes, when a horizontal stress is alied to the PCF, the 
horizontal dimension of the structure would be scaled by s and the vertical 
one would be scaled by 1/s. Table 5 shows the birefringence with s = 0.6 

and pitch =2.3 mµ  at m. Form Table 4 and Table 5, it seems 

that class A possesses higher birefringence than class B. But it is still 
smaller than -310  

 
 
 
 
 

1.5µλ =
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Fig. 32 Triangular lattice with elliptical air hole with fixed pitch. 
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Fig. 33 Stressed PCF. 
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Table 4. Birefringence of class A PCF. 
 

=2.32 Λ mµ , = 2.088 xr mµ , 1.5µλ = m 

E Neff-x Neff-y Birefringence 
0.5 1.419747033737480 1.419076938826004 6.70 exp(-4) 
0.3 1.425759459962646 1.425236286662941 5.23 exp(-4) 

 
 
 

Table 5. Birefringence of class B PCF. 
 

S=0.6, =2.32 Λ mµ , 1.5µλ = m 

D Neff-x Neff-y Birefringence 
2.088  1.382123939764951 1.382074588315252 4.932 exp(-5) 
1.624 1.404978688533360 1.404917171090318 6.151 exp(-5) 
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4.5 Additional Simulation 
 

For the first time, we also study the dispersion property of square-lattice 
PCF with elliptical air holes, which is shown in Fig. 34. The elliptical air 
holes of this struc ar air holes with 
different stress factor s, which is defined as  

ture are formed by stressing the circul

 

d
d s x′=   or  

yd  
d 1
′

=  

ere  an  a ly. 

Another parameter, the air filling ratio a, which stands for the size of the air 
holes is given as 

    

s

H d d′  are the minory axis and the major xis respectivexd′

Λ
=

d a  

Fig. 35 shows the dispersion curve for different s with fixed pitch 2.32 mµ . 
In this case, the dispersion slope is positive. Fig.36 shows the dispersion 
curves w p ed tith the itch fix o 1 mµ , and the dispersion slope turns to be 
negative, thu n utilize the ne ispersion slop ion 
com o 6 hat 
the of o fa wo 
properties are consistent with the case in the square-lattice HF with circular 

makes difference for this elliptical 
s assisted structure is the vertical dispersion offset. If the air filling 

with smaller s moves to higher region. 
ith the stress factor s, designers can have more degrees of freedom to 

l the dispersion curves in a specific region. 

s we ca gative d e in the dispers
pensation design. Besides, fr m Fig. 35 and Fig. 3  one can find t

 value  dispersion is larger f r a large air filling ctor a. These t

air holes [A. H. Bouk et al., 2004]. What 
air hole
ratio a is fixed, the dispersion curve 
W
contro
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Fig. 34 The square-lattice HF with elliptical air holes. 
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      Fig. 35 Positive GVD (anomalous dispersion) with pitch = 2.32 um.  
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Fig. 36 Negative GVD (normal dispersion) with pitch = 1um. 
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Conclusion and Future Work 
 

In this work, a simulation tool for studying the modal properties of optical 
wave-guides with arbitrary cross-sections has been developed based on the 
finite element method using CT/LN edge element. In the previous sections, 
we discuss the optical properties of HFs and demonstrate some simulation 
results. Finally, for the first time, we discuss the dispersion characteristics of 
square-lattice HFs with elliptical air holes. It is shown that besides the air 
filling ratio a, the designer can have one more degree of freedom to control 
the dispersion curve in a specific region by tuning the stress factor s.  

For the following days to come, we will continue to work on modifying 
the code with the use of higher order elements to get fast-converged 
solutions with fewer unknowns. Moreover, if the optical properties of the 
wave-guides with longitudinal-variant cross-sections are desired, then the 
method in this study is not applicable anymore. For this reason, we still need 

method (BPM) to obtain a complete analysis. 
Recently, the combination of the finite element and the genetic algorithm 

(GA) has been demonstrated for obtaining the optimization design of the 
PCF dispersion property [Emmanuel Kerrinckx, 2004]. We believe that a lot 
of research efforts still needed in this field. Actually an evolutionary 
programming algorithm has been developed for the design of fiber gratings 
in our group. So how to combine the FEM with the optimization algorithm 
efficiently will be an interesting issue for us to investigate in the future. 
 
 
  
 
 
 
 
 
 

to combine the use of the finite element method with the beam propagation 
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