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參數空間法用於擾動控制系統之分析與設計 
 

 

研究生：秦弘毅                         指導教授：吳炳飛 博士 

國立交通大學電機與控制工程學系 

摘 要       
 
在實體系統中使用的模型通常是不準確的。在運作期間，系統中

的參數常隨著時間和環境的變化而改變，或者由於使用之模型為簡化

的模型，凡此種種原因皆可導致誤差的產生，所以針對特定準確的系

統而進行之分析及設計是不完全實用的。在實際控制系統設計及分析

時，穩健的系統穩定性，是重要的考慮因素。由於系統中非線性元件

的存在，另一個必須考慮的重要現象為極限環的產生，而通常這是設

計者不希望見到的，此類問題已經被許多的研究者討論過。對帶有非

線性性質的擾動系統而言，如果能夠事先預測其極限環的行為，對設

計者是極有助益的。利用描述函數法將非線性元件線性化，以預測其

極限環的發生，已成功的使用在許多的應用上。 

本論文旨在針對具有擾動參數的控制系統，提出一完整且有效之

方法，利用參數空間法及穩定性的基本觀念，以分析其增益邊際和相

位邊際，並且設計控制器，調整控制器的係數，以達到系統頻域的規

格要求，例如增益邊際、相位邊際和敏感度。同時對有非線性元件的

系統，預測其極限環的發生。車輛模型被使用為模擬的例子。藉著求

解系統之特性方程式，在選定之系統參數平面或空間上，產生增益及

相位邊界曲線，以圖解方式決定控制器係數的合格區域，以使整個系

統之性能達到頻域規格的要求，以此法進行分析及設計。同樣的方法

也應用於模糊控制系統穩定度的分析。以上提出之方法更進一步延伸

至具有擾動參數的鎖相迴路系統的設計分析。部分系統參數在給定區

域擾動，於參數平面上，以圖形顯示待決之目標參數區域，選定該區

域範圍內之參數，使該鎖相迴路系統能達到規格之要求。本論文模擬

的結果已驗証了預期達成之目標。 



 ii

Analysis and Design of Perturbed Control Systems Based on 
Parameter Space Method 
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ABSTRACT 

 
 

The models used are usually imprecise and the parameters of physical 
systems vary with the operating conditions and time. Designing and 
implementing a system for a fixed and exact control plant is not usually 
practical in the natural environments. A inaccurate plant may result from a 
simplified model and uncertainties in system parameters can always occur 
in the physical world. Robustness stability is important in analysis and 
design of practical control systems. Another important phenomena to be 
considered is undesirable oscillations due to nonlinearities in a feedback 
closed system and it has been studied by many researchers. It is very 
instructive for the designer to predict the limit cycle behavior of a 
perturbed control system with nonlinearities. The describing function 
technique is mainly employed to predict the existence of constant 
amplitude oscillations of closed nonlinear systems and has been 
successfully used in many applications. 

The main subject of this dissertation is to propose a novel method 
based on parameter space method and robust stability criteria to predict 
limit cycles occurred, analyze the system performances of gain margin and 
phase margin (GM and PM), and design a desired controller by adjusting 
the controller coefficients for perturbed control systems to meet specified 
conditions including GM, PM and sensitivity in frequency domain. A 
vehicle model is used as an example for simulation. With the help of gain 
and phase boundary curves resulting from the roots of the characteristic 
polynomial equation of closed control systems, a methodology is proposed 
for portraying regions in a selected designed parameter plane so that the 
performance of the whole system can meet the specified requirements with 
perturbed parameters varying in given intervals. The same approach is 



 iii

extended to analyze the robust stability for a fuzzy control system. This 
dissertation also applies the above method on phase-locked loops (PLL) 
design by frequency domain approach for a perturbed PLL system. The 
desired system parameters of PLLs in the selected coordinate plane are 
determined in graphical portrayals. Simulation results have demonstrated 
and achieved the objectives as desired. 
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Chapter 1  
 
Introduction 
 

1.1 Motivations 

Gain margin and phase margin are important specifications in the frequency domain for 

the analysis and design of practical control systems and have served as important measures of 

robustness analysis which is always of primary concern. This is because the models used are 

usually imprecise and the parameters of all physical systems vary with the operating 

conditions and time. They are usually obtained numerically or graphically by the use of 

system frequency response like Bode plots. Studying for controller design to satisfy GM, PM 

or sensitivity conditions was proposed by several articles such as in [1]-[6], There are also 

many design methods to determine the parameters to meet different objectives [7]-[9]. 

Designing a controller for a fixed and exact control plant is not usually practical in the natural 

environments. Due to the simplified models or the factors resulting from the changing 

environments, the uncertainties in system parameters can always occur. Uncertain parameters 

in a linear control system can be robustly analyzed by the parameter plane method or the 

parameter space method [10]-[16]. By robust stability criteria a simple way of checking the 
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stability of perturbed interval polynomials, is to guarantee if all the polynomials have the 

roots in the left-half plane [17]. The perturbed parameters will result in root-clusters, within 

which the roots of the perturbed polynomials will be located. Usually, a change in a physical 

quantity typically appears in more than one coefficient of the characteristic equation. Robust 

Gamma-stability analysis for a perturbed vehicle plant was also studied [18]. The methods of 

analyzing the gain-phase margin of a linear control system with adjustable parameters have 

been developed [19]-[21]. Strictly speaking, the majority of the researches mentioned above 

are not concentrated on the controller design for perturbed systems. Sensitivity functions are 

usually used as a design specification to indicate the robustness of a system. In [6] and [8], 

Yaniv and Nagurka proposed a robust controller design method satisfying GM, PM and 

sensitivity constraints on the perturbed systems, not with the system parameters in uncertain 

continuous intervals, but with the system uncertainties in the finite discrete set of gains and 

pole locations. 

Undesirable oscillation phenomena due to nonlinearities in a feedback closed system 

have been studied by many publications [22]-[26] and it is important for the designer to 

predict the limit cycle behavior of a perturbed vehicle system with nonlinearities. It is of 

interest to know the frequency, amplitude, stability and instability of the limit cycle occurred. 

The describing function technique is mainly employed to predict the existence of constant 
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amplitude oscillations of closed nonlinear systems and has been successfully used in many 

applications although some limitations exist in the systems which don’t satisfy the assumption 

of filtering out the higher order harmonics [27]-[30]. 

In addition, some researchers have developed the experimental and analytic describing 

functions of fuzzy controller in order to analyze the stability of fuzzy control systems [31-32]. 

Furthermore, the describing function technique to design a fuzzy controller for switching 

DC-DC regulators was proposed by Gomariz et al [33]. The describing function was also 

applied to find the bounds for the neural network parameters to have a stable system response 

and generate limit cycles [34]. The results in [32] and [33] are extended to analyze the 

stability of a fuzzy vehicle steering control system under the effects of system parameters and 

gain-phase margin by the use of methods of describing function, parameter plane and a 

gain-phase margin tester. A simple vehicle steering control model with perturbed parameters 

is cited to verify the design procedure. 

On the other hand, there are a large number of studies concentrated on the subject of 

phase-locked loops (PLL) in the latest decades. The theoretical description of PLL was well 

proposed [35]-[39]. A PLL is essentially a circuit that has a particular system lock its 

frequency as well as the phase to those of the input applied to it. When the phase error is built 

up in the locked state, a feedback mechanism acts on an oscillator called VCO so that the 
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error is reduced to a minimum and a phase output of VCO is really locked to the reference 

input. There are a considerable number of applications in many areas. A technique using PLL 

was established on motor speed control [40]. In the design of Global Positioning System 

receivers, PLL is very useful especially in a noisy environment [41]. PLL was also applied in 

the design of frequency synthesizer [42]. 

In this thesis, GM and PM performances are defined for a perturbed system with 

uncertain continuous interval parameters and shown here graphically in the system parameter 

space. By the use of parameter space method and robustness stability criteria, stability 

boundary curves corresponding to specific GM and PM constraints are generated. Owing to 

the complexity of the controller design for perturbed control systems, it is not an easy job to 

find out a qualified controller together with the system plant with uncertain interval 

parameters so that the whole closed system at every point in the perturbed system parameter 

region satisfies all the three specifications of GM, PM and sensitivity. The main concern in 

the controller design is to find a desired region in the controller coefficient plane so that the 

performance of the whole system with uncertain parameters inside a perturbed space satisfies 

given specifications. The desired controller will be determined graphically from a figure in 

which a qualified controller coefficient area is to be found out. With the help of stability 

boundary curves in the controller coefficient space, the objective of designing a suitable 
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controller meeting the specified requirements is achieved. 

 

1.2 Organizations of the Dissertation  

The dissertation is organized as follows. Chapter 1 is an introduction. Basic concepts are 

described in Chapter 2. In Chapter 3, a perturbed vehicle control system whose gain margin 

(GM) and phase margin (PM) are analyzed and for which a novel controller design method 

satisfying the given specifications on GM, PM and sensitivity is developed. In Chapter 4, the 

subject of predicting the limit cycle of a nonlinear perturbed vehicle control system under 

specific gain-phase margin (GM/PM) constraints is addressed. The analysis of robust stability 

for a fuzzy vehicle steering control system is considered in Chapter 5. In Chapter 6, a control 

algorithm is presented for phase-locked loop (PLL) design with perturbed parameters 

satisfying frequency-domain specifications. In Chapter 7, conclusions are given and 

suggestions for future research are also proposed. 

  

 

 

 

 



 6

Chapter 2 
 
Basic Concepts 
 
2.1  Overview 

This chapter presents a description about the way how to analyze and design a feedback 

control system with perturbed parameters varying in intervals by frequency approach. 

Parameter space method and robust stability criteria provide a technique to check the stability 

of perturbed control systems in a space with the coordinates of uncertain system parameters. 

By the use of a gain-phase margin tester, stability boundary curves are generated to determine 

gain and phase margins (GM and PM) in performance analysis. In the similar way, desired 

controller coefficients are going to be found out to meet given specifications for controller 

design. Sensitivity function is also considered in the controller design. With the nonlinearities 

inherent in the system, describing function method is used for predicting limit cycle occurred.  

2.2 Robust Stability Criteria 

Consider the characteristic polynomial of a feedback control system 

0 1
0

( , ) ( ) ( ) ( ) ( )
n

i n
i n

i
P s q d q s d q d q s d q s

=

= = + +⋅⋅⋅⋅+∑ ,            (2.1) 
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where 1 2[ , , ]nq q q q= ⋅⋅⋅⋅ ∈ℜ  and ℜ  is a set of allowable parameter domain space. Each iq  

varies independently within the interval with ],;[ +−∈ iii qqq ni ⋅⋅⋅= 2,1 . 

It has been shown that for real continuous coefficient functions ( )i qd  of the 

characteristic equation, a sufficient condition for robust stability is that (a) there exists a 

oq q= ∈ℜ  such that ( , )P s q  is stable; (b) ( , )P s q  doesn’t have any roots on the imaginary 

axis for any q∈ℜ . It is easily tested by checking the stability of the characteristic 

polynomial ( , )oP s q  for an arbitrary oq ∈ℜ . If no such oq  exists, the system is unstable. 

The condition (b) is satisfied if and only if the equation ( , ) 0P s q =  neither has a real root at 

0s = , i.e. 

0 ( ) 0qd ≠                             (2.2) 

nor an imaginary pair of roots at s jω= ±  for all q∈ℜ . Let jωℜ be the set of all real q  

such that the polynomial ( , )P s q  has roots on the imaginary axis . 

{ : ( , ) 0 for 0}j q P j qω ω ωℜ = = ≥ .                  (2.3) 

The condition (b) also means that jωℜ  does not intersect the parameter domain space 

ℜ . The curve formed by the points q  in jωℜ  in the spaceq −  is the stability boundary 

curve. The perturbed feedback control system is stable at the points in the spaceq −  on one 

side of the stable boundary curve and it is unstable at the points on the other side. The above 

method can be used to determine where the system parameters in ℜ  can be chosen.  
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2.3 Describing Function 

It is generally useful for the describing function technique to be applied in engineering 

problems of control systems. Nonlinear systems are generally linearized by using the 

describing function method to predict the limit cycle for stability analysis. Assume a 

sinusoidal input ( ) sin( )x t A tω=  with the amplitude A  and the frequency ω  to a nonlinear 

system `  in Fig. 2.1 and y(t) is the output signal and periodic. By the Fourier series, 

0
1

( ) ( sin( ) cos( )),n n
n

y t a a n t b n tω ω
∞

=

= + +∑               (2.4) 

where 

2

0 0

2

0

2

0

1 ( ) ( ),
2
1 ( )sin ( ), 0,

1 ( )cos ( ), 0.

n

n

a y t d t

a y t n td t n

b y t n td t n

π

π

π

ω
π

ω ω
π

ω ω
π

=

= ≠

= ≠

∫

∫

∫

               (2.5) 

If the nonlinear system is symmetric about the origin, 0 0a = . Let Y be a fundamental 

component of the Fourier series of y(t) and 1 1 1 1Y a jb Y θ= + = ∠ , where 2 2
1 1 1Y a b= +  and 

1 1
1

1

tan b
a

θ −= . 1Y  is the amplitude of the fundamental component of the system output ( )y t  

and θ  is the phase shift by Fourier series. 

The describing function N  of a symmetric nonlinear system is defined as [28] 

1 1 1
1 1

Y a jb
N

A A
θ θ

+
= ∠ = ∠                      (2.6) 

 

2.4 Parameter Space Method 
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Consider a perturbed closed control system with a gain-phase margin tester jke θ−  and 

there are r  nonlinear components in the system. Every nonlinear component has the 

complex describing function iN  ( 1, 2,...., )i r=  that is a complex function of A  and ω , 

which are the amplitude and frequency respectively of the input signal to the i th−  nonlinear 

element iN  and  

i iR iIN N jN= + .                         (2.7) 

Assume the closed characteristic equation is 

,1 1I R I

,1 1I R I R I

( , , , , , , ..., )

the numerator of [1 ( , , , , ..., , ,..., )]
0,

R r r
j

R m m r r

P s q c k N N N N

ke G s q c N N N N N Nθ

θ
−= +

=
    (2.8) 

and 

, ,1 1I R I

, ,1 1I R I
0

, ,0 1 1I R I 1 1

, ,1 1I R I

( , , , , , , ..., )

( , , , , , ..., )

( , , , , , ..., ) ( , , , , ,..., )

( , , , , , ..., ) ,

R r r
n t

t R r r
t

R r r r
n

n R r r

P s q c k N N N N

d q c k N N N N s

d q c k N N N N d q c k N N s

d q c k N N N N s

θ

θ

θ θ

θ

=
= ∑

= + + ⋅⋅⋅

+

      (2.9) 

where , ,1 1I R I( , , , , ..., )R r rG s q c N N N N  is an open loop transfer function of the system and c  

is a controller coefficient vector. 0 1[ , ,..... ]mc c c c=  and ic  is a controller coefficient to be 

designed for 0,1,2,.....i m= . 

, ,1 1I R I( , , , , , ), ...,R r rP j q c k N N N Nω θ  may be written into the real part ,1 1I( , , , , , , .RU q c k N Nω θ  

,R I ).., r rN N  and imaginary part , ,1 1I R I( , , , , , ), ...,R r rV q c k N N N Nω θ . 

, ,1 1I R I 1 1I R I

1 1I R I

( , , , , , , ,..., , ) ( , , , , , , ..., )
( , , , , , , ,..., , )

0,

R r r R r r

R r r

P j q c k N N N N U q c k N N N N
jV q c k N N N N

ω θ ω θ
ω θ

= +

=
 (2.10) 
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where 

1 1I R I 0 1 1I R I

1 1 1I R I
2

2 1 1I R I

1 1I R I

( , , , , , , ,..., , ) ( , , , , ,..., , )
( , , , , , ,..., , )

( , , , , , ,..., , )

( , , , , , ,..., , )

R r r R r r

R r r

R r r
n

n R r r

U q c k N N N N r q k N N N N
r q c k N N N N

r q c k N N N N

r q c k N N N N

ω θ θ
θ ω

θ ω

θ ω

=
+

+

+ ⋅⋅⋅ +

 (2.11) 

and 

1 1I R I 0 1 1I R I

1 1 1I R I
2

2 1 1I R I

1 1I R I

( , , , , , , ,..., , ) ( , , , , ,..., , )
( , , , , , ,..., , )

( , , , , , ,..., , )

( , , , , , ,..., , ) .

R r r R r r

R r r

R r r
n

n R r r

V q c k N N N N i q k N N N N
i q c k N N N N

i q c k N N N N

i q c k N N N N

ω θ θ
θ ω

θ ω

θ ω

=
+

+

+ ⋅⋅⋅ +

 (2.12) 

 

The equations 

1 1I R I

1 1I R I

( , , , , , , ,..., , ) 0
( , , , , , , ,..., , ) 0

R r r

R r r

U q c k N N N N
V q c k N N N N

ω θ
ω θ

=⎧
⎨ =⎩

               (2.13) 

can be solved for q  or for c . 

2.4.1 Limit Cycle Prediction 

For predicting the limit cycle resulting from nonlinearities iN , (2.13) is solved  for q  

given specific , , ,c kω θ  and A  in system performance analysis analytically or numerically. 

Gain boundary curves will be generated from these q  values in the q -parameter space by 

varying ω  given specific k  and A  with 0θ = ○ . Phase boundary curves will be 

generated by varying ω  given specific θ  and A  with 1k = . Every boundary curve 

separates the parameter domain region into two areas as in Fig. 2.2. One is the asymptotically 

stable region and the other is unstable. The limit cycle with amplitude A  will happen if a 
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system parameter point q  is in the unstable area, but it won’t if q  is in the stable area. The 

gain and phase margins of the perturbed control system will be analyzed from boundary 

curves geometrically. A specific gain or phase value corresponding to the boundary curve 

which is tangent to the perturbed parameter region as in Fig. 2.3 is defined as the GM and PM 

of the perturbed system for predicting the limit cycles occurring, respectively. 

2.4.2 GM Analysis without Nonlinearities  

If there is no nonlinear part in a perturbed system, 1 1I R I, ,..., , andR r rN N N N  in 

(2.10)-(2.13) are omitted.  

Equation (2.13) is rewritten into the following form 

( , , , , ) 0
( , , , , ) 0

U q c k
V q c k

ω θ
ω θ

=⎧
⎨ =⎩

                       (2.14) 

Equation (2.14) can be solved for q  with specific , , ,c kω θ . For gain margin analysis, a gain 

boundary curve is generated in spaceq −  from the solutions q  of (2.14) by varying ω  for 

every k  with 0θ Ο= . A specific gain k (dB)  corresponding to the boundary curve which 

is tangent to the perturbed region ℜ  is defined as the GM of the perturbed control system. It 

is also the minimal GM of the system within the entire region ℜ . The GM of the control 

system at a point on one side of a specific gain boundary curve is greater than that at a point 

on the boundary curve. But it is less at the points on the other side. 

2.4.3 PM Analysis without Nonlinearities 
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Equation (2.14) can be solved for q  with respect to θ , given specific , ,c kω . Phase 

boundary curves are developed under the PM specification in a similar way with 1=k . They 

are generated in spaceq −  from the solutions q  of (2.14) by varying ω  for every θ . The 

PM of the control system is defined as the phase value θ  associated with the phase boundary 

curve which is tangent to the perturbed region ℜ . It is the minimal PM for the whole system 

with the parameters inside ℜ , too. The PM of the control system at a point on one side of a 

specific phase boundary curve is greater than that at a point on the boundary curve. But it is 

less at a point on the other side. 

2.4.4 Controller Design 

The controller design is to determine the desired controller coefficients in selected c  

-space. Based on gain-phase boundary curves drawn from the locations of the roots of (2.14) 

for c  and the constant-sensitivity loci, the desired area in spacec −  is found so that the 

whole system with the controller in that area will meet specified conditions.  

First, determine a gain region in spacec −  with the help of the gain boundary curves so that 

the controller with the coefficients in that region satisfies the specified GM constraints. 

Secondly, a phase-region is determined in spacec −  with the help of the phase boundary 

curves so that the controller with the coefficients in that region satisfies the specified PM 

conditions. Then, find out the common region of the previous mentioned gain and phase areas. 
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The controller coefficients in that region will satisfy both the user-defined GM and PM 

specifications.  

2.5 Sensitivity Function 

Sensitivity effects are often important to be considered in the design of control systems 

on frequency domain and can be used as a design specification to indicate the robustness of 

control system. The sensitivity function of the closed-loop transfer function H(s) with respect 

to the variations of the transfer function G(s) which is a subsystem of H(s) is defined as 

( )
( )

( ) / ( )
( ) / ( )

H s
G s

H s H sS
G s G s

∂
=
∂

                      (2.15) 

or with respect to the variations of an element β  in H(s) is given by  

( ) ( ) / ( )
/

H s H s H sSβ β β
∂

=
∂

.                      (2.16) 

 

2.6 Concluding Remarks 

In this chapter, basic concepts of performance analysis and controller design for 

perturbed control systems are addressed based on parameter space method and robust stability 

criteria. GM and PM are analyzed and the desired controller is determined by the proposed 

methods with the help of a gain-phase margin tester. Limit cycles are also predicted for 

perturbed systems with nonlinearities.  
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`
( ) cosx t A tω= ( )y t

 
Fig. 2.1 A nonlinear system with input signal ( ) cosx t A tω=  
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Fig. 2.2 Limit cycle boundary in a nonlinear system. 
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Chapter 3 

 
Robust Control Design for Perturbed 
Systems by Frequency Domain Approach  
 
3.1 Overview 

The chapter presented here is concentrated on a perturbed vehicle control system whose 

gain margin (GM) and phase margin (PM) are analyzed and for which a novel controller 

design method satisfying the given specifications on GM, PM and sensitivity is developed. 

The approach is applied to the plants with uncertain parameters that vary in intervals. Based 

on the parameter space method and robust stability criteria, gain and phase boundary curves 

are generated from the characteristic polynomial of the system with which a gain-phase tester 

is included in series to perform system stability analysis and controller design. The main 

concern in the controller design is to find a region in the controller coefficient plane so that 

the performance of the uncertain system satisfies given specifications. The proposed method 

is applied to an example of a bus system. Simulation results are given for illustration to show 

the system performances on GM and PM and the desired controller meeting the specified 

conditions in frequency domain for the perturbed system is derived.  
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3.2 Sensitivity 

Since in physical systems all the elements may change their properties with time and 

environments, the considerations about the changes of the characteristics of the closed control 

systems with respect to system parameter variations are always of big concern for a system 

designer.  

Consider a linear control feedback system illustrated in Fig. 3.1. The closed loop 

feedback system has the transfer function given by  

( , ) ( , )( , , )
1 ( , ) ( , )

C s c G s qH s q c
C s c G s q

=
+

,                    (3.1) 

where ( , )C s c  is a controller with 0 1[ , ,..... ]mc c c c=  and ic  is a controller coefficient to be 

designed for 0,1,2,.....i m= . ),( qsG  is a plant with a perturbed parameter vector 

1 2[ , , ]nq q q q= ⋅⋅⋅⋅ ∈ℜ . ℜ  is a set of allowable parameter domain space. Each iq  varies 

independently within the interval with ],;[ +−∈ iii qqq ni ⋅⋅⋅= 2,1 .  

Assume 

( , )( , )
( )

c

c

N s cC s c
D s

=                          (3.2) 

and 

( , )( , )
( , )

G

G

N s qG s q
D s q

= .                        (3.3) 

With a specific q , ( , , )H s q c  is replaced by ( , )H s c .The sensitivity function ( ),H
i

s c
cS with 
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respect to the controller coefficient ic  is defined as 

( ), ( , ) / ( , )
/i

H
c

i i

s c dH s c H s cS
dc c

= ,                    (3.4) 

where 0,1,2....i m= . Substitute (3.1), (3.2) and (3.3) into (3.4), and the sensitivity function 

( ),
i
H
c

s cS  can be computed. Given a different constant 0s  , the solutions of the equality 

( )
0

H j
i s jcS sω

ω=
=  for a controller coefficient c  give constant-sensitivity loci in the spacec − . 

The controller coefficient c  will be determined based on sensitivity specifications 

corresponding to one of those loci. A system being very insensitive to parameter variations is 

considered to be a good control system. 

 

3.3 Stability Boundary Analysis 

Consider a gain-phase tester jke θ−  included in series with the original control system as 

in Fig. 3.2, and its transfer function is given by  

( , ) ( , )( , , , , )
1 ( , ) ( , )

j

j

Ke C s c G s qH s q c K
Ke C s c G s q

θ

θθ
−

−=
+

.                (3.5) 

The characteristic polynomial is ( , , , , )P s q c k θ  and  

0

0 1

( , , , , ) the numerator of [1 ( , ) ( , )]

( , , , )

( , , , ) ( , , , ) ( , , , )

j

n
i

i
i

n
n

P s q c k ke C s c G s q

d q c k s

d q c k d q c k s d q c k s

θθ

θ

θ θ θ

−

=

= +

=

= + + ⋅⋅⋅⋅ +

∑ .      (3.6) 

By the use of the parameter space method and robust stability criteria, system stability 

performance on GM and PM is analyzed by generating gain and phase boundary curves. For 
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perturbed control systems in which the parameters of the characteristic polynomial lie within 

given intervals, the minimum of all the GM values of the system at the points inside the entire 

perturbed region in the parameter space is defined to be the GM of the system. The PM of the 

system is defined in the same way. 

3.3.1 Parameter Space Method 

The parameter space method is a good analytical technique to perform system analysis in 

the selected system parameter plane for a control system which is described by its 

characteristic polynomial, the roots of which generate stability boundary curves in the 

parameter plane. The characteristic polynomial on the jω -axis ( , , , , )P j q c kω θ  may be 

written into the real part ( , , , , )U q c kω θ and the imaginary part ( , , , , )V q c kω θ . 

( , , , , ) ( , , , , ) ( , , , , )
0

P j q c k U q c k jV q c kω θ ω θ ω θ= +
=

,           (3.7) 

where 

2
0 1 2( , , , , ) ( , , , ) ( , , , ) ( , , , ) ( , , , ) n

nU q c k r q c k r q c k r q c k r q c kω θ θ θ ω θ ω θ ω= + + + ⋅⋅⋅+ (3.8) 

and 

2
0 1 2( , , , , ) ( , , , ) ( , , , ) ( , , , ) ( , , , ) n

nV q c k i q c k i q c k i q c k i q c kω θ θ θ ω θ ω θ ω= + + +⋅⋅⋅+ (3.9) 

The equations 

( , , , , ) 0
( , , , , ) 0

U q c k
V q c k

ω θ
ω θ

=⎧
⎨ =⎩

                       (3.10) 

can be solved analytically or numerically for q  or c . Gain and phase boundary curves are 
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generated both in spaceq −  from the solutions q  for GM and PM analysis and in 

spacec −  from the solutions c  for the controller design under specified conditions. 

In the analysis of GM and PM, a fixed controller is used to analyze the system 

performance, and (3.7)-(3.10) don’t depend on c . The gain and phase margins of the 

perturbed vehicle system will be analyzed geometrically in 2 and 3 dimensions from stability 

boundary curves. 

In controller design, (3.10) can be solved for c  with specific , , andk qω θ  in a 

similar way. Gain and phase boundary curves are developed in the spacec −  according to 

different gain k  and θ , respectively. 

3.3.2 Gain Margin Analysis 

Let 0θ Ο=  and c  be a specific controller coefficient in Fig. 3.2. Equations (3.7) and 

(3.10) are rewritten into the forms 

( , , ) ( , , ) ( , , )
0

P j q k U q k jV q kω ω ω= +
=

                 (3.11) 

and 

( , , ) 0
( , , ) 0

U q k
V q k

ω
ω

=⎧
⎨ =⎩

,                        (3.12) 

where  

2
0 1 2( , , ) ( , ) ( , ) ( , ) ( , ) n

nU q k r q k r q k r q k r q kω ω ω ω= + + + ⋅⋅⋅+         (3.13) 

and 
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2
0 1 2( , , ) ( , ) ( , ) ( , ) ( , ) n

nV q k i q k i q k i q k i q kω ω ω ω= + + +⋅⋅⋅+ .       (3.14) 

A gain boundary curve is generated in spaceq −  from the solutions q  of (3.12) by varying 

ω  for every k . By varying k  the curve is approaching to the parameter region ℜ  

gradually and finally intersect with ℜ . A specific gain k (dB)  corresponding to the 

boundary curve which is tangent to the parameter perturbed region ℜ  is defined as the GM 

of the perturbed control system. It is also the minimal GM of the system within the entire 

region ℜ . The GM of the control system at a point on one side of a specific gain boundary 

curve is greater than that at a point on the boundary curve. But it is less at the points on the 

other side. 

3.3.3 Phase Margin Analysis 

Given 1=k  and a specific c  in Fig. 3.2, (3.7) and (3.10) are rewritten into the forms 

( , , ) ( , , ) ( , , )
0

P j q U q jV qω θ ω θ ω θ= +
=

                (3.15) 

and 

( , , ) 0
( , , ) 0

U q
V q

ω θ
ω θ

=⎧
⎨ =⎩

,                        (3.16) 

where  

2
0 1 2( , , ) ( , ) ( , ) ( , ) ( , ) n

nU q r q r q r q r qω θ θ θ ω θ ω θ ω= + + + ⋅⋅⋅ +         (3.17) 

and 

2
0 1 2( , , ) ( , ) ( , ) ( , ) ( , ) n

nV q i q i q i q i qω θ θ θ ω θ ω θ ω= + + +⋅⋅⋅+ .       (3.18) 



 22

Phase boundary curves are developed under the PM specification in a similar way. They are 

generated in spaceq −  from the solutions q  of (3.16) by varying ω  for every θ . The PM 

of the control system is defined as the phase value θ  associated with the phase boundary 

curve which is tangent to the perturbed region ℜ . It is the minimal PM for the whole system 

with the parameters inside ℜ , too. The PM of the control system at a point on one side of a 

specific phase boundary curve is greater than that at a point on the boundary curve. But it is 

less at a point on the other side. 

3.3.4 Controller Design 

The controller design is based on gain-phase boundary curves which are drawn in 

spacec −  from the locations of the roots of the polynomial equation (3.10) with respect to 

different k  and θ , and the constant-sensitivity loci which are drawn based on the solutions 

of the ( )
0

H j
i s jcS sω

ω=
=  for the controller coefficient c  in c − space with respect to the 

given sensitivity constant 0s . The desired coefficients are determined under the constraints of 

specified GM, PM and sensitivity. Systems with high stability and low sensitivity are desired. 

Based on the discussions mentioned above, the design algorithm is as the followings: 

Step 1: Set up user-defined specifications on GM, PM and sensitivity. 

Step 2: For every system parameter q  at the vertices of the perturbed system parameter 

region in q -plane, draw the gain boundary curves corresponding to the specified GM and 
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0dB in c -plane by solving (3.12). 

Step 3: For every q  at the vertices of the perturbed system parameter region in q -plane, 

draw the phase boundary curves corresponding to the specified PM and 0○  in c -plane by 

solving (3.16). 

Step 4: Sketch the sensitivity constant loci from the solutions of the sensitivity equation 

( )
0

H j
i s jcS sω

ω=
=  for c , given 0s . 

Step 5: Determine a gain region in spacec −  with the help of the gain boundary curves as in 

step 2 so that the controller with the coefficients in that region satisfies the specified GM 

constraints.  

Step 6: Determine a phase-region in spacec −  with the help of the phase boundary curves as 

in step 3 so that the controller with the coefficients in that region satisfies the specified PM 

constraints. 

Step 7: Find out the common region of the determined gain and phase ones as in steps 5 and 6. 

The controller with the coefficients in that region is the desired one satisfying the specified 

GM and PM conditions. 

Step 8: Choose a point in spacec −  on a specified sensitivity constant locus which passes 

through the common region as in step 7. Then the controller coefficient at that point satisfies 

all the three specified constraints of GM, PM and sensitivity. If no such sensitivity locus exists, 
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tradeoff has to be made among the three specified conditions. 

 

3.4 An Example and Simulation Results 

In this simulation, a Daimler Benz 0305 bus [18] is adopted. Its linearized system with 

actuator input δ =steering angle rate, and output y=displacement of front antenna, has the 

following transfer function 

2 22
1 2 1 1

1 2 2 23 2
1 2 1 2 1 2

609.8 388600 48280( , , )
( 1077 16.8 270000)

q q s q s qG s q q
s q q s q q s q q

+ +
=

+ + +
,       (3.19) 

where the parameter vq =1  is the bus velocity, and the other parameter u
mq =2 .  

m: the mass of the bus (tons). u  : road friction coefficient (0.5 for wet road, 1 for dry road). 

1 1
1

2

[12 , 20 ]
[24 ; 32 ]

q ms ms
q tons tons

− −∈
∈

.                   (3.20) 

3.4.1 GM and PM Analysis  

The controller used is taken as given by 

2

3 2

2344 10938 9375( )
50 1250 15625

s sC s
s s s

+ +
=

+ + +
                 (3.21) 

and was determined by Muench [18]. 

Case 1 : 2D GM/PM Analysis in 1 2q q Plane− . Consider the system parameter 1 2[ , ]q q q=  

with an uncertain parameter region S  as in Fig. 3.3 for studying GM/PM performances.  

The parameter region−S  is 

1

2

12 20
24 32

q
q

≤ ≤⎧
⎨ ≤ ≤⎩

                         (3.22) 
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and the closed-loop characteristic polynomials is as in (3.6). By substituting ωjs =  into the 

numerator of the above polynomials and by lengthy computation, the coefficients of the real 

part polynomial ( , , , )U q kω θ  with a specific c  in (3.8) are  

28
0 1

29 8
1 1 1

2 29 8
2 1 1 2 1

2 8
3 1 2 1

2 5
4 1 2 1 2

4.5262 10 cos( ),

(3.6431 10 5.2808 10 ) sin( ),

( 4.2505 10 5716875 1.1316 10 ) cos( ),

(6669992.4 9.1087 10 ) sin( ),

16828125 21000 3375 10 14293

r q k

r q q k

r q q q q k

r q q q k

r q q q q

θ

θ

θ

θ

= ×

= × + × ×

= − × − − × ×

= − + ×

= + + × + 2
1 2

5
2 2 2

6 1 2 1 2 1 2

7

2 2
8 1 2

71.2 cos( ),
0,

1250 16.8 53850 270000,
0,

.

kq q
r

r q q q q q q
r

r q q

θ
=

= − − − −
=

=

   (3.23) 

In (3.9), the coefficients of the imaginary part polynomial ( , , , )V q kω θ  are 

28
0 1

29 8
1 1 1

2 29 8
2 1 1 2 1

2 2
3 1 2 1 2

8
1

4

4.5262 10 sin( ),

(3.6431 10 5.2808 10 cos( ),

(4.2505 10 5716875 1.1316 10 ) sin( ),

262500 4218750000 6669992.4 cos( )

9.1087 10 cos( ) ,

1429371.2

i kq

i q kq

i q q q q k

i q q kq q k

kq

i

θ

θ

θ

θ

θ

= − ×

= × + ×

= × + + × ×

= − − − ×

− ×

= − 2
1 2

2 2 2
5 1 2 1 2 1 2

6

2 2

7 1 2 1 2

8

sin( ),
515625 840 1346250 135 10 ,

0,

50 1077 ,

0.

kq q

i q q q q q q
i

i q q q q

i

θ

= + + + ×
=

= − −

=

      (3.24) 

Solve the equations 

( , , , ) 0
( , , , ) 0

U q k
V q k

ω θ
ω θ

=⎧
⎨ =⎩

,                       (3.25) 

for q  by varying k  and θ , and the stable boundary representation curves for gain and 
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phase margins are shown as in Figs. 3.4 and 3.5 in the 21 qq −  plane, respectively. We are 

only interested in positive solutions 1 20 and 0q q> >  for practical reasons. The GM of the 

perturbed control system with the domain region S  is -4.3dB and its PM is 19.336○  as seen 

in Figs. 3.4 and 3.5, respectively. In general, the specifications on the stability robustness 

point of view are GM 3dB and PM 30≥ ≥ ○ , which the system with the original controller 

(3.21) doesn’t satisfy. A new controller is designed in the following section and its 

performance is improved significantly.  

The gain boundary curves associated with different gains shown in Fig. 3.4 reveal that 

the GM of the control system at a point on one side of a specific gain boundary curve is 

greater than that at a point on the curve. But it is less at a point on the other side. 

Similarly in Fig. 3.5, the phase boundary curves show that the PM of the control system 

at a point on one side of a specific phase boundary curve is greater than that at a point on the 

curve. But it is less at a point on the other side. At the point A 1 2(( , ) (20,32))q q =  in both 

Figs.3.4 and 3.5 the system has the minimal GM and PM of all the points within the entire S  

region. 

Case 2 : 3D GM/PM Analysis in m v u− −  Space.  

Select 1 2 3[ , , ] [ , , ]q q q q m v u= =  in the block diagram of the closed system in Fig. 3.2. The 

perturbed parameter space R  as in Fig. 3.6 as follows  
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24 / 32
12 20
0.5 1

m u
v
u

≤ ≤⎧
⎪ ≤ ≤⎨
⎪ ≤ ≤⎩

.                        (3.26) 

Gain and phase boundary curves in the m v u− −  parameter space are generated from 

the solutions for q  to (3.12) and (3.16), respectively. Those curves corresponding to 

different k  and θ  by varying the frequency ω  are shown in Figs. 3.7 and 3.8. A specific 

gain k (dB)  corresponding to a boundary curve which is tangent to the perturbed region R  

at a point on the edge EF  of R  is defined as the GM of the system. It is also the minimal 

GM of the perturbed control system within R . Its PM is defined in the same way. The 

system with uncertain parameters within the space−R  has GM=-4.3dB and PM =19.336○ . 

3.4.2 Controller Design  

The system parameter 1 2[ , ]q q q=  within S  is considered for the controller design. 

Assume the controller to be designed is given as 

2
2 1 0

3 2( )
50 1250 15625

c s c s cC s
s s s

+ +
=

+ + +
,                 (3.27) 

where 0 1 2, andc c c are the controller coefficients to be designed under the user-specified 

constraints and the system parameter domain is within the region S  as in Fig. 3.3. Equation 

(3.21) is a special case of (3.27) with 0 1 29375, 10938 2344c c and c= = = . 

1) Controller Design for 3dBGM ≥  and 030PM ≥  

The design problem of interest is to find all the controller coefficients 0 1,c c  and 2c  

that satisfy user-specified conditions of GM, and PM. According to the design steps as above, 
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a coefficient region in spacec −  is to be found out by the use of gain and phase boundary 

curves associated with different andk θ . 

By solving (3.10), the coefficients of the real part of the characteristic polynomial 

( , , , , )U q c kω θ  in (3.8) are  

2
0 0 1

2
1 0 1 1 1

2 2
2 1 1 0 1 2 2 1

2
3 1 1 2 2 1

2 5
4 1 2 1 2

2
1 2 2

5

48280 cos( ),

(388600 48280 ) sin( ),

(388600 609.8 48280 ) cos( ),

(609.8 388600 ) sin( ),

16828125 21000 3375 10 ,

609.8 cos( ),

r c q k

r c q c q k

r c q c q q c q k

r c q q c q k

r q q q q

q q c k
r

θ

θ

θ

θ

θ

=

= + ×

= − + +

= − +

= + + ×

+

2 2 2
6 1 2 1 2 1 2

7
2 2

8 1 2

0,

1250 16.8 53850 270000,
0,

.

r q q q q q q
r

r q q

=

= − − − −
=

=

         (3.28) 

The coefficients of the imaginary part of the polynomial ( , , , , )V q c kω θ  in (3.9) are 

2
0 0 1

2
1 0 1 1 1

2 2
2 1 1 0 1 2 2 1

2 2
3 1 2 1 1

2 2 1
2

4 2 1 2

5

48280 sin( ),

(388600 48280 ) cos( ),

(388600 609.8 48280 )
sin( ) ,

262500 4218750000 609.8
cos( ) 388600 cos( ),

609.8 sin( ),

15

i c q k

i c q c q k

i c q c q q c q
k

i q q c q
q k c q k

i c q q k

i

θ

θ

θ

θ θ

θ

= −

= + ×

= + +
×

= − − −
× −

= −

= 2 2 2
1 2 1 2 1 2

5

6
2 2

7 1 2 1 2

8

625 840 1346250

135 10 ,
0,

50 1077 ,
0,

q q q q q q

i

i q q q q
i

+ +

+ ×
=

= − −
=

             (3.29) 

where 1 2( , )q q q=  is a specific point within S  and (3.10) is rewritten into the following 

one. 



 29

( , , , ) 0
( , , , ) 0

U c k
V c k

ω θ
ω θ

=⎧
⎨ =⎩

.                       (3.30) 

Two controller coefficients of 0 1,c c  and 2c  are chosen as adjustable parameters and the 

other one is fixed for this design. By solving (3.30), a shaded area is determined by gain and 

phase boundary curves from the solutions for 0 1( , )c c  pairs with 2 2344c =  under GM and 

PM specifications given as above in 0 1 planec c− , as shown in Fig. 3.9. 

For the vertices A,B,C and D of S  as in Fig. 3.3, stability boundary curves are plotted 

to determine the qualified shaded area. Two gain boundary curves are obtained associated 

with 0dB and 3dBk =  given 0θ = ○  for each vertex. In a similar way, two phase 

boundary ones are also generated corresponding to 0 and 30θ θ= =○ ○  with 1k = .  

Let 0 9375c = . Select 1 2andc c  as adjustable coefficients. Gain and phase stability 

curves are generated in the same way in 1 2c c−  plane and the shaded region within which 

1 2andc c  satisfy specified constraints is founded, as shown in Fig. 3.10. 

In Figs. 3.9 and 3.10 the desired controller coefficients can be chosen according to the 

specified gain and phase constraints. The controller coefficient is selected from the above 

shaded region so that the whole system with the chosen controller has the desired 

specifications. With the designed controller, Tables 3.1 and 3.2 show the GM and PM of the 

system operating at several points within the region S . The Bode plots of magnitude and 

phase are provided in Figs. 3.11 and 3.12. 
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2) The constant-sensitivity loci  

Compute ( , )
i
H s c
cS  for 0,1,2i =  by substituting Eqs. (3.1)-(3.3) and (3.27) into (3.4) as 

the followings: 

( , ) 0

0

( ) ( )
( , )( ( ) ( ) ( , ) ( ))

H s c c G

c c G c G
c

c D s D sS
N s c D s D s N s c N s

=
+

,           (3.31) 

( , ) 1

1

( ) ( )
( , )( ( ) ( ) ( , ) ( ))

H s c c G

c c G c G
c

sc D s D sS
N s c D s D s N s c N s

=
+

,           (3.32) 

and 

2
( , ) 2

2

( ) ( )
( , )( ( ) ( ) ( , ) ( ))

H s c c G

c c G c G
c

s c D s D sS
N s c D s D s N s c N s

=
+

.           (3.33) 

Let 2 2344c = . The constant-sensitivity loci in Fig. 3.13, are plotted in 0 1 planec c−  

from the solutions to the equality ( )
01

H j
i s jcS sω

ω=
= , where 01s  is a specified sensitivity 

constant and 0,1i = . Gain and phase boundary curves in Fig. 3.11 are plotted with the system 

operating at the point A in the region S . If the specified sensitivity locus passes through the 

shaded area as in Fig. 3.9, a point on the locus is chosen and the controller at this location in 

0 1c c−  plane is desired. The point 1Q  on the sensitivity locus with the constraint 

0 1

( ) ( ) 0.001H j H j

s js jc cS Sω ω

ωω ==
= =  is chosen for the controller with 0 1180.7, 18.83c c= =  and 

2 2344c = . The system at the point A in S  has GM=4.13dB and PM 37.1= ○ . Its 

performance on stability has been improved. 

Let 0 9375c = . The solutions to the equality ( )
12

H j
i s jcS sω

ω=
= , where 1, 2i = , give a 

plot of the constant-sensitivity loci in 1 2c c−  plane, as shown in Fig. 3.14. Choose the point 
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2Q  in Fig. 3.14 with 1 1410 and 6000c c= =  on the sensitivity locus 
1

( )H j

s jcS ω

ω=
=  

2

( ) 710H j

s jcS ω

ω

−

=
=  and the system operating at the point B in S  has GM=6.08dB and 

PM 31= ○ . 

 

3.5 Concluding Remarks 

This chapter introduces a new method on performance analysis and controller design by 

frequency domain approach for a perturbed control system. Based on the parameter space 

method and robust stability criteria, the performances of a perturbed vehicle control system 

are analyzed in graphical portrayals. With the help of gain and phase boundary curves 

resulting from the roots of the system characteristic polynomial equation, the GM and PM 

have been obtained. In controller design, a methodology is proposed for portraying regions in 

a selected controller coefficient plane so that the designed controller is to meet the specified 

requirements on GM, PM and sensitivity. Simulation results demonstrate the objectives have 

been achieved as desired. 
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Fig. 3.1 The perturbed vehicle control system with uncertain parameter q . 

 

 

 

 

 

+ jke θ− ( )C s ( , )G s q−
( )sδ ( )y s

 

Fig. 3.2 The perturbed vehicle control system in series with a gain-phase tester. 
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Fig. 3.3 The parameter domain region S  in q1-q2 plane. 
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Fig. 3.4 Gain boundary curves by varying k with GM=-4.3dB. 
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Fig. 3.5 Phase boundary curves by varying θ  with PM=19.336○ . 
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Fig. 3.6 The 3D perturbed parameter space R  with 3 uncertain parameters , andm v u . 
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Fig. 3.7 Gain boundary curves in 3D with by varying k with GM=-4.3dB. 
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Fig. 3.8 Phase boundary curves in 3D with PM=19.336○ . 
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Fig. 3.9 The controller coefficient region for GM 3dB≥  and 0PM 30≥  as indicated in the 

shaded area in 0 1c c−  plane with 2 2344c = . 

 
 
 

 
Fig. 3.10 The controller coefficient region for GM 3dB≥  and 0PM 30≥  as indicated in the 

shaded area in 1 2c c−  plane with 0 9375c =  
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Table 3.1 The GM and PM of the system with 2 2344c =  

0 1180.7, 18.83c c= =  

Location inside S  GM PM 

Point A(20,32) 4.13dB 37.10 

Point B(20,24) 3.18dB 350 

Point C(12,24) 9.76dB 67.10 

Point D(12,32) 10.3dB 64.50 

Point(17,30) 5.73dB 46.50 

 

Table 3.2 The GM and PM of the system with 9375oc =  

1 2410, 6000c c= =  

Location inside S  GM PM 

Point A(20,32) 8.48dB 570 

Point B(20,24) 6.08dB 310 

Point C(12,24) 6.29dB 55.70 

Point D(12,32) 8.64dB 67.70 

Point(14,26) 6.87dB 57.90 

 



 38

 

10
0

10
1

10
2

-50

0

50

10
0

10
1

10
2

-250

-200

-150

-100

Mag(dB) 

Phase 
(deg) 

A 

A 

B 

B 

C 

C 

D 

D 

Frequency(rad/sec)  

Fig. 3.11 Bode plots of magnitude and phase with 0 1 2180.7, 18.83and 2344c c c= = =  at four 

vertices of the perturbed region S . 
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Fig. 3.12 Bode plots of magnitude and phase with 0 1 29375, 410and 6000c c c= = =  at four 

vertices of the perturbed region S . 
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Fig. 3.13 A chosen controller at the point 1Q  with 0 1180.7, 18.83c c= =  and 2 2344c =  

based on the control system at the vertex A (20,32)  of the perturbed parameter region S . 
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Chapter 4 

 
Gain-Phase Margin Analysis of Nonlinear 
Perturbed Vehicle Control Systems for 
Limit Cycle Prediction 
 
4.1 Overview 

The chapter is concentrated on the subject of predicting the limit cycle of a nonlinear 

perturbed vehicle control system under specific gain-phase margin (GM/PM) constraints. A 

gain-phase margin tester is included in series with the perturbed vehicle system to perform the 

GM/PM analysis. GM and PM are determined from the gain and phase values of the 

gain-phase margin tester at which the undesirable limit cycle caused by nonlinearities of the 

system with uncertain parameters occurs. The nonlinear elements in this system are linearized 

by the method of the conventional describing functions. By the use of the parameter space 

method, describing function method and stability criteria, a concise and clear way will be 

given in the geometric representation in the parameter coordinate to show the gain-phase 

margin performances for a nonlinear vehicle control system with uncertain parameters which 

are the velocity, road friction and car weight of the plant. The proposed method is applied to a 
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car model and simulation results are presented to illustrate the GM and PM performances for 

the limit cycle. 

 

4.2 Preliminary 

Consider a perturbed closed control system with a gain-phase margin tester ( jke θ− ) and it 

is assumed that there exist r  nonlinear elements inside the perturbed nonlinear vehicle 

system as illustrated in Fig. 4.1. The closed loop feedback system has the transfer function 

given by 

1

1

1

( , , , , , ..., , ..., )

( , , , ..., , ..., )
,

1 ( , , , ..., , ..., )

m r
j

m r
j

m r

H s q K N N N

Ke G s q N N N
Ke G s q N N N

θ

θ

θ
−

−=
+

                 (4.1) 

where 1( , , ,..., ,..., )m rG s q N N N  is the open loop transfer function with the describing 

function ( 1, 2,.... )iN i r=  of nonlinear parts. q  is a perturbed vector with 1 2 ][ , , nq q q q= ⋅⋅⋅⋅  

∈ℜ , and ℜ  is a set of allowable domain space of the system plant parameters. iN  is a 

complex function of the input amplitude and frequency to the thi −  nonlinear element and 

i iR iIN N jN= + .                         (4.2) 

The closed characteristic polynomial equation is written into 

,1 1I R I

,1 1I R I R I

( , , , , , ..., )

the numerator of [1 ( , , , ..., , ,..., )]
0,

R r r
j

R m m r r

P s q k N N N N

ke G s q N N N N N Nθ

θ
−= +

=
     (4.3) 

and 
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, ,1 1I R I

, ,1 1I R I
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θ
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= ∑
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+ 1I R I ), ,..., , .R r rN N N

   (4.4) 

Assume , ,1 1I R I( , , , , ..., )i R r rd q k N N N Nθ  is a real continuous function.  

The equation 

1 1I R I

1 1I R I

( , , , , , ,..., , ) 0
( , , , , , ,..., , ) 0

R r r

R r r

U q k N N N N
V q k N N N N

ω θ
ω θ

=⎧
⎨ =⎩

                (4.5) 

can be solved for q  given specific , ,kω θ  and A  analytically or numerically. Gain 

boundary curves will be generated from these q  values in the q -parameter space by 

varying ω  given specific k  and A  with 0θ = ○ . Phase boundary curves will be 

generated by varying ω  given specific θ  and A  with 1k = . The gain and phase margins 

of the perturbed vehicle system for the limit cycle will be analyzed from boundary curves 

geometrically in 2 and 3 dimensions. A specific gain or phase value corresponding to the 

boundary curve which is tangent to the perturbed parameter region is defined as the gain or 

phase margin for predicting the limit cycles, respectively. 

 

4.3 Problem Solution 

The block diagram of the perturbed vehicle system with nonlinear elements 1N  and 

2N  is illustrated as in Fig. 4.2. The transfer function of a vehicle control model used for the 
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investigations with the input Fδ =the front wheel deflection angle and the output r =the yaw 

rate around the vertical axis is [22].  

2 8 2

/ 2 2 2 2 2

10

10
1.415 10 1.382 10( )

(4 10 56500 ) 587225 1.9932
r F

sG s
m m s m s

δ
µ ν µν

µ µν µν ν
× + ×

=
× + + +

   (4.6) 

The steering actuator is modeled as a linear dynamic system with the actuator bandwidth 

aω = 4π , 

2

2 2
( ) .

2
a

a
aa

G s
s s

ω
ω ω

=
+ +

                     (4.7) 

The closed loop characteristic polynomial is 

1 2

1 2

( , , , , , )

the numerator of [1 ( , , , )]
0.

j

P s q k N N

ke G s q N Nθ

θ
−= +

=
             (4.8) 

Assume that the input signals to the nonlinear elements 1N  and 2N  are 1 1( ) sinx t A tω=  

and 2 ( )x t 2 sinA tω= , where 1N  is the describing function of a saturation element and 

1 1
1 1

1 1 1

1 21 1 1
1

1 1 1

,

)

1 for
( )

( ) for

2( ) sin ( ) 1 ( ,

A R
N A

X A A R

R R RX A
A A Aπ

−

<⎧= ⎨ >⎩
⎡ ⎤

= + −⎢ ⎥
⎣ ⎦

               (4.9) 

and 2N  is that of a rate limiter element, 

2
2 2

2

4( ) .RN A
Aπ

=                          (4.10) 

Assume 1( )x t  is chosen as the reference input signal. 2A  can be expressed as a 

function of 1A  and ω , when 1A  and ω  are known. By (4.4) the coefficients of the real 

part of the characteristic polynomial are 
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        (4.11) 

The coefficients of the imaginary part of the polynomial are 
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4.3.1 Case 1: Gain-phase Margin Analysis in v µ−  Plane 

Consider the perturbed parameter 1 2[ , ]q q q= = [ , ]ν µ  for analyzing gain and phase 

margins. The system parameter 1q ν=  is the vehicle velocity, 2q µ=  is the road friction, 

and the car weight is 1830Km g= . The perturbed parameter region Q  in the ν µ−  plane 

is illustrated in Fig. 4.3. 

7 30 1Q region 650
5 70

ν µ

ν

+⎧ ≤ ≤⎪
⎨
⎪ ≤ ≤⎩

                    (4.13) 

Gain margin is the minimal gain min (dB)k  of the gain-phase tester ( jke θ− ) with 0θ = ○  such 
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that a limit cycle with a specific amplitude is generated and the gain boundary curve 

corresponding to mink which is tangent to the perturbed parameter region Q  is observed. 

Phase margin is the minimal phase minθ of the gain-phase tester ( jke θ− ) with 1k =  such that 

a limit cycle is generated and the phase boundary curve corresponding to minθ which is 

tangent to the perturbed parameter region Q  is observed. 

Based on the previous analysis, some limit cycle loci with the gain 1k =  and the phase 

0θ = ○  of the gain-phase tester are depicted as in Fig. 4.3. In Figs. 4.4 and 4.5, the gain and 

phase boundary curves are generated. It is obviously observed that the gain and phase margins 

of the perturbed vehicle system are 0.772dB  and 9.4126 deg, respectively. The time 

response shown in Fig. 4.6 has demonstrated the consistence with the results in Fig. 4.4 and 

Fig. 4.5. 

4.3.2 Case2: Gain-phase Margin Analysis in v mµ− −  Space 

The perturbed parameter 1 2 3[ , , ] [ , , ]q q q q m vµ= =  are considered for analyzing gain and 

phase margins. The system parameter 1q m=  is the car mass, 1q µ=  is the road friction and 

3q ν=  is the vehicle velocity. 

The perturbed parameter space R  in the mµ ν− −  coordinate is illustrated in Fig. 4.7.  

7 30 1
650

region 5 70
1730K 2330Kg m g

ν µ

ν

+⎧ ≤ ≤⎪⎪
⎨ ≤ ≤⎪
⎪ ≤ ≤⎩

R                  (4.14) 

In the similar way, the 3D gain and phase boundary curves corresponding to different vehicle 



 46

weights are also shown in Figs.4.7 and 4.8. For example, the gain and phase margins for the 
vehicle weight equal to 1730Kg are 0.922 dBand 12.12 deg, respectively. 

 

4.4 Concluding Remarks 

In this chapter, some effective techniques are presented involving describing function 

methods, parameter space methods, and a gain-phase margin tester. The methods in previous 

studies are extended to analyze GM and PM performances of a vehicle plant with three 

parameters in a perturbed space for predicting the limit cycle occurred by using a gain-phase 

tester and 3D graphical representations are also provided to give a concise and clear way to 

study the robustness stability of the system with nonlinearities. The method proposed here 

would further be extended to be used in a system with more than three perturbed parameters. 
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Fig. 4.1 The block diagram of a nonlinear control system with a gain-phase margin tester. 
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Fig. 4.2 The block diagram of the perturbed nonlinear system. 
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Fig. 4.3 The limit cycle loci in the parameter plane. 
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Fig. 4.4 Gain boundary curves with the vehicle weight 1830Kg (GM=0.772dB). 
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Fig. 4.5 Phase boundary curves with the vehicle weight 1830Kg (PM=9.4126 deg). 

 

Fig. 4.6 Simulation results in time-domain with increased gain and phase. 
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Fig. 4.7 Gain boundary curves in 3-dimension. 
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Chapter 5 

 
Parameter Plane Analysis of Fuzzy Vehicle 
Steering Control Systems 
 

5.1 Overview 

The main purpose of this chapter is to analyze the robust stability for a fuzzy vehicle 

steering control system. In general, fuzzy control system is a nonlinear control system. 

Therefore, the fuzzy controller may be linearized by the use of describing function first. After 

then, parameter plane method is then applied to determine the conditions of robust stability 

when the system has perturbed or adjustable parameters. A systematic procedure is proposed 

to solve this problem. The effects of plant parameters and control factors are both considered 

here. Furthermore, the problem of relative stability by using a gain-phase margin tester is also 

addressed. The limit cycles provided by a static fuzzy controller can be easily suppressed if 

the control factors are chosen properly. Simulation results show the efficiency of our 

approach. 

 

5.2 Vehicle Model 



 52

Fig. 5.1 shows the single track vehicle model and the related symbols are listed in Table 

5.1. The equations of motion are [22] 

( ) f r

f f r rf r

F Fmv r
F l F lml l r

β +⎡ ⎤+ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦⎣ ⎦

�

�
                     (5.1) 

The tire force can be expressed as  

0 0( ) , ( )f f f f r r r rF c F cα µ α α µ α= =                  (5.2) 

with the tire cornering stiffness 0 0,f rc c , the road adhesion factor µ  and the tire side slip 

angles  

( ), ( )f r
f f r

l lr r
v v

α δ β α β= − + = − −                  (5.3) 

The state equation of vehicle dynamics with β  and r  can be represented as  

0 0 0 0 0
2

2 2
0 0 0 0 0

( ) ( )
1

( ) (

f r r r f f f

f
r r f f f f r r f

f r f r r

c c c l c l c
mv mv mv

c l c l c l c l crr
ml l ml l v ml

µ µ µ
ββ

δµ µ
µ

+ −⎡ ⎤ ⎡ ⎤− − +⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥− +⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

�

�
       (5.4) 

Hence, the transfer function from fδ   to r  is   

2 2
0 0 0

2 2 2 2 2 2
0 0 0 0 0 0( ) ( )f

f f f r
r

f r r r f f f r r r f f

c ml v s c c l v
G

l l m v s l c l c l m vs c c l c l c l m vδ

µ µ
µ µ µ

+
=

+ + + + −
   (5.5) 

The numerical data are listed in Table 5.2. According to the above analysis of a single 

track vehicle model, the transfer function from the input of front deflection angle fδ  to the 

output of yaw rate r  can be obtained as  

8 2 10 2

6 2 2 9 8 2 10 2

(1.382 10 1.415 10 )( , , )
6.675 10 1.08 10 (1.034 10 4 10 )fr

v s vG s v
v s vs vδ

µ µµ
µ µ µ

× + ×
=

× + × + × + ×
 (5.6) 

The operating range Q  of the uncertain parameters µ  and v  is depicted in Fig. 5.2. 
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In addition, the steering actuator is modeled as   

2

2 2
( )

2
a

a
a a

G s
s s

ω
ω ω

=
+ +

                      (5.7) 

where 4aω π= .  

In our study, a fuzzy vehicle control system is presented in Fig. 5.3. The open loop 

transfer function ( )OG s  is defined as 

( , , ) ( ) ( , , )
fO a rG s v G s G s vδµ µ=                    (5.8) 

The control factors pk ,  dk  and uk  can be determined by the designer. By transferring Fig. 

5.3 to Fig. 5.4, the overall open loop transfer function can be obtained as 

( , , , , , ) ( , , )
2

p d u
p d u O

k s k kG s k k k v G s v
s

µ µ
+ ⋅

= ⋅ ⋅             (5.9) 

 

5.3 Describing Function of Static Fuzzy Controller  

The describing function 1N  of static fuzzy controller shown in Fig. 5.4 can be obtained, 

which depends only on the amplitude of A  and is independent of the frequency of ω , and 

can be expressed as follows [32]: 

1 1

1 1 1
0

1 1 1

( )

4 { (( sin cos ) ( sin cos ))
2

1 ( )(cos cos )},

n
i

i i i i i i
i i

i i i i i i
i

N N A

u A
A

u u

δ δ δ δ δ δ
π

δ δ

+ + +
=

+ + +

∆

∆
= − − −

∆Φ

+ ⋅ Φ −Φ −
∆Φ

∑       (5.10) 

where n  satisfies 1n nA +Φ ≤ < Φ , 0n > , and varies with A ; new variables { }iδ  are 

defined to be the angles where the input sinusoidal signal  sinx A δ=  intersects the centers 
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of fuzzy membership functions ( iΦ ’s) as follows: 

0

1

1

0,

sin , 1, , , 0 ,
2

.
2

i
i i

n

i n
A

δ
πδ δ

πδ

−

+

=

Φ⎛ ⎞ ⎛ ⎞= = < <⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

=

"              (5.11) 

The detail definitions of n  and iδ ’s are visualized in [32]. 

 

5.4 Stability Analysis of Fuzzy Vehicle Control Systems 

If the gain-phase margin tester jKe θ−  is added in the open loop of Fig. 5.4, the closed 

loop transfer function is  

1

1

( , , , , , )
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1 ( , , , , , )
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p d u

j
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Ke N G s k k k v
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+

                 (5.12) 

Case 1: Perturbed Plant Parameters 

Arrange (5.12), the following characteristic equation is obtained. 

2 2 2 2
4 3 2 1 0( , , , , , , , ) 0p d uf s k k k v K C C v C v C v C vµ θ µ µ µ µ= + + + + =     (5.13) 

where 
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.            (5.14) 
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Let s jω= , 0dBK =  and 0θ = D . Equation (5.13) is divided into two stability equations 

with real part RX  and imaginary part IX  of characteristic equation, one has 

 ( , , , , , ) 0p d u R If j k k k v X jXω µ = + =                 (5.15) 

where 
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      (5.16) 

In order to obtain the solution of µ  and v , the following equation is solved 

0
0

R

I

X
X

=⎧
⎨ =⎩

,                           (5.17) 

when pk , dk , uk , 1N  are fixed and ω  is changed from 0 to ∞ . As the amplitude A  is 

also changed, the solutions of µ  and v  called limit cycle loci can be displayed in the 

parameter plane. 

Case 2: Control Factors 

After some simple manipulations, the characteristic equation of (5.12) can be obtained as     

 ( , , , , , , , ) 0p d u p df s k k k v K U k V k Wµ θ = ⋅ + ⋅ + =            (5.18) 

where 

10 2 12 2
1 (2.1818 10 2.2345 10 )j

uU Ke N k v s vθ µ µ−= × + × ,               
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10 2 12 2
1

2 6 2 2 9

10 2 8 2

(2.1818 10 2.2345 10 )

1.414 ( 17.7688 157.9137)(6.675 10 1.0746 10
4.0045 10 1.034 10 )

j
uNV Ke k s v s v

W s s s v s vs
v

θ µ µ

µ

µ µ

−= × + ×

= + + × + ×

+ × + ×

.  (5.19) 

Let s jω= , 0dBK =  and 0θ = D . Equation (5.18) is divided into two stability equations 

with real part and imaginary part of characteristic equation 

( , , , , , ) 0p d u R If j k k k v X jXω µ = + = ,                (5.20) 

where 

1 1 1 0R p dX U k V k W= ⋅ + ⋅ + = ,                   (5.21) 

and 

2 2 2 0I p dX U k V k W= ⋅ + ⋅ + = .                   (5.22) 

Therefore, pk  and dk  are solved from (5.21) and (5.22) when µ , v , uk , 1N  are fixed 

and ω  is changed from 0 to ∞ , one has 

1 2 2 1

1 2 2 1

,p

V W V W
k

U V U V

⋅ − ⋅
=

⋅ − ⋅
                       (5.23) 

and 

1 2 2 1

1 2 2 1
d

W U W U
k

U V U V

⋅ − ⋅
=

⋅ − ⋅                        
(5.24) 

Case 3: Gain-phase Margin Analysis 

The gain-phase margin tester can be expressed as  

cos sinj
R IKe K jK K jKθ θ θ− = − = −                 (5.25) 

where    

cosRK K θ= ,                         (5.26) 
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and  

sinIK K θ= .                         (5.27) 

It is noted that 2 2
R IK K K= +  and 1tan ( )I

R

K
Kθ −= . 

Then, the characteristic equation can be written as  

( , , , , , , , ) 0p d u R I R If s k k k v K K U K V K Wµ = ⋅ + ⋅ + =           (5.28) 

where 
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1.0746 10 4.0045 10 1.034 10 )

u p d

u p d

U

N

N k v s v k k s

V j k v s v k k s

W s s s v s
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µ µ µ
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.      (5.29) 

Let s jω= , (5.28) is divided into two stability equations with real part and imaginary part of 

characteristic equation 

( , , , , , , , ) 0p d u R I R If j k k k v K K X jXω µ = + = ,             (5.30) 

where 

1 1 1 0R R IX U K V K W= ⋅ + ⋅ + = ,                  (5.31) 

and 

2 2 2 0I R IX U K V K W= ⋅ + ⋅ + = .                  (5.32) 

Therefore, RK  and IK  are solved from (5.31) and (5.32) when pk , dk , µ , v , uk , 1N  

are fixed and ω  is changed from 0 to ∞ , one has 

1 2 2 1

1 2 2 1

,RK
V W V W

U V U V

⋅ − ⋅
=

⋅ − ⋅  
                      (5.33) 
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and 

1 2 2 1

1 2 2 1

,IK
W U W U

U V U V

⋅ − ⋅
=

⋅ − ⋅
                       (5.34) 

 

5.5 Simulation Results 

In our work, five fuzzy rules and parameters are adopted and listed in Tables 5.3 and 5.4, 

respectively. Fig. 5.5 shows the premise triangle membership functions of fuzzy controller. 

The consequent parts are singletons. Fig. 5.6 shows the control surface of fuzzy controller.  

If 0.2pk = , 0.3dk =  and 0.2uk =  are selected first, (5.14) can be solved when A  is 

fixed and ω  is changed from 0 to ∞ . Fig. 5.7 shows the stability boundary and some limit 

cycle loci in the µ - v  parameter plane. Two stability regions including asymptotically stable 

and limit cycle are divided. In order to verify the accuracy of Fig. 5.7, four operating points 

Q1-Q3 (limit cycle region) and Q4 (asymptotically stable region) are illustrated for testing. 

Fig. 5.8 shows the time responses of input signal ( )x t . It is obvious that the results shown in 

Fig. 5.8 consist with the predicted results in Fig. 5.7. For examples, if Q1( 1µ =  and 70v = ) 

is chosen, the limit cycle occurs and the amplitude is 0.0465. Besides, if Q4 ( 1µ =  and 

5v = ) is chosen, the system is stable and no limit cycle happens. On the other hand, if 

0.1pk = , 0.27dk =  and 0.1uk =  are selected, Fig. 5.9 shows the stability boundary. We 

can find that no limit cycle will occur in the overall operating region Q.  

If 0.2uk = , 1µ =  and 70v =  are selected, (5.19) and (5.20) can be solved in the 



 59

pk - dk  parameter plane when A  is fixed and ω  is changed from 0 to ∞ . Fig. 5.10 shows 

the stability boundary and some limit cycle loci. Four testing points Q5-Q8 are illustrated. 

If Q8 ( 0.1pk = , 0.1dk = , 0.2uk = , 1µ = , 70v = ) in Fig. 5.10 is selected, (5.23) and 

(5.24) can be solved in the RK - IK  parameter plane when A  is fixed and ω  is changed 

from 0 to ∞ . Because Q8 is in asymptotically stable region, the gain-phase margin tester can 

be viewed as a compensator to generate the limit cycle (from stable region to limit cycle 

region). For example, if 0.05A =  is expected, the related gain margin (Q9: GM 3.2= , 

0θ = D ) and phase margin (Q10: PM 46.6= D , 1K = ) to generate limit cycles can be easily 

obtained in Fig. 5.11. On the other hand, when the original system is in limit cycle region like 

Q5-Q7, the related gain margin and phase margin to suppress limit cycle could be also 

obtained in the parameter plane. 

 

5.6 Concluding Remarks 

Based on the parameter plane approach, the complete stability analysis of a fuzzy vehicle 

steering control system is proposed in this chapter. A systematic procedure is presented to deal 

with this problem. In addition, the effects of control factor and gain-phase margins are also 

considered. Simulation results show that more information can be obtained by this approach. 
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Fig. 5.1 Single track vehicle model. 

Table 5.1 Vehicle system quantities 

,f rF F  lateral wheel force at front and rear wheel 

r  yaw rate 

β  side slip angle at center of gravity (CG) 

v  velocity 

fa  lateral acceleration 

,f rl l  distance from front and rear axis to CG 

f rl l l= +  wheelbase 

fδ  front wheel steering angle 

m  mass 

  
Table5.2Vehicle system parameters 

0fc  5000 N/rad 

roc  100000 N/rad 

m  1830Kg 

fl  1.51 m 

rl  1.32 m 

 

rF fF

r

CG
v

fa

fδ

rl fl

β



 61

 
Fig. 5.2 Operating Range. 

 

 

 

 

Fig. 5.3 Block diagram of a fuzzy vehicle control system. 

 

 
Fig. 5.4 Block diagram of a fuzzy vehicle control system. 
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Table 5.3 Rules of fuzzy controller 

 

 

 
Table 5.4 Parameters of fuzzy controller 

 

 

 

 

 

 

 

Fig. 5.5 Membership functions of fuzzy controller. 

 
Fig. 5.6 Control surface. 
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Fig. 5.7 Limit cycle loci. 
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Fig. 5.8 Time responses of input signal. 
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Chapter 6 

 

Robust Design for Perturbed Phase-Locked 
Loops 
 

6.1 Overview 

A control algorithm is presented in this chapter for phase-locked loop (PLL) design with 

perturbed parameters satisfying frequency-domain specifications. By the use of a gain-phase 

tester, the parameter plane method and robust stability criteria, the range of the designed 

parameters of PLL is determined based on specified constraints of gain and phase margins 

(GM and PM) on frequency domain with uncertain parameters perturbed in some intervals. 

The PLL model used in this design is assumed to be a linearized one if in the locked state. The 

proposed method is applied to a PLL model with first and second order low-pass filters as 

examples. With the help of stability boundary curves, the area in the selected designed 

parameters of the corresponding coordinate plane is found out such that the whole PLL 

system with the desired parameters in that area will meet given conditions. Simulation results 

are provided to illustrate the design technique based on GM and PM, and the resulted PLL is 
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to robustly meet the specified constraints as expected with uncertain parameters varying in 

intervals. 

 

6.2 Basic Concept of PLL 

PLL is an electronic circuit which causes a output signal to keep track of the input 

reference signal applied to it and the output signal keeps synchronization with the input one. 

Three basic functional blocks, a phase detector (PD), a loop filter (LF) and a voltage 

controlled oscillator (VCO), are contained in a PLL depicted in Fig. 6.1.  

Assume the reference input ( ) Asin( )i i iv t tω θ= +  and the VCO output 

o( ) Bsin( )o ov t tω θ= + , where iω  and oω  are angular frequencies, iθ  and oθ  are phases, 

A and B are amplitudes of ( )iv t  and ( )ov t , respectively.  

In a PLL, the function of the PD is to measure the phase difference between ( )iv t  and 

0 ( )v t  and produces an output voltage ( )dv t  proportional to the phase error of ( )iv t  and 

0 ( )v t . Assume the PD be a linear multiplier in linear PLL (LPLL) through this chapter.  

The LF is a low-pass filter and is used to suppress noise and high-frequency signal 

components which are unwanted signals. The lower frequency and dc parts are passed 

through the LF and delivered to control the frequency of the VCO output.  

The VCO is an oscillator which produces a periodic signal with the frequency that is 
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proportional to the dc voltage from the LF. 

When the PLL is locked, the frequencies iω  and oω  are identical. The PD is linear 

and the LF output voltage is proportional to the phase error. The linearized mathematical 

model of the PLL is shown in Fig. 6.2 if the phase difference oiθ θ−  is very small. As seen 

in this figure, the PLL structure is in fact a feedback control mechanism. The phase transfer 

function ( )sΓ  that relates the phase iθ  of the reference input to the phase oθ  of the VCO 

output is 

0 ( ) ( )( )
( ) ( )

v d

i v d

s k k F ss
s s k k F s

Θ
Γ = =

Θ +
,                    (6.1) 

where ( )i sΘ  and 0 ( )sΘ  are the Laplace transforms of iθ  and oθ , respectively. dk  is the 

PD gain in rad  per volt and vk  is the VCO gain with the unit of 1 1rad volts− − . F(s) is the 

transfer function of the LF. 

 

6.3 Stability Boundary Analysis 

Consider a gain-phase tester jke θ−  included in series with the original control system 

as in Fig. 6.3, and its transfer function is given by  

( , , )( , , , , )
1 ( , , )

j

j

ke G s q mH s q m k
ke G s q m

θ

θθ
−

−=
+

,                 (6.2) 

where ( , , )G s q m  is an open-loop system function and ( , , ) ( , ) ( , )mG s q m G s m F s q= . 

( , )F s q  is the transfer function of the LF with the perturbed parameter vector q . 
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1 2[ , ,...., ]rm m m m=  is a designed parameter vector of PLL in the ....1 2m m mr− − −  coordinate 

space under user-defined specifications. 

The closed-loop characteristic polynomial is ( , , , , )P s q m k θ  and  

0

0 1

( , , , , ) the numerator of [1 ( , , )]

( , , , )

( , , , ) ( , , , ) ( , , , )

j

n i
i

i
n

n

P s q m k ke G s q m

d q m k s

d q m k d q m k s d q m k s

θθ

θ

θ θ θ

−

=

= +

= ∑

= + + ⋅⋅⋅⋅ +

.    (6.3) 

( , , , , )P j q m kω θ  is divided into the real part ( , , , , )U q m kω θ and imaginary part. 

( , , , , )V q m kω θ . Assume ( , , , )id q m k θ  is a continuous function in q  for 1,2,....,i n= . 

The equation 

( , , , , ) 0
( , , , , ) 0

U q m k
V q m k

ω θ
ω θ

=⎧
⎨ =⎩

                        (6.4) 

can be solved for m  with specific , , andk qω θ  in PLL design. Gain and phase boundary 

curves are developed in the spacem−  according to different gain k  and θ  by varying ω , 

respectively. 

6.3.1 Gain Boundary Curves 

Let 0θ Ο=  and q  be a specific perturbed parameter. Equation (6.4) is rewritten into 

the form 

( , , ) 0
( , , ) 0

U m k
V m k

ω
ω

=⎧
⎨ =⎩

.                        (6.5) 

A gain boundary curve is generated in spacem −  from the solutions m  of (6.5) by 

varying ω  for every k . Given a specific gain k , a gain boundary curve will be generated 
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and a region of the designed parameters in spacem−  is to be found out so that the whole 

PLL system with the designed parameters chosen from the above determined region will 

satisfy the GM condition. The GM of the control system at a point on one side of a specific 

gain boundary curve is greater than that at a point on the boundary curve. But it is less at the 

points on the other side. 

6.3.2 Phase Boundary Curves 

Given 1k =  and a specific q , (6.4) is written into the form 

( , , ) 0
( , , ) 0

U m
V m

ω θ
ω θ

=⎧
⎨ =⎩

.                         (6.6) 

Phase boundary curves are developed under the PM specification in a similar way. They 

are generated in spacem −  from the solutions m  of (6.6) by varying ω  for every θ . 

Given a specific θ , a phase boundary curve will be generated and a region of the designed 

parameters in spacem−  is to be found out so that the whole PLL system with the designed 

parameters chosen from the above determined region will satisfy the PM condition. The PM 

of the control system at a point on one side of a specific phase boundary curve is greater than 

that at a point on the boundary curve. But it is less at a point on the other side. 

6.3.3 PLL Robust Design 

In physical systems, uncertainties usually exist in system parameters. The LF is usually 

connected to a PLL IC externally and implemented by the designer under the specified 
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constraints. The system parameters are separated into the designed parameters, which are the 

parameters of PD and VCO, and the perturbed parameters, which are the ones of the LF. The 

designed parameters are the parameters the range of which is to be determined so that the 

performance of the whole PLL system can meet the specified conditions under the perturbed 

parameters varying in a region as long as the designed parameters are within the determined 

range. 

In this chapter, the LFs with different order are used as examples to demonstrate the 

proposed design method of PLL robust design. The robust design is based on gain and phase 

boundary curves with respect to andk θ  of a gain-phase margin tester and they are drawn 

in spacem−  from the locations of the roots of (6.5) and (6.6) with respect to different k  

and θ , respectively. The range of the designed parameters is going to be found out in 

spacem−  under the constraints of specified GM and PM. 

Based on the discussions mentioned above, the design algorithm is as the followings: 

Step (1) Set up user-defined specifications on GM and PM. 

Step (2) For every system parameter q  at the vertices of the perturbed system parameter 

region in q -plane, draw the gain boundary curves corresponding to the specified 

GM in m -plane by solving (6.5). 

Step (3) For every q  at the vertices of the perturbed system parameter region in q -plane, 
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draw the phase boundary curves corresponding to the specified PM in m -plane by 

solving (6.6). 

Step (4) Determine a gain region in spacem−  with the help of the gain boundary curves as 

in step (2)  

so that the designed parameters with the coefficients in that region satisfy the 

specified GM constraints. 

Step (5) Determine a phase-region in spacem −  with the help of the phase boundary curves 

as in step (3) so that the designed parameters with the coefficients in that region 

satisfy the specified PM constraints. 

Step (6) Find out the common region of the determined gain and phase ones as in steps (4) 

and (5). The perturbed PLL system with the designed parameters in that region is the 

desired one satisfying the specified GM and PM conditions. 

 

6.4 Simulation Results of PLL Design for ≥ ≥GM 3dBand PM 30○  

6.4.1 The First Order LF  

The transfer function 1( )F s  of the first order filter as in Fig. 6.4 is given by 

1
1

2

1( )
1

sF s
s
τ
τ

+
=

+
,                         (6.7) 

where 1 11 R Cτ =  and 12 1 2(R R )Cτ = + . 1 1R and C  are perturbed parameters inside the 
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S  region as in Fig. 6.6, where the S  region is 

1

1

R [200Kohm,800Kohm]
C [5nf,15nf ]

∈
∈

.                    (6.8) 

2R and d vk k  are the selected designed parameters in this case and 2[ , ]d vm k k R= . 

In (6.2),  

1

2

(1 )( , , )
(1 )

d vk k sG s q m
s s

τ
τ
+

=
+

,                     (6.9) 

and its closed-loop transfer function is 

1
1 2

2 1

(1 )( , , , , )
(1 )

j
d v

j j
d v d v

ke k k sH s q m k
s ke k k s ke k k

θ

θ θ

τθ
τ τ

−

− −

+
=

+ + +
          (6.10) 

In (6.4), the coefficients of the real part of the characteristic polynomial ( , , , , )U q m kω θ  are  

0

1 2 1

2 1 2 1

cos( )
sin( )

( )

d v

d v

r kk k
r kk k R C
r R R C

θ
θ

=
=
= − +

.                      (6.11) 

The coefficients of the imaginary part of the polynomial ( , , , , )V q m kω θ  are 

0

1 2 1

2

sin( )
1 cos( )
0

d v

d v

i kk k
i kk k R C
i

θ
θ

= −
= +
=

,                     (6.12) 

where 11 2 1[ , ] [ ,C ]q q q R= =  is a specific point within S . 

By solving (6.5) and (6.6) for every specific andk θ , gain and phase boundary curves are 

generated to determine the designed parameters m . The m -desired region is determined 

solely by phase boundary curves because of the GM of the closed PLL system is infinity. Let 

30θ = ○ . The phase boundary curves corresponding to PM=30o  are drawn with the perturbed 

parameters at the vertices S1, S2, S3 and S4 of the region S  in Fig. 6.6. The shaded area in 
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2-Rd vk k  plane, seen in Fig. 6.7, is the desired one so that the designed parameters 

2R and d vk k  in the determined area cause the PLL system to meet the phase requirement 

PM 30≥ ○ .  

Choose 13000 rad/(sec volt)vk = ×  which signifies that the frequency created by the 

VCO changes about 20KHz if the input signal ( )fv t  of the VCO in Fig. 1 changes by 1 volt. 

The shaded area in 2-Rdk  plane in Fig. 6.8 is found. The point 1 2Q ( , ) (1.8,14Kdk R= =  

ohm)  is selected as an example point in this area and the PMs at the vertices and other points 

of S  are listed in Table 6.1. The corresponding bode plots are also shown in Fig. 9. The 

simulation results are achieved as desired. 

Choose designed parameters 2[ , ]vm k R=  with 0.6dk = . In a similar way, the desired 

parameters in the 2-Rvk  plane satisfying the condition PM 30≥ ○  are shown in Fig. 6.10. If 

the point 6
2 2Q ( , ) (3 10 ,5.1Kohm)vk R= = ×  is chosen, the bode plots and the PMs at the 

point 1[ , ]R C  inside S  are depicted in Fig. 6.11 and Table 6.2, respectively. 

6.4.2 The Second Order LF 

The transfer function of the LF as in Fig. 6.5 is  

,                 (6.13) 

where 3 1 1R Cτ = , 4 2 1R Cτ = , and 5 2 2R Cτ = . 

For the closed PLL system, the transfer function is given by 

3 4
2 2

3 4 5 3 5

1 ( )( )
1 ( )

sF s
s s

τ τ
τ τ τ τ τ
+ +

=
+ + + +
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4 5
2 3 2

3 5 3 4 5 4 5

( )( , , , , )
( ) ( )

j j
d v d v

j j
d v d v

ke k k ke k k sH s q m k
s s ke k k s ke k k

θ θ

θ θ

τ τθ
τ τ τ τ τ τ τ

− −

− −

+ +
=

+ + + + + +
  (6.14) 

The coefficients of the real part of the characteristic polynomial are 

0

1 2 1 2 2

2 1 1 2 1 2 2

3

cos( )
(R C +R C )sin( )

(R C +R C +R C )
0

d v

d v

r kk k
r kk k
r
r

θ
θ

=
=
= −
=

                   (6.15) 

and the coefficients of the real part of the characteristic polynomial are 

0

1 2 1 2 2

2

3 1 1 2 2

sin( )
1 ( R C )cos( )
0

R C R C

d v

d v

i kk k
i kk k R C
i
i

θ
θ

= −
= + +
=
= −

                 (6.16) 

The perturbed parameters are chosen as 3 1 21 2 1[ , , ] [ ,C ,C ]q q q q R= =  and the perturbed space 

R  is depicted in 3D-coordinate in Fig. 6.12. 

The 3D perturbed space R  is defined by 

1

1

2

R [200Kohm,800Kohm]
C [5nf,15nf ]
C [1nf,3nf ]

∈
∈
∈

                    (6.17) 

and the locations of the vertices of R  are listed in Table 6.3. Select 2R and d vk k  as the 

designed parameters. By the same way as above, solve (6.4) for 2R and d vk k  and phase 

boundary curves as in Fig. 6.13 with respect to PM=30○  are created at the vertices of R . 

The desired 2R and d vk k  in 2-Rd vk k  plane are shown as in the shaded area of this plot. 

Let 13000 rad/(sec volt)vk = ×  and 2( , )dm k R=  is the designed parameters. The 

chart of phase boundary curves is developed in Figs. 6.14 and 6.15 in 2-Rdk  plane. Choose 

an example point 3 2Q ( =0.2, R 60Kohm)dk =  in the shaded area in Fig. 6.15. The 
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corresponding bode plots and the PMs are shown and listed in Fig. 6.16 and Table 6.4. 

Assume 2[ , ]vm k R=  and 0.8dk = . The phase boundary curves are shown in Fig. 6.17 

and the desired shaded area are found in Fig. 6.18 in the 2-Rvk  plane. 

4 2Q ( =50000, R 45Kohm)vk =  is the selected point. The bode plots and the PMs at the 

vertices and other points in ℜ  are depicted and listed in Fig. 6.19 and Table 6.5, 

respectively.  

 

6.5 Concluding Remarks 

This chapter introduces a new method on PLL design by frequency domain approach for 

a perturbed PLL control system. Based on parameter space method and robust stability 

criteria, the desired system parameters of PLLs in the selected coordinate plane are 

determined in graphical portrayals. With the help of gain and phase boundary curves resulting 

from the roots of characteristic polynomial equation in the closed PLL system, a methodology 

is proposed for portraying regions in a selected designed parameter plane so that the 

performance of the whole PLL system can meet the specified requirements on 

frequency-domain constraints. Simulation results have demonstrated the objectives have been 

achieved as desired. 
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Fig. 6.1 The functional block diagram of PLL. 

 

 

 

 

dk vk
s( )F s

iθ oθeθ ev cv+
−

 

Fig. 6.2 The linearized mathematical model of PLL. 
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Fig. 6.3 The closed feedback system with a gain-phase margin tester jke θ− . 
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Fig. 6.4 The first order loop filter. 
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Fig. 6.5 The second order filter. 
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Fig. 6.6 The 2D perturbed plane S  with the perturbed parameters 1R  and 1C . 
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Fig.6.7 The designed-parameter shaded area in 2-Rd vk k  plane meeting  

the phase specifications PM 30≥ ○  with the first order LF. 
 
 

 
Fig.6. 8 The designed-parameter shaded area in 2-Rdk  plane meeting  

the phase specifications PM 30≥ ○  with 130000vk = . 
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Fig. 6.9 The bode plots of the PLL system at the vertices of the region S  with 

1 2Q ( , ) (1.8,14Kohm)dk R= =  and 130000vk = . 

 
 
 
 

Table 6.1 The PMs of the PLL system with the first order LF at the points of S  at 

1 2Q ( , ) (1.8,14Kohm)dk R= =  and 130000vk = . . 

the point 1 1(R ,C )  PM the point 1 1(R ,C )  PM 

S1 49.3 o S2 31.4 o 

S3 56 o S4 74.5 o 

(350,12) 70.3 o (650,8) 51.2 o 
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Fig. 6.10 The designed-parameter shaded area in 2-Rvk  plane meeting  

the phase specifications PM 30≥ ○  with 0.6dk = . 

 

 

Fig 6.11 The bode plots of the PLL system at the vertices of the region S  with 
6

2 2Q ( , ) (3 10 ,5.1Kohm)vk R= = ×  and 0.6dk = . 
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Table 6.2 The PMs of the PLL system with the first order LF at the points of S  at 

6
2 2Q ( , ) (3 10 ,5.1Kohm)vk R= = ×  and 0.6dk = . 

the point 1 1(R ,C )  PM the point 1 1(R ,C )  PM 

S1 49.4 o S2 30.7 o 

S3 55.5 o S4 74.7 o 

(350,12) 61.5 o (650,8) 41.6 o 
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Fig. 6.12 The 3D perturbed plane R  with the perturbed parameters 1R , 1C  and 2C . 
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Table 6.3 The Coordinates of the vertices of The 3D Perturbed Parameter Space R  

(R1, C1, C2)=(Kohm, nf, nf) 

A(800,15,1) E(200,15,3) 

B(800, 5,1) F(200, 5,3) 

C(200, 5,1) G(800, 5,3) 

D(200,15,1) H(800,15,3) 

 

 

 

Fig. 6.13 The designed-parameter shaded area in 2-Rd vk k  plane meeting  

the phase specifications PM 30≥ ○  with the second order LF. 
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Fig. 6.14 The designed-parameter shaded area in 2-Rdk  plane meeting the phase 

specifications PM 30≥ ○  and 130000vk =  with the second order LF. 

 

 
Fig. 6.15 The enlarged designed-parameter shaded area in 2-Rdk  plane meeting the phase 

specifications PM 30≥ ○  and 130000vk =  with the second order LF. 
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Fig. 6.16 The bode plots of the PLL system at the vertices of the region R  at 

3 2Q ( , ) (0.2,60Kohm)dk R= =  and 130000vk =  with the second order LF. 

Table 6.4 The PMs of the PLL system with the second order LF at the points of R  at 

3 2Q ( , ) (0.2,60Kohm)dk R= =  and 130000vk = . 

The point 1 1 2(R ,C ,C )  PM The point 1 1 2(R ,C ,C )  PM 

A 59.3 o B 41.8 o 

C 56.7 o D 66.9 o 

E 45.4 o F 36.3 o 

G 33 o H 49 o 

(500,10,2) 50.8 o (650,7,1.6) 46.4 o 

(350,12,2.5) 49.3 o (700,9,2.2) 46.2 o 

 



 87

1 2 3 4 5 6 7

x 10
5

0

1

2

3

4

5

6

7

8

x 10
4

Kv(rad/(sec*volt))

R
2(

o
h

m
)

A  BC D E 

 H

F 

G 

 B
 H

A 

C 

D E 

enlarge 

 
Fig. 6.17 The designed-parameter shaded area in 2-Rvk  plane meeting the phase  

specifications PM 30≥ ○  and 0.8dk =  with the second order LF. 

 
Fig. 6.18 The enlarged designed-parameter shaded area in 2-Rvk  plane meeting the phase 

 specifications PM 30≥ ○  and 0.8dk =  with the second order LF. 
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Fig. 6.19 The bode plots of the PLL system at the vertices of the region R  at 

4
4 2Q ( , ) (5 10 ,45Kohm)vk R= = ×  and 0.8dk =  with the second order LF. 

 
Table 6.5 The PMs of the PLL system with the second order LF at the points of R  at 

4
4 2Q ( , ) (5 10 ,45Kohm)vk R= = ×  and 0.8dk = . 

The point 1 1 2(R ,C ,C )  PM The point 1 1 2(R ,C ,C )  PM 

A 57.1 o B 39.3 o 

C 54.6 o D 66.1 o 

E 44.6 o F 34.3 o 

G 31.5 o H 48 o 

(500,10,2) 49.6 o (650,7,1.6) 44.4 o 

(350,12,2.5) 48.7 o (700,9,2.2) 44.6 o 
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.Chapter 7 

 
Conclusions and Suggestions for Future 
Research 

 
7.1 Conclusions 

The main subject of this dissertation is to propose a systematic method based on 

parameter space method and robust stability criteria to predict the limit cycles occurred, 

analyze the system performances of gain margin and phase margins (GM and PM), and design 

a desired controller by adjusting the controller coefficients for perturbed control systems to 

meet specified conditions including GM, PM and sensitivity in frequency domain. Robust 

PLL design is also studied. 

Based on parameter space method and robust stability criteria, the following objectives 

are achieved in this dissertation. 

1. A systematic method is proposed to predict the limit cycles for perturbed control systems 

with nonlinearities. 

2. Gain and phase margins are defined for system parameters perturbed in given intervals 
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and performance analysis on frequency domain is analyzed. 

3. Robust stability is also analyzed for fuzzy dynamic control systems. 

4. Controller design for perturbed control systems with uncertain parameters is solved in 

portraying way based on the proposed techniques. 

5. The desired parameters of perturbed PLL systems are determined under specified 

constraints in frequency-domain. 

 

7.2 Suggestions for Future Research 

In this dissertation, some linear and nonlinear practical perturbed control systems have 

been considered. However, the proposed approach may be further applied to other control 

systems. The suggestions of future works planned to do are given as follows. 

1. Nonlinear PLL systems. 

2. Discrete time systems 

3. Filter design systems 

4. Power electronic systems 
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