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Analysis and Design of Perturbed Control Systems Based on
Parameter Space Method

Student : Hung-1 Chin Advisor : Dr. Bing-Fei Wu

Department of Electrical and Control Engineering
National Chiao Tung University

ABSTRACT

The models used are usually imprecise and the parameters of physical
systems vary with the operating conditions and time. Designing and
implementing a system for a fixed and exact control plant is not usually
practical in the natural environments. A inaccurate plant may result from a
simplified model and uncertainties‘in‘system parameters can always occur
in the physical world. Robustnessgstability: is important in analysis and
design of practical control systems. Another-important phenomena to be
considered is undesirable oscillations due to -nonlinearities in a feedback
closed system and it has been:studied by many researchers. It is very
instructive for the designer “to:.predict the limit cycle behavior of a
perturbed control system with nonlinearities. The describing function
technique is mainly employed to predict the existence of constant
amplitude oscillations of closed nonlinear systems and has been
successfully used in many applications.

The main subject of this dissertation is to propose a novel method
based on parameter space method and robust stability criteria to predict
limit cycles occurred, analyze the system performances of gain margin and
phase margin (GM and PM), and design a desired controller by adjusting
the controller coefficients for perturbed control systems to meet specified
conditions including GM, PM and sensitivity in frequency domain. A
vehicle model is used as an example for simulation. With the help of gain
and phase boundary curves resulting from the roots of the characteristic
polynomial equation of closed control systems, a methodology is proposed
for portraying regions in a selected designed parameter plane so that the
performance of the whole system can meet the specified requirements with
perturbed parameters varying in given intervals. The same approach is



extended to analyze the robust stability for a fuzzy control system. This
dissertation also applies the above method on phase-locked loops (PLL)
design by frequency domain approach for a perturbed PLL system. The
desired system parameters of PLLs in the selected coordinate plane are
determined in graphical portrayals. Simulation results have demonstrated
and achieved the objectives as desired.
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Chapter 1

Introduction

1.1 Motivations

Gain margin and phase margin are important specifications in the frequency domain for
the analysis and design of practical control systems and have served as important measures of
robustness analysis which is always ofsprimary:concern. This is because the models used are
usually imprecise and the parameters of all. physical systems vary with the operating
conditions and time. They are usually* obtained numerically or graphically by the use of
system frequency response like Bode plots. Studying for controller design to satisfy GM, PM
or sensitivity conditions was proposed by several articles such as in [1]-[6], There are also
many design methods to determine the parameters to meet different objectives [7]-[9].
Designing a controller for a fixed and exact control plant is not usually practical in the natural
environments. Due to the simplified models or the factors resulting from the changing
environments, the uncertainties in system parameters can always occur. Uncertain parameters
in a linear control system can be robustly analyzed by the parameter plane method or the

parameter space method [10]-[16]. By robust stability criteria a simple way of checking the

1



stability of perturbed interval polynomials, is to guarantee if all the polynomials have the

roots in the left-half plane [17]. The perturbed parameters will result in root-clusters, within

which the roots of the perturbed polynomials will be located. Usually, a change in a physical

quantity typically appears in more than one coefficient of the characteristic equation. Robust

Gamma-stability analysis for a perturbed vehicle plant was also studied [18]. The methods of

analyzing the gain-phase margin of a linear control system with adjustable parameters have

been developed [19]-[21]. Strictly speaking, the majority of the researches mentioned above

are not concentrated on the controller design for perturbed systems. Sensitivity functions are

usually used as a design specification to indicate the robustness of a system. In [6] and [8],

Yaniv and Nagurka proposed a robust controller design method satisfying GM, PM and

sensitivity constraints on the perturbed systems, not with the system parameters in uncertain

continuous intervals, but with the system uncertainties in the finite discrete set of gains and

pole locations.

Undesirable oscillation phenomena due to nonlinearities in a feedback closed system

have been studied by many publications [22]-[26] and it is important for the designer to

predict the limit cycle behavior of a perturbed vehicle system with nonlinearities. It is of

interest to know the frequency, amplitude, stability and instability of the limit cycle occurred.

The describing function technique is mainly employed to predict the existence of constant



amplitude oscillations of closed nonlinear systems and has been successfully used in many

applications although some limitations exist in the systems which don’t satisfy the assumption

of filtering out the higher order harmonics [27]-[30].

In addition, some researchers have developed the experimental and analytic describing

functions of fuzzy controller in order to analyze the stability of fuzzy control systems [31-32].

Furthermore, the describing function technique to design a fuzzy controller for switching

DC-DC regulators was proposed by Gomariz et al [33]. The describing function was also

applied to find the bounds for the neural network parameters to have a stable system response

and generate limit cycles [34]. The_ results in. [32] and [33] are extended to analyze the

stability of a fuzzy vehicle steering control system under the effects of system parameters and

gain-phase margin by the use of methods of ‘describing function, parameter plane and a

gain-phase margin tester. A simple vehicle steering control model with perturbed parameters

is cited to verify the design procedure.

On the other hand, there are a large number of studies concentrated on the subject of

phase-locked loops (PLL) in the latest decades. The theoretical description of PLL was well

proposed [35]-[39]. A PLL is essentially a circuit that has a particular system lock its

frequency as well as the phase to those of the input applied to it. When the phase error is built

up in the locked state, a feedback mechanism acts on an oscillator called VCO so that the



error is reduced to a minimum and a phase output of VCO is really locked to the reference

input. There are a considerable number of applications in many areas. A technique using PLL

was established on motor speed control [40]. In the design of Global Positioning System

receivers, PLL is very useful especially in a noisy environment [41]. PLL was also applied in

the design of frequency synthesizer [42].

In this thesis, GM and PM performances are defined for a perturbed system with

uncertain continuous interval parameters and shown here graphically in the system parameter

space. By the use of parameter space method and robustness stability criteria, stability

boundary curves corresponding te specificiGM-and PM constraints are generated. Owing to

the complexity of the controller-design for perturbed control systems, it is not an easy job to

find out a qualified controller together with the system plant with uncertain interval

parameters so that the whole closed system at every point in the perturbed system parameter

region satisfies all the three specifications of GM, PM and sensitivity. The main concern in

the controller design is to find a desired region in the controller coefficient plane so that the

performance of the whole system with uncertain parameters inside a perturbed space satisfies

given specifications. The desired controller will be determined graphically from a figure in

which a qualified controller coefficient area is to be found out. With the help of stability

boundary curves in the controller coefficient space, the objective of designing a suitable



controller meeting the specified requirements is achieved.

1.2 Organizations of the Dissertation

The dissertation is organized as follows. Chapter 1 is an introduction. Basic concepts are
described in Chapter 2. In Chapter 3, a perturbed vehicle control system whose gain margin
(GM) and phase margin (PM) are analyzed and for which a novel controller design method
satisfying the given specifications on GM, PM and sensitivity is developed. In Chapter 4, the
subject of predicting the limit cycle of a nonlinear perturbed vehicle control system under
specific gain-phase margin (GM/RM)_constraints is addressed. The analysis of robust stability
for a fuzzy vehicle steering contral system-is considered in Chapter 5. In Chapter 6, a control
algorithm is presented for phase-locked loop” (PLL) design with perturbed parameters
satisfying frequency-domain specifications. In Chapter 7, conclusions are given and

suggestions for future research are also proposed.



Chapter 2

Basic Concepts

2.1 Overview

This chapter presents a description about the way how to analyze and design a feedback
control system with perturbed parameters varying in intervals by frequency approach.
Parameter space method and robust stability eriteria‘provide a technique to check the stability
of perturbed control systems in a space with the coordinates of uncertain system parameters.
By the use of a gain-phase margin tester, stability boundary curves are generated to determine
gain and phase margins (GM and PM) in performance analysis. In the similar way, desired
controller coefficients are going to be found out to meet given specifications for controller
design. Sensitivity function is also considered in the controller design. With the nonlinearities
inherent in the system, describing function method is used for predicting limit cycle occurred.
2.2 Robust Stability Criteria

Consider the characteristic polynomial of a feedback control system

P(s,6) = (@)’ = (@) 0, @5+, @S, @)



where q=[q,,q,,----9,]€R and R is a set of allowable parameter domain space. Each g;
varies independently within the interval with g, [q, ;q,"],i=12---n.

It has been shown that for real continuous coefficient functions d,(q) of the
characteristic equation, a sufficient condition for robust stability is that (a) there exists a
q=0, €®R such that P(s,q) is stable; (b) P(s,q) doesn’t have any roots on the imaginary
axis for any ge®R. It is easily tested by checking the stability of the characteristic
polynomial P(s,q,) for an arbitrary q, %R . If no such q, exists, the system is unstable.
The condition (b) is satisfied if and only if the equation P(s,q) =0 neither has a real root at
s=0,i.e.

do(q) =0 (2.2)

nor an imaginary pair of roots at s=#je-forall qe%®. Let R, be the set of all real g
such that the polynomial P(s,q) has roots on the imaginary axis .

R;,={q:P(jo,q)=0 for ©>0}. (2.3)

The condition (b) also means that R, does not intersect the parameter domain space
R . The curve formed by the points g in %R, in the gq—space is the stability boundary
curve. The perturbed feedback control system is stable at the points in the q—space on one
side of the stable boundary curve and it is unstable at the points on the other side. The above

method can be used to determine where the system parameters in R can be chosen.



2.3 Describing Function

It is generally useful for the describing function technique to be applied in engineering
problems of control systems. Nonlinear systems are generally linearized by using the
describing function method to predict the limit cycle for stability analysis. Assume a

sinusoidal input x(t) = Asin(wt) with the amplitude A and the frequency  to a nonlinear
system N inFig. 2.1 and y(t) is the output signal and periodic. By the Fourier series,

y(t)=a,+ i (a, sin(nat) + b, cos(nat)), (2.4)

n=1

where

1 2z

a5 [ yd @)

anzi jz”y(t)sinnwtd(wt), n=0, (2.5)
T 0

l 2r
b, =—.[ y(t)cosnatd (wt), n=0.
T 0

If the nonlinear system is symmetric about the origin, a,=0. Let Y be a fundamental

component of the Fourier series of y(t) and Y =a, + jb =Y,26,, where Y, =\/a’+b’ and

6, = tan‘lg. Y, is the amplitude of the fundamental component of the system output y(t)

and @ isthe phase shift by Fourier series.

The describing function N of a symmetric nonlinear system is defined as [28]

N =1A14¢91 _& +Ajbl 26, (2.6)

2.4 Parameter Space Method



Consider a perturbed closed control system with a gain-phase margin tester ke’ and
there are r nonlinear components in the system. Every nonlinear component has the

complex describing function N; (i=12,...,r) that is a complex function of A and w,

which are the amplitude and frequency respectively of the input signal to the i—th nonlinear

element N, and
N; = Nig + JN;;.. (2.7)

Assume the closed characteristic equation is

P(s,q,¢,k,8,Nz,N;,...,Ns N,))
= the numerator of [1+ ke G(s,q,¢, N;g, Nyjoooy N o, Ny Noo N (2.8)

mR1 'Nm
=0,

and

P(s,q,¢,K, 0, Njy Ny ey NeRd NG, )

=2.d,(0,6,k. 0, Nig Ny Ny )s 29)

=d,(q,c,k,8, Nz, N;,....N s N, )+d,(q,¢,k,8,N,,...,N,)s+--
+dn(q’c’k’9’ NlR’ Nll""’ NrR’ er)sn’

where G(s,q,¢, Nz, N;,...., N N,,) is an open loop transfer function of the system and c
is a controller coefficient vector. c=[c,,c,....C,] and c, is a controller coefficient to be
designed for 1=0,1,2,....m.

P(jo,q,c,k,0,N;5,Ny,.....,N 5. N,) may be written into the real part U(w,q,c,k,8,N;, N,,..

.+N.N,) andimaginary part V(®,q,c,k,0, Ny, N;....; No . N,,).

P(j®,0,¢,k,0,Nyg, Nyj,...; Nig s Ny ) =U (@,9,6,k, 0, N, Ny, N N ) +
iV(©.9,¢,k,8,N;g,Ny,,...No . N,) (2.10)
-0,



where

U (a),q,C,k,H, NlR’ Nll""’ NrR ’ er) = rO(q’ k’a’ NlR’ Nll""’ NrR’ er)
+r(q,¢,k,8,N;5,N,j,... Nz N, o

(2.12)
+1,(9,¢,k, 0, N, Ny, .., Noo N 0
+---+1,(09,¢,k,0,Njz,N;,,... N o, N, )@"
and
V(a)lq’C’ k797 NlR' Nll""' NrR’ er) = iO(qlk’Q’ NlR’ Nll""’ NrR' er)
+f1(q,c,k,9, NlR,Nl,,...,NrR,Nr,)a)2 (2.12)
+1,(9,¢,k,8,Nz,N,;;,.... N s, N, o
+---+1.(9,¢,k,0,N;g, Nyy,.o., Ng , N 0"
The equations
U (@;0,¢,K, 0, Ny N,,,... N5, N,)=0 (2.13)
V(wiqlc’k’07N1R’Nll""’NrR'er):0 .

can be solved for g or for c.

2.4.1 Limit Cycle Prediction

For predicting the limit cycle resulting from nonlinearities N,, (2.13) is solved for g

given specific w,c,k,0 and A in system performance analysis analytically or numerically.

Gain boundary curves will be generated from these g values in the ¢ -parameter space by

varying o given specific k and A with #=0°. Phase boundary curves will be

generated by varying o given specific 4 and A with k=1. Every boundary curve

separates the parameter domain region into two areas as in Fig. 2.2. One is the asymptotically

stable region and the other is unstable. The limit cycle with amplitude A will happen if a
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system parameter point ¢ is in the unstable area, but it won’t if q is in the stable area. The
gain and phase margins of the perturbed control system will be analyzed from boundary
curves geometrically. A specific gain or phase value corresponding to the boundary curve
which is tangent to the perturbed parameter region as in Fig. 2.3 is defined as the GM and PM
of the perturbed system for predicting the limit cycles occurring, respectively.
2.4.2 GM Analysis without Nonlinearities

If there is no nonlinear part in a perturbed system, N,;,N,,,....,N,, and N, in
(2.10)-(2.13) are omitted.
Equation (2.13) is rewritten into the following:form

{U (@,9,¢,k,0)=0 (2.14)

V(woreze, k@) =0

Equation (2.14) can be solved for q with specific o,c,k,&. For gain margin analysis, a gain
boundary curve is generated in q-—space from the solutions q of (2.14) by varying @ for
every k with @=0°. A specific gain k (dB) corresponding to the boundary curve which
is tangent to the perturbed region R is defined as the GM of the perturbed control system. It
is also the minimal GM of the system within the entire region R. The GM of the control
system at a point on one side of a specific gain boundary curve is greater than that at a point
on the boundary curve. But it is less at the points on the other side.

2.4.3 PM Analysis without Nonlinearities

11



Equation (2.14) can be solved for g with respect to &, given specific ®,c,k. Phase

boundary curves are developed under the PM specification in a similar way with k =1. They

are generated in gq—space from the solutions q of (2.14) by varying o for every 6. The

PM of the control system is defined as the phase value & associated with the phase boundary

curve which is tangent to the perturbed region R. It is the minimal PM for the whole system

with the parameters inside R, too. The PM of the control system at a point on one side of a

specific phase boundary curve is greater than that at a point on the boundary curve. But it is

less at a point on the other side.

244 Controller Design

The controller design is to- determine the.desired controller coefficients in selected ¢

-space. Based on gain-phase boundary-curves drawn from the locations of the roots of (2.14)

for ¢ and the constant-sensitivity loci, the desired area in c—space is found so that the

whole system with the controller in that area will meet specified conditions.

First, determine a gain region in c—space with the help of the gain boundary curves so that

the controller with the coefficients in that region satisfies the specified GM constraints.

Secondly, a phase-region is determined in c—space with the help of the phase boundary

curves so that the controller with the coefficients in that region satisfies the specified PM

conditions. Then, find out the common region of the previous mentioned gain and phase areas.

12



The controller coefficients in that region will satisfy both the user-defined GM and PM
specifications.
2.5 Sensitivity Function

Sensitivity effects are often important to be considered in the design of control systems
on frequency domain and can be used as a design specification to indicate the robustness of
control system. The sensitivity function of the closed-loop transfer function H(s) with respect

to the variations of the transfer function G(s) which is a subsystem of H(s) is defined as

S g.((s) _ OH (s)/H(s) (2.15)
0G(s)/G(s)
or with respect to the variations of«an element:.# in*H(s) is given by
o OH(s)/H(s
S;()zM. (2.16)
opLp

2.6 Concluding Remarks

In this chapter, basic concepts of performance analysis and controller design for
perturbed control systems are addressed based on parameter space method and robust stability
criteria. GM and PM are analyzed and the desired controller is determined by the proposed
methods with the help of a gain-phase margin tester. Limit cycles are also predicted for

perturbed systems with nonlinearities.
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Fig. 2.1 A nonlinear system with input signal X(t) = Acos wt
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Chapter 3

Robust Control Design for Perturbed
Systems by Frequency Domain Approach

3.1 Overview

The chapter presented here is concentrated on a perturbed vehicle control system whose
gain margin (GM) and phase margin«PM) are,analyzed and for which a novel controller
design method satisfying the given.specifications .on=GM, PM and sensitivity is developed.
The approach is applied to the plants with uncertain parameters that vary in intervals. Based
on the parameter space method and robust stability criteria, gain and phase boundary curves
are generated from the characteristic polynomial of the system with which a gain-phase tester
is included in series to perform system stability analysis and controller design. The main
concern in the controller design is to find a region in the controller coefficient plane so that
the performance of the uncertain system satisfies given specifications. The proposed method
is applied to an example of a bus system. Simulation results are given for illustration to show
the system performances on GM and PM and the desired controller meeting the specified

conditions in frequency domain for the perturbed system is derived.
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3.2 Sensitivity

Since in physical systems all the elements may change their properties with time and
environments, the considerations about the changes of the characteristics of the closed control
systems with respect to system parameter variations are always of big concern for a system
designer.

Consider a linear control feedback system illustrated in Fig. 3.1. The closed loop

feedback system has the transfer function given by

C(5,0)G(s.9)

H (s, 0z¢)= 1+C(8,¢)G(s,q)

(3.1)

where C(s,c) is a controller with c =[¢;,C,,.....C,,] @and c, is a controller coefficient to be

designed for i=0,1,2,....m . G(s,q) visva plant with a perturbed parameter vector

q=[9,,09,,----9,]€R. R is a set of allowable parameter domain space. Each q, varies

independently within the interval with g, €[g,;q,"],i=12---n.

Assume
_ N.(s,c)
C(s,c)= —Dc © (3.2)
and
N (s, )
G(s,q)=—="12. 3.3
(s,q) D, (5.0) (3.3)

With a specific q, H(s,q,c) is replaced by H(s,c).The sensitivity function S{i'(s'c)with
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respect to the controller coefficient c; is defined as

SH(S,C) — dH (Sfc)/ H (S,C)

. 3.4
‘i de, /c 34)

where 1=0,12...m. Substitute (3.1), (3.2) and (3.3) into (3.4), and the sensitivity function

SC':'(S’C) can be computed. Given a different constant s, , the solutions of the equality

H(jo)
S¢

~|=s, foracontroller coefficient ¢ give constant-sensitivity loci in the c—space.
s=jo
The controller coefficient ¢ will be determined based on sensitivity specifications

corresponding to one of those loci. A system being very insensitive to parameter variations is

considered to be a good control system.

3.3 Stability Boundary Analysis
Consider a gain-phase tester ke ¢ included in series with the original control system as

in Fig. 3.2, and its transfer function is given by

Ke °C(s,c)G(s,q)
1+ Ke ’C(s,c)G(s,q)

H(s,q,c,K,0) = (3.5

The characteristic polynomial is P(s,q,c,k,#) and

P(s,q,c,k, ) = the numerator of [L+ ke “C(s,c)G(s,q)]
=>"d;(g,c.k,0)s' : (3.6)
i=0

=d,(q,c,k,0)+d,(q,c,k,8)s+----+d,(q,c,k,H)s"

By the use of the parameter space method and robust stability criteria, system stability

performance on GM and PM is analyzed by generating gain and phase boundary curves. For
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perturbed control systems in which the parameters of the characteristic polynomial lie within
given intervals, the minimum of all the GM values of the system at the points inside the entire
perturbed region in the parameter space is defined to be the GM of the system. The PM of the
system is defined in the same way.
3.3.1 Parameter Space Method

The parameter space method is a good analytical technique to perform system analysis in
the selected system parameter plane for a control system which is described by its
characteristic polynomial, the roots of which generate stability boundary curves in the
parameter plane. The characteristic polymemial on the jow -axis P(jw,q,c,k,8) may be

written into the real part U (o, q,C, k, &) and the imaginary part V(®,q,c,k,8).

P(jw,q,c;k,8) =U (»,9,¢,k,0) + jV (»,q,¢,k,0)

T (3.7)

where

U(w,q,¢,k,80) =1,(q,c,k,0)+r,(q,c,k,)o+r1,(q,c,k,0) @’ +---+r1,(q,¢,K,0) 0" (3.8)
and

V(w,q,c,k,8)=i,(a,c,k,0)+i,(q,c,k,0)o+1i,(q,c, K, +---+ i,(9,c,k,0)0" (3.9)
The equations

{u (@,0,¢,k,0)=0 (3.10)

V(w,q,c,k,0)=0

can be solved analytically or numerically for g or c. Gain and phase boundary curves are
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generated both in g-—space from the solutions g for GM and PM analysis and in

c—space from the solutions c for the controller design under specified conditions.

In the analysis of GM and PM, a fixed controller is used to analyze the system

performance, and (3.7)-(3.10) don’t depend on c. The gain and phase margins of the

perturbed vehicle system will be analyzed geometrically in 2 and 3 dimensions from stability

boundary curves.

In controller design, (3.10) can be solved for ¢ with specific w,k,0 and q in a

similar way. Gain and phase boundary curves are developed in the c—space according to

different gain k and @&, respectively.

3.3.2 Gain Margin Analysis

Let #=0° and c be a specific'controller coefficient in Fig. 3.2. Equations (3.7) and

(3.10) are rewritten into the forms

P(j@,0,k)=U(®,q,k)+ jV(@,q,k)

=0 (3.11)
and
{\Lj EZ))ZE;:S (3.12)
where
U(w,0,k) =1,(q,k) +1,(q, K)o+ 1,(q, k)@ +---+1,(9, k)" a13)
and
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V(@,9,K) =i,(0,k) +i,(q, K)o+, (q,K)@” +---+i (q,K)@". (3.14)
A gain boundary curve is generated in g—space from the solutions g of (3.12) by varying
o for every k. By varying k the curve is approaching to the parameter region R
gradually and finally intersect with ®. A specific gain k (dB) corresponding to the
boundary curve which is tangent to the parameter perturbed region R is defined as the GM
of the perturbed control system. It is also the minimal GM of the system within the entire
region R. The GM of the control system at a point on one side of a specific gain boundary
curve is greater than that at a point on the boundary curve. But it is less at the points on the
other side.
3.3.3 Phase Margin Analysis

Given k=1 and aspecific ¢ InNFigr3.2,(3.7) and (3.10) are rewritten into the forms

P(j@,q,0)=U(@,q,0)+ }V(@,q,0)

o (3.15)
and
{U (©.9,6)=0 (3.16)
V(w,9,60)=0
where
U (a)vq’e) = ro(qa 0) + I’:I.(qve)a)+ r-2 (qve)a)2 teeet rn (qve)wn (317)
and
V(w,9,0)=1,(9,0)+i,(9, ) w+1,(q, )’ +--+i (0, 0)0". (3.18)
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Phase boundary curves are developed under the PM specification in a similar way. They are

generated in q-—space from the solutions g of (3.16) by varying @ for every &.The PM

of the control system is defined as the phase value & associated with the phase boundary

curve which is tangent to the perturbed region R. It is the minimal PM for the whole system

with the parameters inside R, too. The PM of the control system at a point on one side of a

specific phase boundary curve is greater than that at a point on the boundary curve. But it is

less at a point on the other side.

3.34 Controller Design

The controller design is based onrgain<phase boundary curves which are drawn in

c—space from the locations of:the rootsof the polynomial equation (3.10) with respect to

different k and @, and the constant-sensitivity 1oci which are drawn based on the solutions

of the

H (jo)

ol = s, for the controller coefficient ¢ in c—space with respect to the
given sensitivity constant s,. The desired coefficients are determined under the constraints of
specified GM, PM and sensitivity. Systems with high stability and low sensitivity are desired.

Based on the discussions mentioned above, the design algorithm is as the followings:
Step 1: Set up user-defined specifications on GM, PM and sensitivity.

Step 2: For every system parameter q at the vertices of the perturbed system parameter

region in q-plane, draw the gain boundary curves corresponding to the specified GM and
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0dB in c-plane by solving (3.12).

Step 3: For every ( at the vertices of the perturbed system parameter region in q-plane,
draw the phase boundary curves corresponding to the specified PM and 0° in c-plane by
solving (3.16).

Step 4: Sketch the sensitivity constant loci from the solutions of the sensitivity equation

H (jo)

=s, for c,given s,.

s=jw

Step 5: Determine a gain region in c—space with the help of the gain boundary curves as in

step 2 so that the controller with the coefficients in that region satisfies the specified GM

constraints.

Step 6: Determine a phase-region in c—space with the help of the phase boundary curves as

in step 3 so that the controller with the coefficients in that region satisfies the specified PM

constraints.

Step 7: Find out the common region of the determined gain and phase ones as in steps 5 and 6.

The controller with the coefficients in that region is the desired one satisfying the specified

GM and PM conditions.

Step 8: Choose a point in c—space on a specified sensitivity constant locus which passes

through the common region as in step 7. Then the controller coefficient at that point satisfies

all the three specified constraints of GM, PM and sensitivity. If no such sensitivity locus exists,
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tradeoff has to be made among the three specified conditions.

3.4 An Example and Simulation Results
In this simulation, a Daimler Benz 0305 bus [18] is adopted. Its linearized system with
actuator input o =steering angle rate, and output y=displacement of front antenna, has the

following transfer function

609.80,°q,s° +3886000,s + 482800,
s°(q,%q,°s” +10770,0,5 +16.80,0, + 270000)

G(s,0,,0,) = (3.19)

where the parameter g, =V is the bus velocity, and the other parameter q, = %

m: the mass of the bus (tons). u :road friction‘coefficient (0.5 for wet road, 1 for dry road).

g, €[12ms™, 20ms™]

: (3.20)
g, €[24tons; 32tons]
34.1 GM and PM Analysis
The controller used is taken as given by
2
C(s) = 33445 2+1O9385 +9375 (3.21)
s° +50s° +1250s +15625

and was determined by Muench [18].

Case 1 : 2D GM/PM Analysis in g, —q, Plane . Consider the system parameter q=[q,,d,]

with an uncertain parameter region S as in Fig. 3.3 for studying GM/PM performances.

The S—parameterregion is

(3.22)



and the closed-loop characteristic polynomials is as in (3.6). By substituting s = jeo into the

numerator of the above polynomials and by lengthy computation, the coefficients of the real
part polynomial U (w,q,k,8) with aspecific ¢ in(3.8) are

r, = 4.5262x10°q,’k cos(6),

I, = (3.6431x10°q, +5.2808x10%q,”) x k sin(6),

r, = (—4.2505x10°q, —57168750,"q, —1.1316x10°q,”) x k cos(8),

r, = —(6669992.4q,°q, +9.1087 x10°q, )k sin(6),

=16828125q,q, + 21000q12q2 +3375x10° +1429371.2kq12q2 cos(d), (3.23)
0,

r, = —12500,°q,” —16.8q,°q, — 538500,0, — 270000,

r,=0,

2.2
=00, -

I
I

In (3.9), the coefficients of the imaginary partpolynoemial V(w,q,k,8) are

i, = —4.5262x10kq,” sin(d),

i, = (3.6431x10°,+ 5:2808%10°kg;’ cos(#),

i, = (4.2505x10°q, + 57168750,"q, +1.1316 x10%q,”) x k sin(6),

i, = —2625000,%q, — 4218750000 — 6669992.4 x kg,°q,k cos(8)
—9.1087 x10%kq, cos(#),

i, = ~1429371.2kg,’q, sin(6), (3.24)

i, =156250,°0,” +8400,°q, +1346250q,q, +135x10°,

i =0,

6

N 242

| = 50ql q, 1077q1q2,

i =0.

8

Solve the equations

{u (0,9,k,0)=0 (3.25)

V(w,9,k,0)=0"

for q by varying k and &, and the stable boundary representation curves for gain and
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phase margins are shown as in Figs. 3.4 and 3.5 in the g, —q, plane, respectively. We are

only interested in positive solutions g, >0 and q, >0 for practical reasons. The GM of the

perturbed control system with the domain region S is -4.3dB and its PM is 19.336° as seen

in Figs. 3.4 and 3.5, respectively. In general, the specifications on the stability robustness

point of view are GM >3dB and PM >30°, which the system with the original controller

(3.21) doesn’t satisfy. A new controller is designed in the following section and its

performance is improved significantly.

The gain boundary curves associated with different gains shown in Fig. 3.4 reveal that

the GM of the control system at‘a pointron.one side of a specific gain boundary curve is

greater than that at a point on the-curve. But'it is.less at a point on the other side.

Similarly in Fig. 3.5, the phase boundary; curves show that the PM of the control system

at a point on one side of a specific phase boundary curve is greater than that at a point on the

curve. But it is less at a point on the other side. At the point A ((q,,q,) =(20,32)) in both

Figs.3.4 and 3.5 the system has the minimal GM and PM of all the points within the entire S

region.

Case 2 : 3D GM/PM Analysisin m—-v—u Space.

Select g=[q,,d,,9,]=[m,v,u] in the block diagram of the closed system in Fig. 3.2. The

perturbed parameter space R as in Fig. 3.6 as follows

26



24<m/u<32
12<v<20 . (3.26)
05<ux<1

Gain and phase boundary curves in the m—v—u parameter space are generated from
the solutions for g to (3.12) and (3.16), respectively. Those curves corresponding to
different k and & by varying the frequency @ are shown in Figs. 3.7 and 3.8. A specific
gain k (dB) corresponding to a boundary curve which is tangent to the perturbed region R
at a point on the edge EF of R is defined as the GM of the system. It is also the minimal
GM of the perturbed control system within R. Its PM is defined in the same way. The
system with uncertain parameters withinithé "R - space has GM=-4.3dB and PM =19.336°.

3.4.2 Controller Design

The system parameter q=[q;;6,] within S is considered for the controller design.

Assume the controller to be designed is given as

C,8° +CS+C,

C(s) = ,
(s) s® +50s% +1250s + 15625

(3.27)

where c,,c, and c,are the controller coefficients to be designed under the user-specified

constraints and the system parameter domain is within the region S as in Fig. 3.3. Equation
(3.21) is a special case of (3.27) with ¢, =9375, ¢, =10938 and c,=2344.
1) Controller Design for GM >3dB and PM >30°

The design problem of interest is to find all the controller coefficients c,,c, and c,

that satisfy user-specified conditions of GM, and PM. According to the design steps as above,
27



a coefficient region in c—space is to be found out by the use of gain and phase boundary

curves associated with different k and 6.

By solving (3.10), the coefficients of the real part of the characteristic polynomial

U(w,q,c,k,0) in(3.8) are

r, = 48280c,q,k cos(d),

I, = (388600c,q, +48280c,q;) x k sin(8),

r, = —(388600c,q, + 609.8¢,0,q, +48280c,q; )k cos(d),

r, = —(609.8¢,0/q, +388600c,q, )k sin(#),

r, =16828125q,q, +210000/q, +3375x10°,
+609.807q,¢,k cos(#),

r, =0,

r, =—-125002q?2 —16.80°q, — 53850q,d, — 270000,

r,=0,

2.2
=00,

(3.28)

The coefficients of the imaginary part of the polynomial V (®,q,c,k,8) in (3.9) are

i, = —48280c,0°k sin(@),

i, = (388600c,q, +48280c,q,) x k cos(d),

i, = (388600c,q, +609.8¢c,0.q, +48280c,q,)
xk sin(0),

i, = —26250002¢], — 4218750000 — 609.8¢,q’
x(,k cos(8) —388600c,q,k cos(8),

i, =—609.8¢,q7q,k sin(8),

i. =15625¢q; +840q7q, +1346250q,q,
+135x10°,

i, =0,

I, =-500;0; ~1077q,0,,

i, =0,

(3.29)

where q=(0,,q,) is a specific point within S and (3.10) is rewritten into the following

one.
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{u (@,¢,k,0)=0 .30

V(@,c,k,8)=0"

Two controller coefficients of c,,c, and c, are chosen as adjustable parameters and the
other one is fixed for this design. By solving (3.30), a shaded area is determined by gain and
phase boundary curves from the solutions for (c,,c,) pairs with ¢, =2344 under GM and
PM specifications given as above in ¢, —c, plane, as shown in Fig. 3.9.

For the vertices A,B,C and D of S as in Fig. 3.3, stability boundary curves are plotted
to determine the qualified shaded area. Two gain boundary curves are obtained associated
with k=0dB and 3dB given #=0° for each vertex. In a similar way, two phase
boundary ones are also generated correspondingto € =0° and #=30° with k =1.

Let c,=9375. Select ¢, and c, asadjustable coefficients. Gain and phase stability
curves are generated in the same way:in¢;—c, plane and the shaded region within which
c, and c, satisfy specified constraints is founded, as shown in Fig. 3.10.

In Figs. 3.9 and 3.10 the desired controller coefficients can be chosen according to the
specified gain and phase constraints. The controller coefficient is selected from the above
shaded region so that the whole system with the chosen controller has the desired
specifications. With the designed controller, Tables 3.1 and 3.2 show the GM and PM of the
system operating at several points within the region S. The Bode plots of magnitude and

phase are provided in Figs. 3.11 and 3.12.
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2) The constant-sensitivity loci

Compute ;' for i=0,1,2 by substituting Egs. (3.1)-(3.3) and (3.27) into (3.4) as

the followings:

SHE _ Co D, (5) D (5) (3.31)
% " N_(s,c)(D,(s)Dg () + N, (5, C)Ng (5)) |
SHGO _ 5¢,D,(5) D5 (5) (3.32)

T N(5,€)(D,(5)Ds (5) + N (s, )N (5))

and

S(I:-l (s,c) — SZCZ Dc (S) DG (S) ) (333)
2 N. (s,€)(D,(s)Dg (s) + N (s,€)N¢ (s))

Let c, =2344. The constant-sensitivity loci in Fig. 3.13, are plotted in c,—c, plane

from the solutions to the equality

S(l:‘il ()

‘:501, where s,, is a specified sensitivity
@,

s=i

constant and i=0,1. Gain and phase boundary curves'in Fig. 3.11 are plotted with the system
operating at the point A in the region” S Ifthe specified sensitivity locus passes through the

shaded area as in Fig. 3.9, a point on the locus is chosen and the controller at this location in

C,—C, plane is desired. The point Q, on the sensitivity locus with the constraint

gH (i)

H (jo)
SCo

=0.001 is chosen for the controller with ¢, =180.7,c, =18.83 and

s=jw s=jw

c,=2344 . The system at the point A in S has GM=4.13dB and PM=37.1°. lIts
performance on stability has been improved.

Let ¢, =9375. The solutions to the equality Sg“w)

=s,, Where i=12, give a

s=jw

plot of the constant-sensitivity loci in ¢, —c, plane, as shown in Fig. 3.14. Choose the point
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Q, in Fig. 3.14 with ¢, =410 and c =6000 on the sensitivity locus [S¢'”

s=jw

ST =107 and the system operating at the point B in S has GM=6.08dB and

s=jo

PM =31°.

3.5 Concluding Remarks

This chapter introduces a new method on performance analysis and controller design by
frequency domain approach for a perturbed control system. Based on the parameter space
method and robust stability criteria, the performances of a perturbed vehicle control system
are analyzed in graphical portrayals. With: the help of gain and phase boundary curves
resulting from the roots of the System characteristic polynomial equation, the GM and PM
have been obtained. In controller design, @amethodology is proposed for portraying regions in
a selected controller coefficient plane so that the designed controller is to meet the specified
requirements on GM, PM and sensitivity. Simulation results demonstrate the objectives have

been achieved as desired.
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Fig. 3.1 The perturbed vehicle control system with uncertain parameter (.
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)

Fig. 3.2 The perturbed vehicle control system in series with a gain-phase tester.
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Fig. 3.3 The parameter domain region S in g1-g2 plane.
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Fig. 3.4 Gain boundary curves by varying k with GM=-4.3dB.
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Fig. 3.6 The 3D perturbed parameter space R with 3 uncertain parameters m,v and u.
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Table 3.1 The GM and PM of the system with c, = 2344

c, =180.7, ¢, =18.83
Location inside S GM PM
Point A(20,32) 4.13dB 37.1°
Point B(20,24) 3.18dB 35°
Point C(12,24) 9.76dB 67.1°
Point D(12,32) 10.3dB 64.5°
Point(17,30) 5.73dB 46.5°

Table 3.2 The GM and PM of the system with ¢, =9375

¢, =410, ¢, =6000
Location inside S GM PM
Point A(20,32) 8.48dB 57°
Point B(20,24) 6.08dB 31°
Point C(12,24) 6.29dB 55.7°
Point D(12,32) 8.64dB 67.7°
Point(14,26) 6.87dB 57.9°

37



Mag(dB)
0]

-100

-150
Phase

(deg) 200

-250

Frequency(rad/sec)

Fig. 3.11 Bode plots of magnitude an:di"'phas‘e with’ ¢, =180.7,¢, =18.83andc, = 2344 at four
region S.
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Fig. 3.12 Bode plots of magnitude and phase with ¢, =9375,c, =410andc, =6000 at four
vertices of the perturbed region S.
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Fig. 3.13 A chosen controller at the point Q, with ¢, =180.7,c, =18.83 and c, =2344
based on the control system at the vertex A (20,32) of the perturbed parameter region S.
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Fig. 3.14 A chosen controller at the point Q, with ¢, =9375,c, =410 and c, =6000
based on the control system at the vertex B (20,24) of the perturbed parameter region S.
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Chapter 4

Gain-Phase Margin Analysis of Nonlinear
Perturbed Vehicle Control Systems for
Limit Cycle Prediction

4.1 Overview

The chapter is concentrated on_the 'subject.of predicting the limit cycle of a nonlinear
perturbed vehicle control system: under specific gain-phase margin (GM/PM) constraints. A
gain-phase margin tester is included:inseries with the perturbed vehicle system to perform the
GM/PM analysis. GM and PM are determined from the gain and phase values of the
gain-phase margin tester at which the undesirable limit cycle caused by nonlinearities of the
system with uncertain parameters occurs. The nonlinear elements in this system are linearized
by the method of the conventional describing functions. By the use of the parameter space
method, describing function method and stability criteria, a concise and clear way will be
given in the geometric representation in the parameter coordinate to show the gain-phase
margin performances for a nonlinear vehicle control system with uncertain parameters which

are the velocity, road friction and car weight of the plant. The proposed method is applied to a
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car model and simulation results are presented to illustrate the GM and PM performances for

the limit cycle.

4.2 Preliminary

Consider a perturbed closed control system with a gain-phase margin tester (ke ) and it
Is assumed that there exist r nonlinear elements inside the perturbed nonlinear vehicle
system as illustrated in Fig. 4.1. The closed loop feedback system has the transfer function

given by

H(s,q;K,6,N;,..., N
ke Y6(s,giN; 5, N, N (4.1)
1+Ke “G(s,9,Nyye. N, N

where G(s,q,N,,...,N,, % N;)*isthe openloop transfer function with the describing
function N,(i=12,...r) of nonlinear parts. q is a perturbed vector with q=[q,,d,,----q,]
eR,and R isaset of allowable domain space of the system plant parameters. N, isa
complex function of the input amplitude and frequency to the i—th nonlinear element and
N. =N+ jN, . (4.2)

The closed characteristic polynomial equation is written into

P(s,0,K, 0, Nyg, Nyj..., N Ny )
= the numerator of [1+ ke G(s,q, Ny, N;jooy N o, Ny N N (4.3)
=0,

and

41



P(s,a,k,8,N;g, Ny s Ng . N,,)
:gdi(q’k’e' Nigs Ny N, Nr|)Si

=do(q,k,0,Nyg, Ny, Ng N ) +d, (0, Kk, O, Ny, NS+ 4.4
+d,(a,k,0,N;g, N;,....; N N, )S"
=U(j@,q,k,8,N;z,N;;,.... Ng , N )+ JV (@,0,K,8,Njg Ny Nig s NG ).

Assume d,(q,k,8,N;,N,,....,N5 N,,) isareal continuous function.

The equation

{u (©.9,K,0,Nig, Ny oo, Nig N, ) =0 ws)

V(®,9,k,0,N;z,N;,..; N, N, )=0

can be solved for q given specific w,k,6 and A analytically or numerically. Gain
boundary curves will be generated from these q values in the q-parameter space by
varying @ given specific k and_ Amwith. #=0° . Phase boundary curves will be
generated by varying « given specific @-and. A with k =1. The gain and phase margins
of the perturbed vehicle system for the limit cycle will be analyzed from boundary curves
geometrically in 2 and 3 dimensions. A specific gain or phase value corresponding to the
boundary curve which is tangent to the perturbed parameter region is defined as the gain or

phase margin for predicting the limit cycles, respectively.

4.3 Problem Solution
The block diagram of the perturbed vehicle system with nonlinear elements N, and

N, is illustrated as in Fig. 4.2. The transfer function of a vehicle control model used for the
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investigations with the input o =the front wheel deflection angle and the output r=the yaw
rate around the vertical axis is [22].

1.415x1010 42 +1.382%10° uv2s

(4.6)
(4x10%0 112 + 56500m1?) + 587225muvs +1.9932m%y2s?

Gr/éF (S) =

The steering actuator is modeled as a linear dynamic system with the actuator bandwidth

a)Z
a . )
s% + 20,5 + 0

G,(5) =

The closed loop characteristic polynomial is

P(s,q,k,8,N;,N,)
=the numerator of [l= ke ’G(s,q,N,,N,)] (4.8)
=0.

Assume that the input signals to the nonlinear elements N, and N, are x(t)=Asinot

and Xx,(t) = A;sinwt, where N, is the deseribing function of a saturation element and

1 for A <R,
Nl(Ai)_{X(Al) forA>R’
) R R 7 (4.9)
X - H oM M 1_ M 2 ,
(A) ﬂ{sm (Ai)+A (Ai)}
and N, is that of a rate limiter element,
4R,
Na(A) =) (4.10)

Assume X (t) is chosen as the reference input signal. A, can be expressed as a
function of A and @, when A and o are known. By (4.4) the coefficients of the real

part of the characteristic polynomial are
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r, =1.415x10"°kN,N,w’mz’v cos(6),
r, = 75500kN, N, @’m’ z2v* sin(6),
r, =—(4.00145x10"°m 2 +56500m2v2)(w? + V2N, ,)
-587225m* uvN,w?,
r,=0,
r, = 4.00145x10" m? +56500m? 12
+587225m? uv(+2w, + N,) +1.9932m%2
(02 +~[2N,0,),
r, =0,
r, =-1.9932m*%?.

(4.11)

The coefficients of the imaginary part of the polynomial are

i =—1.415x10kN,N,m ve? sin(6),

i, = (4.00445x10" mu* +56500m’ 1v*)N?w? +
75500kN, N,m?*uv*w? cos(6),

i, =0,

i, = —(4.00445 %10 mu? ~56500m° 1v?) (v2, + N,) (4.12)
+587225m uv(@’ +~2N ;) —1.9932m**N, w2,

i, =0,

i, =587225M2y +1.9932Mm% % (2w, + N,),

i, =0.

4.3.1 Case 1: Gain-phase Margin Analysisin v—u Plane
Consider the perturbed parameter q=[q,,0,]= [v,x] for analyzing gain and phase
margins. The system parameter g, =v is the vehicle velocity, g, = is the road friction,
and the car weight is m=1830Kg . The perturbed parameter region Q inthe v—u plane
is illustrated in Fig. 4.3.
7v+30 <

<
Q regions 650 susl (4.13)

5<v <70

Gain margin is the minimal gain k_._(dB) of the gain-phase tester (ke ™*’) with @ =0° such

min
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that a limit cycle with a specific amplitude is generated and the gain boundary curve
corresponding to Kk . which is tangent to the perturbed parameter region Q is observed.
Phase margin is the minimal phase 6, of the gain-phase tester (ke ”) with k =1 such that
a limit cycle is generated and the phase boundary curve corresponding to 6. which is
tangent to the perturbed parameter region Q is observed.
Based on the previous analysis, some limit cycle loci with the gain k=1 and the phase
0 =0° of the gain-phase tester are depicted as in Fig. 4.3. In Figs. 4.4 and 4.5, the gain and
phase boundary curves are generated. It is obviously observed that the gain and phase margins
of the perturbed vehicle systemare 0:i772dB ‘and 9.4126 deg, respectively. The time
response shown in Fig. 4.6 has demonstrated the consistence with the results in Fig. 4.4 and
Fig. 4.5.
4.3.2 Case2: Gain-phase Margin Analysisin v—x—m Space

The perturbed parameter q=[q,,q,,0;]=[m, &, Vv] are considered for analyzing gain and
phase margins. The system parameter g, =m is the car mass, @, = x is the road friction and
g, =v Is the vehicle velocity.

The perturbed parameter space R inthe x—v—m coordinate is illustrated in Fig. 4.7.

R region (4.14)

5<v <70
1730Kg < m<2330Kg

In the similar way, the 3D gain and phase boundary curves corresponding to different vehicle
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weights are also shown in Figs.4.7 and 4.8. For example, the gain and phase margins for the
vehicle weight equal to 1730Kg are 0.922 dBand 12.12 deg, respectively.

4.4 Concluding Remarks

In this chapter, some effective techniques are presented involving describing function
methods, parameter space methods, and a gain-phase margin tester. The methods in previous
studies are extended to analyze GM and PM performances of a vehicle plant with three
parameters in a perturbed space for predicting the limit cycle occurred by using a gain-phase
tester and 3D graphical representations are also provided to give a concise and clear way to
study the robustness stability of the system:with nonlinearities. The method proposed here

would further be extended to be used in a-system with-more than three perturbed parameters.
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Fig. 4.1 The block diagram of a nonlinear control system with a gain-phase margin tester.
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-

Fig. 4.2 The block diagram of the perturbed nonlinear system.
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Fig. 4.4 Gain boundary curves with the vehicle weight 1830Kg (GM=0.772dB).
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PM=1.297 deg.
§5s=2330kg
100
80|
— PM=5.088 deg.
@ mass=2050kg
€ 60-| PM=12.12deg.
2 mass=1730kg
>
s}
ol 40
<
> region
20|
0- 2400 2%
] = 2200
2000
0.5 1800
U(road friCtion) 0 1600 mass(kg)
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Chapter 5

Parameter Plane Analysis of Fuzzy Vehicle
Steering Control Systems

5.1 Overview

The main purpose of this chapter is to analyze the robust stability for a fuzzy vehicle
steering control system. In general, . fuzzy Control system is a nonlinear control system.
Therefore, the fuzzy controller may.be linearized by the use of describing function first. After
then, parameter plane method is then applied to determine the conditions of robust stability
when the system has perturbed or adjustable parameters. A systematic procedure is proposed
to solve this problem. The effects of plant parameters and control factors are both considered
here. Furthermore, the problem of relative stability by using a gain-phase margin tester is also
addressed. The limit cycles provided by a static fuzzy controller can be easily suppressed if
the control factors are chosen properly. Simulation results show the efficiency of our

approach.

5.2 Vehicle Model
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Fig. 5.1 shows the single track vehicle model and the related symbols are listed in Table

5.1. The equations of motion are [22]

mv(B+r F +F
(b+n|_[ F 51)
mlflrr Fflf_FrIr
The tire force can be expressed as
Ff (af ) = :ucfoaf ! I:r (ar) = /ucroar (52)

with the tire cornering stiffness c,,, c,,, the road adhesion factor x and the tire side slip

angles

o, = SR D), ) = (B 1) (5.3
V \Y

The state equation of vehicle dynamics with 3 and r can be represented as

B #(Cig+Crp) L a(Col: —colf) MC:
: 2
mv myv mv
Pl ™A 5, (5.4)
r H(Col, —Cgol¢) _ (Cyolf +Crol; r HC+o
ml I, ml,l.v ml,

Hence, the transfer function from 6, to r is

CooMl v?s +¢, oC, ol v
= 2,242 2, 2 2 (5.5)
1. mves+1(c, |, +C ol )mavs + ¢, ,Col “1t” +(C,ol, —C ol )Muv

r/&
The numerical data are listed in Table 5.2. According to the above analysis of a single
track vehicle model, the transfer function from the input of front deflection angle &, to the

output of yaw rate r can be obtained as

(1.382x10° uv®s +1.415x10% 1*v)

5.6
6.675x10°v*s* +1.08x10° z2vs + (1.034x10° v + 4x 10" %) 6)

Gr/&f (S,/J,V) =

The operating range Q of the uncertain parameters 4 and v is depicted in Fig. 5.2.
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In addition, the steering actuator is modeled as

2
Q.

2 5.7
s2 20,5+ 0’ .1

G,(s) =
where o, =4r.

In our study, a fuzzy vehicle control system is presented in Fig. 5.3. The open loop
transfer function G, (s) is defined as

Go (8, 11,V) =G, (8)G, 5, (S, 44,V) (5.8)

The control factors k,, k, and k, can be determined by the designer. By transferring Fig.

5.3 to Fig. 5.4, the overall open loop transfer function can be obtained as

Kpts K, K,
G(s k,, d’ku7#’v)=T'?'Go(SaﬂlV) (5.9)

5.3 Describing Function of StaticiFuzzy Controller

The describing function N, of static fuzzy controller shown in Fig. 5.4 can be obtained,
which depends only on the amplitude of A and is independent of the frequency of o, and

can be expressed as follows [32]:

N, AN, (A)
AU A
:_Z{ZACD 3y —SIN S, €0S 68,,) — (S, —sin 5, 08 3,)) (5.10)
1
+E' (q)iui+l I+1u )(COS5 COSé})},

where n satisfies @ <A<® ., n>0, and varies with A; new variables {5} are

defined to be the angles where the input sinusoidal signal x = Asin¢ intersects the centers
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of fuzzy membership functions (@, ’s) as follows:

5, =0,
@:sin-l(gj, (izl,---,n, 0<s, <1j, (5.11)
A 2
T
§n+1=5'

The detail definitions of n and &, ’s are visualized in [32].

5.4 Stability Analysis of Fuzzy Vehicle Control Systems
If the gain-phase margin tester Ke ! is added in the open loop of Fig. 5.4, the closed

loop transfer function is

Ke 2N,G(s, Kk, ik K, , 12,V)

. = 5.12
1+Ke N,G(s, k., ky-k, , 12,V) (.12)

Case 1: Perturbed Plant Parameters
Arrange (5.12), the following characteristic equation is obtained.

f(s,Ky kg Ko 20,V K, 0) = Cyra® +Cv2 + Copiv + Co v+ Copv? =0 (5.13)
where

C, =1.4621x10°s(s* +17.7688s +157.9137)
+2.1818x10"Ke Nk, s(k, +Kj45)

C, = 2.2345x10"”Ke Nk, (k, +k;5)

C, =1.5271x10°s%(s? +17.76685 +157.9137)

C, =9.4384x10°5°(s? +17.7668s +157.9137)

C, =5.656x10"s(s? +17.7668s +157.9137)

(5.14)
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Let s=jw, K=0dB and 6=0". Equation (5.13) is divided into two stability equations
with real part X, and imaginary part X, of characteristic equation, one has

f(jo, Ky Ky, Ky 1,V) = X+ X, =0 (5.15)

where

Xg =-1.0064x10% @’ 11* +1.6776x10°w'v* + (1.5179x10° »*
~2.3999x10" ) v + 2.2345x10% N k k, 1’V — (2.5986
x10°@” +2.1818x10"° N k k,o*) v,
= (8.9429%10" @ —5.656x10" 0*) zz* + (9.4399x10° »° (5.16)
~1.4907 x10° @°)v* — 2.7008x 10" ° uv + 2.2345
x10% N,k k, @’V +(2.3091x10"° 0 —1.4621x10° »® +

2.1818x10" N,k k, ) uv’.

X

In order to obtain the solution of g and_swythe following equation is solved

X, =0
{x,:o’ (5.17)

when k;, k;, k,, N, are fixed and @ ~is-changed from 0 to . As the amplitude A is

also changed, the solutions of x and v called limit cycle loci can be displayed in the
parameter plane.

Case 2: Control Factors

After some simple manipulations, the characteristic equation of (5.12) can be obtained as
f(s,k, Ky Ky, 10,v, K, 0)=U -k +V -ky +W =0 (5.18)

where

U = Ke Nk, (2.1818x10% svs + 2.2345x 10 %),
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V = Ke "Nk, $(2.1818x10" pv®s +2.2345x 10" 1i°v)
W =1.414s(s* +17.7688s +157.9137)(6.675x10°v?s® +1.0746x10° uvs . (5.19)
+4.0045x10" 1% +1.034x10° 1av?)

Let s=jw, K=0dB and #=0°. Equation (5.18) is divided into two stability equations

with real part and imaginary part of characteristic equation

f(jo,k, Ky, K, 1,V) = Xg + jX, =0, (5.20)
where
Xg=U, -k, +V, -ky +W, =0, (5.21)
and
X, =Ugsks sV, -k, +W, =0. (5.22)

Therefore, k and k, are solved from (5.21) and-(5.22) when x, v, k,, N, are fixed

and @ ischanged from0to oo, @ne has

_ V1 'Wz _Vz 'Wl

“ IVRASTIRVE (5.23)
and
Case 3: Gain-phase Margin Analysis
The gain-phase margin tester can be expressed as
Ke )’ =K cosf— jKsind =K, — jK, (5.25)
where
Ky =Kcosé, (5.26)
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and

K, =Ksing. (5.27)

Itis noted that K =/KZ+K? and 6=tan™(z").

Then, the characteristic equation can be written as

f(s, Ky Kg ky v, K K ) =U - K +V K +W =0 (5.28)

d? Mu?
where

U = Nk, (2.1818x10" uv?s + 2.2345x 10" prv)(K,, +k,S)

V = (-j)Nk,(2.1818x10" uv*s +2.2345x 10" 11°V) (k,, +k,S)

W =1.414s(s* +17.7688s +157.9137)(6.675x10°v*s?
+1.0746x10° 1v544.0045x 10" 1> +1.034 x10° v?)

(5.29)

Let s= jw, (5.28) is divided into two stability: equations with real part and imaginary part of

characteristic equation

f(jo,k, ke Ky, 1V, Ke K) = X + jX, =0, (5.30)
where
Xq=U,-Ky+V,-K, +W, =0, (5.31)
and
X, =U, Ky +V,-K, +W, =0, (5.32)

Therefore, K, and K, are solved from (5.31) and (5.32) when k,, ky, «, v, k,, N,

are fixed and @ ischanged from0to oo, one has

_ V1 'Wz _Vz 'Wl
U1 'Vz _Uz 'V1 ’
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and

Ky =t 2 2L (5.34)

5.5 Simulation Results

In our work, five fuzzy rules and parameters are adopted and listed in Tables 5.3 and 5.4,
respectively. Fig. 5.5 shows the premise triangle membership functions of fuzzy controller.
The consequent parts are singletons. Fig. 5.6 shows the control surface of fuzzy controller.

If k, =02, k, =03 and k, =0.2 are selected first, (5.14) can be solved when A is
fixed and @ is changed from 0 to oot'Fig. 5:7.shows the stability boundary and some limit
cycle loci in the u-v parameter plane. Two stability-regions including asymptotically stable
and limit cycle are divided. In order to-verify the.accuracy of Fig. 5.7, four operating points
Q1-Q3 (limit cycle region) and Q4 (asymptotically stable region) are illustrated for testing.
Fig. 5.8 shows the time responses of input signal x(t). It is obvious that the results shown in
Fig. 5.8 consist with the predicted results in Fig. 5.7. For examples, if Q1(#=1 and v=70)
is chosen, the limit cycle occurs and the amplitude is 0.0465. Besides, if Q4 (4#=1 and
v=>5) is chosen, the system is stable and no limit cycle happens. On the other hand, if
k,=0.1, k; =0.27 and k,=0.1 are selected, Fig. 5.9 shows the stability boundary. We
can find that no limit cycle will occur in the overall operating region Q.

If k,=0.2, u=1 and v=70 are selected, (5.19) and (5.20) can be solved in the
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k,-ky parameter plane when A is fixed and o is changed from 0 to oo. Fig. 5.10 shows
the stability boundary and some limit cycle loci. Four testing points Q5-Q8 are illustrated.

If Q8 (k,=0.1, k,=0.1, k, =02, =1, v=70) in Fig. 5.10 is selected, (5.23) and
(5.24) can be solved in the K -K, parameter plane when A is fixed and @ is changed
from 0 to oo. Because Q8 is in asymptotically stable region, the gain-phase margin tester can
be viewed as a compensator to generate the limit cycle (from stable region to limit cycle
region). For example, if A=0.05 is expected, the related gain margin (Q9: GM=3.2,
€ =0") and phase margin (Q10: PM =46.6", K =1) to generate limit cycles can be easily
obtained in Fig. 5.11. On the other*hand, when-the original system is in limit cycle region like
Q5-Q7, the related gain margin and phase margin to suppress limit cycle could be also

obtained in the parameter plane.

5.6 Concluding Remarks

Based on the parameter plane approach, the complete stability analysis of a fuzzy vehicle
steering control system is proposed in this chapter. A systematic procedure is presented to deal
with this problem. In addition, the effects of control factor and gain-phase margins are also

considered. Simulation results show that more information can be obtained by this approach.

59



W

Fig. 5.1 Single track vehicle model.

Table 5.1 Vehicle system quantities

Fo R lateral wheel force at front and rear wheel
r yaw rate
B side slip angle at center of gravity (CG)
v velocity
ag lateral acceleration
el distance from froft and rear axis to CG

I=1; +I. | wheelbase

5 front wheel steering angle

m mass

Table5.2Vehicle system parameters

Cro 5000 N/rad
Cro 100000 N/rad
m 1830Kg

I 1.51'm

I, 1.32m

60



124 g
1l |
g
= 0.8} .
[8) .
= Q- region
® 06 .
e
1
0.4 1
0.2+ |
o | | | | | | | | |
0O 10 20 3 40 50 60 70 8 9 100
v(velocity m/s)
Fig. 5.2 Operating Range.
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Fig. 5.3 Block diagram of a fuzzy vehicle control system.
Fuzzy controller
X u
+
:Q > G(s,k, Ky Ky, 22,V)
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Fig. 5.4 Block diagram of a fuzzy vehicle control system.
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Table 5.3 Rules of fuzzy controller

e NBE NSE ZRE PSE PBE
u NBU | NSU | ZRU PSU PBU
Table 5.4 Parameters of fuzzy controller
nbe nse zre pse pbe
¢ -1 -0.02 0 0.02 1
nbu nsu zru psu pbu
u
-1 -0.7 0 0.7 1
U
NBE NSE ZRE PSE PBE
nbe nse Zre pse pbe

Fig. 5.5 Membership functions of fuzzy controller.
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Fig. 5.6 Control surface.
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Fig. 5.8 Time responses of input signal.
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Fig..5.11 GM and PM analysis.
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Chapter 6

Robust Design for Perturbed Phase-Locked
Loops

6.1 Overview

A control algorithm is presented in this chapter for phase-locked loop (PLL) design with
perturbed parameters satisfying freguency-domain specifications. By the use of a gain-phase
tester, the parameter plane method and robust stability criteria, the range of the designed
parameters of PLL is determined based-.on.specified constraints of gain and phase margins
(GM and PM) on frequency domain with uncertain parameters perturbed in some intervals.
The PLL model used in this design is assumed to be a linearized one if in the locked state. The
proposed method is applied to a PLL model with first and second order low-pass filters as
examples. With the help of stability boundary curves, the area in the selected designed
parameters of the corresponding coordinate plane is found out such that the whole PLL
system with the desired parameters in that area will meet given conditions. Simulation results

are provided to illustrate the design technique based on GM and PM, and the resulted PLL is
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to robustly meet the specified constraints as expected with uncertain parameters varying in

intervals.

6.2 Basic Concept of PLL

PLL is an electronic circuit which causes a output signal to keep track of the input
reference signal applied to it and the output signal keeps synchronization with the input one.
Three basic functional blocks, a phase detector (PD), a loop filter (LF) and a voltage
controlled oscillator (VCO), are contained in a PLL depicted in Fig. 6.1.

Assume the reference input svi(t)= Asin(et+6) and the VCO output

v, (t) =Bsin(a,t +6,), where @ and| @y are angular frequencies, 6, and ¢, are phases,
Aand B are amplitudes of v, (t) and “vy(t);respectively.

In a PLL, the function of the PD is to measure the phase difference between v;(t) and
V,(t) and produces an output voltage v, (t) proportional to the phase error of v,(t) and
V, (t) . Assume the PD be a linear multiplier in linear PLL (LPLL) through this chapter.

The LF is a low-pass filter and is used to suppress noise and high-frequency signal
components which are unwanted signals. The lower frequency and dc parts are passed
through the LF and delivered to control the frequency of the VCO output.

The VCO is an oscillator which produces a periodic signal with the frequency that is
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proportional to the dc voltage from the LF.

When the PLL is locked, the frequencies @ and @, are identical. The PD is linear

and the LF output voltage is proportional to the phase error. The linearized mathematical

model of the PLL is shown in Fig. 6.2 if the phase difference |6 -6, is very small. As seen
in this figure, the PLL structure is in fact a feedback control mechanism. The phase transfer

function I'(s) that relates the phase & of the reference input to the phase 6, of the VCO

output is

Oy(s)  kk;F(s)
©.(s) s+kk,F(s)’

I'(s) = (6.1)
where ©,(s) and ©,(s) are the Laplacestransforms of & and &,, respectively. k, is the

PD gain in rad per voltand k- is the V€O gain with the unit of rad s™wvolt™. F(s) is the

transfer function of the LF.

6.3 Stability Boundary Analysis

Consider a gain-phase tester ke’ included in series with the original control system

as in Fig. 6.3, and its transfer function is given by

ke “G(s,q, m)

_ , 6.2
1+ke G(s,q,m) (6.2)

H(s,q,mKk,8) =
where G(s,q,m) is an open-loop system function and G(s,q,m)=G_(s,m)F(s,q) .

F(s,q) is the transfer function of the LF with the perturbed parameter vector q .
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m=[m;,m,,...,m,] isadesigned parameter vector of PLL in the m -m, —...-m, coordinate

space under user-defined specifications.

The closed-loop characteristic polynomial is P(s,qg,m,k,8) and

P(s,q, m,k,8) = the numerator of [1+ke ¥’ G(s,q,m)]
=>.d,(q,m,k,0)s’ . (63)
i=0
=dy(q,m,k,0) +d,(q,m,k,8)s+----+d,(q,m,k, O)s"

P(jo,q,m,k,0) is divided into the real part U(w,q,m,k,8) and imaginary part.
V(®w,q,m,k,8).Assume d,(g,m,k,8) isacontinuous functionin gq for i=12,...,n.
The equation

%M@%mkﬂ=0 (6.4)

V(w;0,m,k;8) =0

can be solved for m with specific ®,k,8 and. q in PLL design. Gain and phase boundary
curves are developed in the m-—space: aceording to different gain k and 6 by varying o,
respectively.
6.3.1 Gain Boundary Curves

Let #=0° and q be a specific perturbed parameter. Equation (6.4) is rewritten into

the form

{w@mm:o 65)

V(w,mk)=0"

A gain boundary curve is generated in m-—space from the solutions m of (6.5) by

varying @ for every k. Given a specific gain k, a gain boundary curve will be generated
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and a region of the designed parameters in m—space is to be found out so that the whole
PLL system with the designed parameters chosen from the above determined region will
satisfy the GM condition. The GM of the control system at a point on one side of a specific
gain boundary curve is greater than that at a point on the boundary curve. But it is less at the
points on the other side.

6.3.2 Phase Boundary Curves

Given k=1 anda specific g, (6.4) is written into the form

(6.6)

U(w,m,0) =0
V(o,m,0) =0

Phase boundary curves are developed-under the.PM specification in a similar way. They
are generated in m-—space from the selutions m of (6.6) by varying @ for every 6.
Given a specific @, a phase boundary curve will be generated and a region of the designed
parameters in m—space is to be found out so that the whole PLL system with the designed
parameters chosen from the above determined region will satisfy the PM condition. The PM
of the control system at a point on one side of a specific phase boundary curve is greater than
that at a point on the boundary curve. But it is less at a point on the other side.
6.3.3 PLL Robust Design

In physical systems, uncertainties usually exist in system parameters. The LF is usually

connected to a PLL IC externally and implemented by the designer under the specified
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constraints. The system parameters are separated into the designed parameters, which are the

parameters of PD and VCO, and the perturbed parameters, which are the ones of the LF. The

designed parameters are the parameters the range of which is to be determined so that the

performance of the whole PLL system can meet the specified conditions under the perturbed

parameters varying in a region as long as the designed parameters are within the determined

range.

In this chapter, the LFs with different order are used as examples to demonstrate the

proposed design method of PLL robust design. The robust design is based on gain and phase

boundary curves with respect to k- and _@jrofa gain-phase margin tester and they are drawn

in m—space from the locations of the roots of (6.5) and (6.6) with respect to different k

and @, respectively. The range of the designed parameters is going to be found out in

m—space under the constraints of specified GM and PM.

Based on the discussions mentioned above, the design algorithm is as the followings:

Step (1) Set up user-defined specifications on GM and PM.

Step (2) For every system parameter ¢ at the vertices of the perturbed system parameter

region in q-plane, draw the gain boundary curves corresponding to the specified

GM in m -plane by solving (6.5).

Step (3) For every q at the vertices of the perturbed system parameter region in q-plane,
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draw the phase boundary curves corresponding to the specified PM in m -plane by
solving (6.6).

Step (4) Determine a gain region in m—space with the help of the gain boundary curves as

in step (2)
so that the designed parameters with the coefficients in that region satisfy the
specified GM constraints.

Step (5) Determine a phase-region in m—space with the help of the phase boundary curves
as in step (3) so that the designed parameters with the coefficients in that region
satisfy the specified PM constraints:

Step (6) Find out the common region of-the determined gain and phase ones as in steps (4)
and (5). The perturbed PLL systemwiththe designed parameters in that region is the

desired one satisfying the specified GM and PM conditions.

6.4 Simulation Results of PLL Design for GM > 3dBandPM > 30°

6.4.1 The First Order LF

The transfer function F,(s) of the first order filter as in Fig. 6.4 is given by

1+sg
1+sz,

F(s)= (6.7)
where 7, =R,C;, and 7,=(R;+R,)C,. R, and C, are perturbed parameters inside the
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S region as in Fig. 6.6, where the S region is

R, €[200Kohm,800 Kohm]

(6.8)
C, €[5nf,15nf]
R, and k,k, are the selected designed parameters in this case and m=[kk,,R,].
In (6.2),
G(s,q,m) = e+ 05) (6.9)
S(1+17,5)
and its closed-loop transfer function is
-jo
H,(s,q,m,k, 8) = ke Tk;k, A+ 7,3) (6.10)

7,8 + L+ ke Kk k,z,)s + ke "’k Kk,
In (6.4), the coefficients of the real part of the characteristic polynomial U (w,q,m,k,8) are

r, = kk, K, cos(0)
r, =Kk, k,R,C;sin(0) . (6.11)
L =—(R +R,)C,

The coefficients of the imaginary part ‘of the polynomial V (w,q,m,k,8) are

i, = —Kkk, sin(6)
i, =1+ kk,k,R,C, cos(6) , (6.12)
i, =0

where q=[q,,0,]=[R;,C,] is a specific point within S.

By solving (6.5) and (6.6) for every specific k and &, gain and phase boundary curves are
generated to determine the designed parameters m. The m -desired region is determined
solely by phase boundary curves because of the GM of the closed PLL system is infinity. Let
0 =30°. The phase boundary curves corresponding to PM=30° are drawn with the perturbed

parameters at the vertices S1, S2, S3 and S4 of the region S in Fig. 6.6. The shaded area in
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k, k,-R, plane, seen in Fig. 6.7, is the desired one so that the designed parameters
R, and k,k, in the determined area cause the PLL system to meet the phase requirement
PM >30°.

Choose k, =13000 rad/(secxvolt) which signifies that the frequency created by the
VCO changes about 20KHz if the input signal v, (t) of the VCO in Fig. 1 changes by 1 volt.
The shaded area in k,-R, plane in Fig. 6.8 is found. The point Q, =(k,,R,)=(1.8,14K
ohm) is selected as an example point in this area and the PMs at the vertices and other points
of S are listed in Table 6.1. The corresponding bode plots are also shown in Fig. 9. The
simulation results are achieved as.desired.

Choose designed parameters m =[k;;R,]. with "k, =0.6. In a similar way, the desired
parameters in the k -R, plane satisfyingthe'condition PM >30° are shown in Fig. 6.10. If
the point Q, = (k,,R,) = (3x10°,5.1Kohm) is chosen, the bode plots and the PMs at the
point [R,,C] inside S are depicted in Fig. 6.11 and Table 6.2, respectively.

6.4.2 The Second Order LF

The transfer function of the LF as in Fig. 6.5 is

1+s(z,+7,)
1+8(ry + 7, +75) + 1,7S°

F.(5) = , (6.13)

where 7,=R,C,, 7,=R,C,,and 7,=R,C,.

For the closed PLL system, the transfer function is given by
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ke %k k, + ke 7k K, (z, +7,)S

H,(s,q,mk,8) = _ |
A% : 7,7,8% + (1, + 7, +75)s° + ke 1k K, (7, +75)s + ke 7k K

(6.14)

v

The coefficients of the real part of the characteristic polynomial are

r, = kk,k, cos(6)

n=kksk, (R,C,+R,C;)sin(6)
r,=-(R,C,+R,C,+R,C,)
r,=0

(6.15)

and the coefficients of the real part of the characteristic polynomial are

i, = —Kkk K, sin(6)

L, =1+Kkk.k, (R,C, +R,C,)cos(8)
i, =0

I;=—R,CR,C,

(6.16)

The perturbed parameters are chosen as q=[q,,0d,,d,]=[R,,C,,C,] and the perturbed space

R is depicted in 3D-coordinate inFig. 6.12:

The 3D perturbed space R is defined by

R; €[200Kohm;800Kohm]
C, €[5nf,15nf] (6.17)
C, €[1nf,3nf]

and the locations of the vertices of R are listed in Table 6.3. Select R, and k,k, as the

designed parameters. By the same way as above, solve (6.4) for R, and k,k, and phase

boundary curves as in Fig. 6.13 with respect to PM=30° are created at the vertices of R.

The desired R, and k,k, in k,k,-R, plane are shown as in the shaded area of this plot.

Let k,=13000 rad/(secxvolt) and m=(k,,R,) is the designed parameters. The

chart of phase boundary curves is developed in Figs. 6.14 and 6.15 in k, -R, plane. Choose

an example point Q,(k,=0.2, R, =60Kohm) in the shaded area in Fig. 6.15. The
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corresponding bode plots and the PMs are shown and listed in Fig. 6.16 and Table 6.4.
Assume m=[k,R,] and k, =0.8. The phase boundary curves are shown in Fig. 6.17
and the desired shaded area are found in Fig. 6.18 in the k,-R, plane.
Q,(k,=50000, R, =45Kohm) is the selected point. The bode plots and the PMs at the
vertices and other points in R are depicted and listed in Fig. 6.19 and Table 6.5,

respectively.

6.5 Concluding Remarks

This chapter introduces a new method en-PLL design by frequency domain approach for
a perturbed PLL control system. Based: on parameter space method and robust stability
criteria, the desired system parameters: of PLLs in the selected coordinate plane are
determined in graphical portrayals. With the help of gain and phase boundary curves resulting
from the roots of characteristic polynomial equation in the closed PLL system, a methodology
is proposed for portraying regions in a selected designed parameter plane so that the
performance of the whole PLL system can meet the specified requirements on
frequency-domain constraints. Simulation results have demonstrated the objectives have been

achieved as desired.
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Fig. 6.1 The functionalrblock diagram of PLL.
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Fig. 6.2 The linearized mathematical model of PLL.
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ke_je > G(S’ g, m)

Fig. 6.3 The closed feedback system with a gain-phase margin tester ke .

R,

—C,

Fig. 6.4 The first order loop filter.
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Fig. 6.5 The second order filter.
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Fig. 6.6 The 2D perturbed plane S with the perturbed parameters R, and C,.
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Fig. 6.9 The bode plots ofthe PLL system-at the vertices of the region S with
Q, =(ky,R;)=(1.8,14Kohm) and k, =130000 .

Table 6.1 The PMs of the PLL system with the first order LF at the points of S at
Q,=(k;,R,) =(1.8,214Kohm) and k, =130000. .

the point(R,,C,) PM the point(R,,C,) PM
S1 49.3° S2 31.4°
S3 56° S4 745°
(350,12) 70.3° (650,8) 51.2°
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Fig. 6.10 The designed-parameter shaded area in k,-R, plane meeting
the phase specifications PM>30° with k, =0.6.
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Fig 6.11 The bode plots of the PLL system at the vertices of the region S with
Q, =(k,,R,) =(3x10°,5.1Kohm) and k, =0.6.
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Table 6.2 The PMs of the PLL system with the first order LF at the points of S at
Q, =(k,,R,) =(3x10°,5.1Kohm) and k, =0.6.

the point(R,,C,) PM the point(R,,C,) PM
S1 49.4° S2 30.7°
S3 55.5° S4 74.7°
(350,12) 61.5° (650,8) 41.6°
The perturbed space
R
35

C2(nf)
()

900
800

600
500

40 R1(k ohm)

6 300
4 200

Fig. 6.12 The 3D perturbed plane R with the perturbed parameters R,, C, and C,.
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Table 6.3 The Coordinates of the vertices of The 3D Perturbed Parameter Space R

(R1, C1, C2)=(Kohm, nf, nf)
A(800,15,1) E(200,15,3)
B(800, 5,1) F(200, 5,3)
C(200, 5,1) G(800, 5,3)
D(200,15,1) H(800,15,3)

R2{ohm)

KdKv

Fig. 6.13 The designed-parameter shaded area in k, k,-R, plane meeting
the phase specifications PM >30° with the second order LF.
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R2(ohm)

— ‘
7 8

Kd(volt/rad)

Fig. 6.14 The designed-parameter shaded area in k, -R, plane meeting the phase
specifications PM > 30° and k, =130000 with the second order LF.

R2{ohm})

0.z 0.4 06 0.8 1 12
Kd(volt/rad)

Fig. 6.15 The enlarged designed-parameter shaded area in k, -R, plane meeting the phase
specifications PM >30° and k, =130000 with the second order LF.
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Mag. 20
(dB)

-100

phase 20
(deg.)1 40

-160

-180\\\\\\

w(rad)

Fig. 6.16 The bode plots of the PLLL system at'the vertices of the region R at
Q; =(ky,R,) =(0.2,60Kohm) and 'k, =130000 with the second order LF.
Table 6.4 The PMs of the PLL system-withrthe second order LF at the points of R at
Q; =(k,,R,)=1(0.2,60Kohm)" and k, =130000.

The point (R,,C,,C,) PM The point (R,,C,,C,) PM
A 59.3° B 41.8°

C 56.7° D 66.9°

E 45.4° F 36.3°

G 33° H 49°
(500,10,2) 50.8° (650,7,1.6) 46.4°
(350,12,2.5) 49.3° (700,9,2.2) 46.2°
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Kv(rad/(sec*volt)) x 10

Fig. 6.17 The designed-parameter shaded area in k,-R, plane meeting the phase

specifications PM >30°

R2{ohm)

1 |
2 4 B 8 10 12 14 16 18
Kv(radi(sec*volt)) % 10

Fig. 6.18 The enlarged designed-parameter shaded area in k, -R, plane meeting the phase
specifications PM >30° and k, =0.8 with the second order LF.
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Fig. 6.19 The bode plots of the PLL system at the vertices of the region R at
Q, =(k,,R,) = (5x10*,45Kohm) and k, =0.8 with the second order LF.

Table 6.5 The PMs of the PLL system with the:.second order LF at the points of R at
Q, = (k,,R;) =[(5%10",45Kohm) and k, =0.8.

The point(R,,C,,C,) PM-— Thepoint (R,,C,,C,) PM
A 57.1° B 39.3°

C 54.6° D 66.1°

E 44.6° F 34.3°

G 31.5° H 48°

(500,10,2) 49.6° (650,7,1.6) 44.4°
(350,12,2.5) 48.7° (700,9,2.2) 44.6°
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Chapter 7

Conclusions and Suggestions for Future
Research

7.1 Conclusions

The main subject of this dissertation is to propose a systematic method based on
parameter space method and robust stability .Criteria to predict the limit cycles occurred,
analyze the system performances of gain margin and phase margins (GM and PM), and design
a desired controller by adjusting the controller coefficients for perturbed control systems to
meet specified conditions including GM, PM and sensitivity in frequency domain. Robust
PLL design is also studied.

Based on parameter space method and robust stability criteria, the following objectives
are achieved in this dissertation.
1. Asystematic method is proposed to predict the limit cycles for perturbed control systems

with nonlinearities.

2. Gain and phase margins are defined for system parameters perturbed in given intervals
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and performance analysis on frequency domain is analyzed.

3. Robust stability is also analyzed for fuzzy dynamic control systems.

4. Controller design for perturbed control systems with uncertain parameters is solved in
portraying way based on the proposed techniques.

5. The desired parameters of perturbed PLL systems are determined under specified

constraints in frequency-domain.

7.2 Suggestions for Future Research

In this dissertation, some linear andrnonlinearpractical perturbed control systems have
been considered. However, the ‘proposed-approach may be further applied to other control
systems. The suggestions of future works planned to do are given as follows.
1. Nonlinear PLL systems.
2. Discrete time systems
3. Filter design systems

4.  Power electronic systems
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