
Chapter 1 

 

Introduction  

 

1.1 Biometric Systems and Biometric Features 

 

Recently, identity verification has become an increasingly important and challenging task 

for security access systems. Traditional personal verification systems have been based on 

something that one possesses (Identification cards, for example) or one knows (passwords, for 

example). However, things like ID cards or passwords cannot ensure positive identification of 

a person. ID cards are routinely counterfeited, stolen or lost and passwords are often forgotten 

or stolen. To achieve more reliable verification or identification we should use information 

that really characterizes the person under examination. Biometrics offer automated methods 

of identity verification or identification on the principle of measurable physiological or 

behavioral characteristics [1, 2]. Unlike conventional identifiers (such as ID cards and 

passwords), biometrics are inextricably linked to a specific person and cannot be forgotten, 

counterfeited, or stolen. Biometrics can be thought of as a very secure key. Unless a biometric 

gate is unlocked by the presence of a specific person, no one else can gain the access.  

With the recent advances in optical and digital technologies, novel sensors, and matching 

algorithms, a variety of biometric systems have attracted increasing research attention. The 

key issue for a biometric identification system is the selection of features. A functional 

biometric system requires that the specific human characteristics in use to be [1]: 

(1) Universal: each person should have his/her own characteristic; 

(2) Distinctive: any two persons should have separable characteristics; 
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(3) Permanent: the characteristic should be sufficiently invariant, under a certain matching  

criterion, over a period of time; 

(4) Collectable: the characteristic must be a measurable quantity. 

Several biometric systems have been developed to distinguish individuals utilizing a 

variety of biometric features. 

Fingerprint :  

Fingerprinting is a well established authentication method, matching high accuracy with 

easy enrollment and deployment. By measuring the distance between predefined points and 

structures in the print, a reliable, unique, one-way hash is easily generated [3]. Close 

proximity to the device is required, but fingerprint scanning is both compact and easily 

deployable. Handheld devices are now cheaply available, making finger scanning appropriate 

for mobile environments. Reliability has also been long established [4, 5], applying this 

technology to be a suitable identification device for many applications. 

Voiceprint : 

Recognition through unique aspects of a speaker’s voice is an established identification 

mechanism [6, 7]. Reliable identification of speakers is possible through the same 

microphones used for human detection, using several enhancement techniques [8]. While 

training is necessary, identification can be performed without requiring specific text to be 

spoken [7]. Identification through voice recognition requires little on the part of the humans 

being identified and may be carried out without their intervention.  

Iris Imaging :  

This well-known mechanism involves the unique properties of the human eye. Iris 

imaging has gained prominence in recent year as an ideal biometric identification systems, 

especially in high-throughput security applications. Imaging is performed at a range of 18-36 

inches, using the phase information in the imaged iris to generate a pattern unique to every 

human. Iris scanning devices have lately become widely available. However, most devices 
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have short working ranges, and users must look into the device in a specific manner. Results 

are highly accurate [9] and therefore ideal for high security environments. 

Facial Imaging : 

Face recognition is performed by standard imaging devices through a three-step process. 

The locations of possible faces are first determined through color analysis [10, 11]. A variety 

of computational methods [10, 12, 13] are used to extract the relative positions of facial 

features, such as eyes, nose, and mouth. After matching feature distribution using pre-defined 

templates, high accuracy recognition is accomplished [14]. Face recognition algorithms are 

complicated by their need for the user to be directly facing the device; in the study of smart 

spaces this difficulty is overcome by using the multiple detection devices distributed 

throughout the space. Typical authentication through facial recognition involves intensive 

computation process but provides a portable extension to existing video detection networks. 

Palm Vein: 

The pattern of blood veins is unique to every individual, even between identical twins. 

Palms have a broad and complicated vascular pattern and thus contain a wealth of 

differentiating features for personal identification [15-22]. It is a highly secure method of 

authentication because this blood vein pattern lies under the skin. This makes it almost 

impossible for others to read or copy. An individual's vein pattern image is captured by 

scanning his/her hand with near-infrared rays. The reflection method illuminates the palm 

using an infrared ray and captures the light given off by the region after diffusion through the 

palm. This vein pattern is then verified against a preregistered pattern to authenticate the 

individual. 

Other biometric techniques, mostly still in exploratory stages including DNA biometrics 

[23], ear shape [24-27], fingernails [28] or odor [29-32]. However, most of the cited methods 

are subject to one of the three following conditions: the person must be positioned close to the 

detection device, high resolution capture device is required or significant computation is 
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required to determine the person’s identity.  

 

1.2 Human Infrared Sensing  

 

Our primary research interest in this study is to detect information about humans using 

their infrared properties. Human bodies are very good infrared sources and radiate heat to 

their environment. There is a constant heat exchange between the body and the environment 

due to the difference in their temperatures. The human body as a thermal source has been 

actively studied for military applications, evaluating thermal images or for biomedical 

applications [33-35]. The radiation characteristics of any object can be analyzed using the 

black-body radiation curve governed by Planck's Law [36]. For a typical human body with an 

internal temperature of 37 oC, this curve is shown in Fig. 1.1. It can be seen that essentially all 

of the radiation is in the infrared region with the peak radiation occurring at 9.55 mµ . The 

amount of power that the human body radiates within the wavelength range of interest is 

determined by integrating the blackbody radiation curve (Fig. 1.1) over this range. About 52% 

of the power lies in the 5~ 14 mµ  wavelength band.  

 

 

           Fig.1.1 Black-body radiation curve of human body at 37o C. 
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1.3 Human Thermal Model 

 

To estimate human body radiation of heat to their environment, the Stefan-Boltzman's 

Law can be used. The amount of power per unit area leaving an object is obtained by  

 

4 4( ) ( )h cT T Tψ σ= − ,                            (1-1)  

 

where  is the temperature (in deg Kelvin) of the human body which is typically about 37 hT

oC,  is the ambient temperature in Kelvin and cT σ  is the Stefan- Boltzmann’s constant 

valued at 8
2 45.67 10 W

m K
−×  and ( )Tψ  is the power per unit area emitted from the hot body.  

In order to account for the non-ideal nature of the human body as a radiator, an 

emissivity factor ε  is included in the above equation. This factor has a typical value of 0.98 

for a human body to account for the absorption that occurs in the skin [33-35]. If ’A’ is the 

area of the radiating surface of the body, the total power radiated from the human body now 

becomes 

 

4 4( ) ( )h cT A T Tψ εσ= − ,                            (1-2)  

 

Assigning typical values to each of the variables as: = 310K, = 293K, A=2 mhT cT 2, we 

get ( )Tψ = 200 W. In order to account for the absorption by clothes, the power is scaled 

down by a factor of 2. Thus, the power radiated by the body effectively becomes about 100 W.  
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1.4 Computational Imaging System 

 

Most optical imaging systems implement an isomorphic one-to-one mapping between 

the source space and the measurement space. These systems rely on a lens to form an image 

of the object’s field on to a focal plane array or a photographic film. The focus of an optical 

system design has primarily been on implementations of better isomorphisms in order to 

improve resolution, depth of field and field of view. With the recent advances in digital 

processing, focal planes and availability of ample ubiquitous computing power, a new class of 

imaging systems that integrate optical and electronic processing to achieve new functionalities 

has emerged. These systems are referred to as “Integrated Computational imaging systems”.  

A typical computational imaging system is illustrated in Fig. 1.2. Some of these systems use 

non-conventional optical elements to preprocess the field for digital analysis. These 

non-conventional optical elements can perform a wide range of transformations that can be 

used to implement complicated multidimensional/multi-spectral mapping of a source space 

into a measurement space. Several existing computational imaging systems include 

wave-front coding [37, 38], computed-tomography imager [39, 40], coded apertures [41, 42], 

multidimensional/multi-spectral imaging [43, 44]. Other potential advantages include 

increased depth of field [45, 46], improved computational efficiency and improved target 

recognition or tracking capabilities [47, 48].  
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Fig.1.2 A typical computational system. 

 

This methodology of computational systems gives the designer control over the optics, 

detection, signal processing, optical and mechanical tolerance, fabrication and signal 

processing implementation. Systems can be optimized based on application-specific operation, 

such as feature recognition algorithms for surveillance, machine vision analysis, biomedical 

diagnosis or bar code reading, for example. The desired result in many of these systems is not 

always a high quality image, but often a number or set of numbers that accurately describe a 

scene. Therefore, in some cases, systems are not based on creating visually appealing images, 

but instead are based on maximizing the information transfer between the object space and the 

image processing, recognition, or identification algorithms. 

 
1.5 Motivation 

 

When a human walks, the motion of various parts of the body, including the torso, arms, 

and legs, produces a characteristic signature. Human walking motion is a complex process 
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and it is difficult to decouple the individual biomechanical contributions in a motion cycle for 

an analysis. Much work on motion analysis as a behavioral biometric has used video cameras 

to stream large amounts of data from which the identity of the person of interest can be 

extracted in a computationally expensive way [1, 49]. Also, if networks of cameras are used, 

the system requires large amounts of bandwidth in order to stream in real-time data to the 

processing computer. Recently, continuous wave (CW) radar has been developed to record 

signatures corresponding to the walking human gait [50]. These CW radar based systems 

utilize the Doppler effect to produce characteristic signals of a person walking.  

From the thermal perspective, each person acts as a distributed infrared source whose 

thermal distribution is determined by his/her geometric shape and the IR emission from the 

body. Combined with the various idiosyncrasies in how an individual carries himself, the 

human thermal signature will impact a surrounding sensor field in a unique way. In this thesis, 

we will propose novel designs for computational sensor systems that use non-conventional 

imaging approaches to capture thermal motion features of humans to achieve real-time 

path-dependent and path-independent human identifications with low cost, low bandwidth 

utilization, low power consumption, easy deployment, and efficient measurement of the 

human information. 
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