List of figures

Chapter 2

- Fig. 1 secondary 30 The ion mass spectrometry result and the TRIM-calculated excess Si-atom density in multi-energy Si-ion-implanted SiO₂:Si⁺ sample as a function of implanting depth.
- Fig. 2 PL spectra of the SiO₂:Si⁺/Si samples at (a) as-implanted condition, 30 or annealed at 1100 °C for (b) 30, (c) 60, (d) 180 and (e) 240 min. The inset figure plots the PL spectra of (1) n-type Si substrate (2) 60-min annealed n-type Si substrate (3) SiO₂/Si sample (4) 60-min annealed SiO₂/Si sample and (5) as-implanted substrate.
- Fig. 3 Wavelength evolution of three PL peaks in SiO₂:Si⁺ samples 31 as-implanted or annealed at 1100 °C for different annealing times.
- Fig. 4 The annealing-time dependent PL intensities at different 31 wavelengths of 415 nm, 455 nm, and 520 nm.
- Fig. 5 C–V hysteresis measurement of MOS diode made on (a) 32 as-implanted SiO₂:Si⁺ and (b) SiO₂:Si⁺ annealed at 1100 °C for 3 h. The inset figure shows the NOV defect concentration as a function of annealing time obtained from C–V analysis.
- Fig. 6 Normalized TRPL spectra of SiO₂:Si⁺ samples at (a) as-implanted 32 condition, or annealed at 1100 °C for (b) 1.5 h, (c) 3 h and (d) 4 h.
- Fig. 7 EPR spectra of the SiO₂:Si⁺ samples at as-implanted condition, and 33 annealed at 1100 °C for 45, 90 and 180 min.
- Fig. 8 TRPL lifetime and concentrations of NOV and E_{δ} defects in 33 $SiO_2:Si^+$ at different annealing times.
- Fig. 9 CW and pulsed current-voltage measurements of 34 Ag/SiO₂:Si⁺/n-Si/Ag MOS diode with SiO₂:Si⁺ annealing at 1100 °C for 180 min.
- Fig. 10 The average EL power as a function of pulsed current and voltage. 34 The inset figure shows CW (dashed line) and pulsed (dotted line) current-voltage responses of Ag/SiO₂:Si⁺/n-Si/Ag MOS diode with SiO₂:Si⁺ annealing at 1100°C for 3hrs.
- Fig. 11 Lifetime testing of Ag/SiO₂:Si⁺/n-Si/Ag MOS diode under 35 pulsed-current EL operation. The inset figure plots the operating condition of the MOS diode and its EL pattern at bias of 3 A.
- Fig. 12 Pulsed EL power as a function of the bias current. The inset figure is 35 the lifetime and decaying rate of the Ag/SiO₂:Si⁺/n-Si/Ag MOS diode under pulsed-current EL operation.

- Fig. 13 EL patterns at different bias currents of 0.35 A (left), 1.25 A (middle) 36 and 3 A (right).
- Fig. 14 EL spectra of the Ag/SiO₂:Si⁺/n-Si/Ag MOS diode at different bias 36 currents of 0.35 (dash line), 1.25 (dot line) and 3 A (solid line).
- Fig. 15 Energy band diagrams of the Ag/SiO₂:Si⁺/n-Si/Ag structure with 37 metal-oxide barrier potential of $\phi_m = 3.28$ V under reverse bias at 3.7 V (left part) and 5.7 V (right part). Three defect-related irradiative emissions at (a) 415 nm from the WOB defect, (b) 455 nm from the NOV defect and (c) 520 nm from the E' $_{\delta}$ defect.

Chapter 3

- Fig. 1 PL spectra of 3-h-annealed Si-rich SiO_x films fabricated by PECVD 83 with different N₂O/SiH₄ ratios. The inset shows the peak intensity as a function of the N₂O/SiH₄ ratio.
- Fig. 2 Room-temperature PL spectra of annealed Si-rich SiO_x films 83 fabricated by PECVD with different substrate temperatures from 100 to 350°C. The inset shows the peak intensity as a function of substrate temperature.
- Fig. 3 PL spectra of as-grown sample A7 after annealing at 1100 °C for 1-5 84 h.
- Fig. 4 Peak PL intensities of NOV defect and nc-Si, and peak wavelength 84 of nc-Si as a function of the annealing time.
- Fig. 5 Time-resolved PL traces of sample A7 after annealing at 1100 °C for 85 1, 2, and 3 h.
- Fig. 6 PL intensity and peak wavelength as a function of N_2O fluence. 85
- Fig. 7 TRPL spectra of nc-Si embedded in PECVD-grown SiO_x samples 86 for different annealing time.
- Fig. 8 Planar-view HRTEM picture of 15 min-annealed PECVD-grown 86 SiO_x film
- Fig. 9 Size distribution of nc-Si in the 15 min-annealed PECVD-grown 87 SiO_x film
- Fig. 10 PL spectra of PECVD-grown SiO_x samples annealed from 15 to 60 87 min.
- Fig. 11 Density and size distribution of nc-Si buried in annealed SiO_x film 88 as a function of annealing time.
- Fig. 12 PL as function of annealing time at different process pressures. 88
- Fig. 13 EELS spectra of pure Si, as-grown SiO_x and 30 min-annealed 89 samples.

Fig. 14	PL intensity and peak wavelength as a function of substrate	89
Fig. 15	temperature. EL spectra of samples prepared under different substrate	90
11g. 13	temperatures.	70
Fig. 16	EL patterns of ITO/SiO _x :nc-Si/p-Si/Al MOSLED.	90
Ū	I-V and P-I curves of ITO/SiO _x :nc-Si/p-Si/Al MOSLED.	91
_	Plot of $ln(J_G/E^2)$ as a function of 1/E for three	
	ITO/SiOx:nc-Si/p-Si/Al MOSLEDs with their SiOx grown at (a)	
	300, (b) 350 and (c) 400°C. Inset: Band structure of	
	ITO/SiO _x :nc-Si/p-Si MOSLED.	
Fig. 19	Internal and external quantum efficiencies as a function of substrate	92
	temperature.	
Fig. 20	Direct tunneling mechanism of MOS diode	92
Fig. 21	Plot of ln(J) as a function of voltage for three different	93
	ITO/SiO _x :nc-Si/p-Si/Al MOSLEDs with their SiO _x grown at 300,	
	350 and 400°C and a simulated direct tunneling current (solid line).	
Fig. 22	Fowler-Nordheim tunneling mechanism of MOS diode.	93
Fig. 23	Thermionic emission tunneling mechanism of MOS diode.	94
Fig. 24	Plot of ln(J) as a function of voltage for three	94
	ITO/SiO _x :nc-Si/p-Si/Al MOSLEDs with their SiO _x grown at 300,	
	350 and 400°C and a simulated thermionic current.	
Fig. 25	Poole-Frenkel tunneling mechanism of MOS diode.	95
Fig. 26	Plot of ln(J/E) as a function of E ^{0.5} for three ITO/SiO _x :nc-Si/p-Si/Al	95
	MOSLEDs with their SiO _x grown at 300, 350 and 400°C and a	
	simulated Poole Frankel tunneling current.	
Fig. 27	Images of $SiO_{1.25}$ film after CO_2 laser annealing at P_{laser} increasing	96
	from 3 to 13.5 kW/cm^2 .	
Fig. 28	The thicknesses of annealed SiO _{1.25} films as a function of annealing	96
	time.	
Fig. 29	Ablation thickness of SiO_x as a function of P_{laser} . Inset: PL spectra	97
	of CO ₂ laser annealed SiO _{1.25} films at $P_{laser} = (a)1.5$ (b)3 (c)4.5 (d)6	
	(e) 7.5 (f) 9 (g) 10.5 kW/cm ² .	
Fig. 30	RBS spectrum of the as-grown SiO _{1.25} film on a Si substrate.	97
Fig. 31	Cross-sectional HRTEM images of SiO_x CO_2 -laser-annealed at P_{laser}	98
	= 6 kW/cm ² . Inset: the electron diffraction pattern (lower right) of	
	a (111)-plane Si nanocrystal (lower left).	
Fig. 32	Transmission spectra of Quartz, as-PECVD grown SiO _{1.25} film and	98
	the CO ₂ laser annealed SiO _{1.25} film at $P_{laser} = 6 \text{ kW/cm}^2$.	

- Fig. 33 Transmission spectra of CO_2 laser annealed $SiO_{1.25}$ films at P_{laser} 99 increasing from 6 to 12 kW/cm².
- Fig. 34 Reflectance spectra of the quartz substrate, as-PECVD grown $SiO_{1.25}$ 99 film and the CO_2 laser annealed $SiO_{1.25}$ film at $P_{laser} = 6 \text{ kW/cm}^2$.
- Fig. 35 Reflectance spectra of CO_2 laser annealed $SiO_{1.25}$ films at P_{laser} 100 increasing from 6 to 12 kW/cm².
- Fig. 36 Refractive index of CO_2 laser annealed $SiO_{1.25}$ film as a function of 100 P_{laser} .
- Fig. 37 PL spectra of CO₂ laser annealed SiO_x at (a) 6 kW/cm², (b) 101 furnace-annealing at 1100°C for 30 min and CO₂ laser annealed SiO_x at (c) 12 kW/cm².
- Fig. 38 Plot of $ln(J_G/E^2)$ as a function of 1/E for CO_2 laser-annealed and 101 furnace-annealed MOSLEDs.
- Fig. 39 P-I curves of (a) ITO/ CO₂ laser RTA SiO_x /p-Si/Al and (b) ITO/ 102 furnace-annealed SiO_x /p-Si/Al MOSLEDs. Inset: Energy band diagram of a highly forward biased ITO/ CO₂ laser RTA SiO_x /p-Si/Al MOSLED.
- Fig. 40 EL spectra of MOSLEDs made by CO₂ laser RTA (lower) and 102 furnace-annealed (upper) SiO_x. Inset: EL patterns of CO₂ laser RTA (lower) and furnace-annealed (upper) MOSLEDs.

1896

Chapter 4

Cross-sectional HRTEM photographs and corresponding electron 127 Fig. 1 diffraction patterns of Si-rich SiO_x grown at ICP powers of 45 (upper left) and 35 (lower left) watts. (a) The cross-sectional TEM photograph of the SiO_x film PECVD grown at normal ICP power. Inset: the electron diffraction pattern of the PECVD-grown SiO_x film. (b) and (c): the lattice parameter and orientation of the Si nanocrystals in PECVD-grown SiO_x film. (d) The cross-sectional TEM photograph of Si-rich SiO_x film with dense interfacial Si nano-pyramids grown at threshold ICP power. (e) The magnified cross-sectional TEM photograph of the Si-nano-pyramid embedded Si-rich SiO_x/Si interface. (f) The magnified TEM photograph for a single Si nano-pyramid and its electron diffraction pattern shown in the inset. (g): The observed orientations for the Si nano-pyramid (upper part) and Si substrate (lower part). (h) and (i): the orientation of the Si nanocrystals in the PECVD-grown Si-rich SiO_x film at threshold ICP-power condition.

- Fig. 2 The plots of $ln(I/E^2)$ as a function of 1/E for three MOSLED samples 128 with their SiO_x films PECVD grown at different ICP powers.
- Fig. 3 Threshold F-N tunneling electric field as a function of the area 128 density of Si nano-pyramids.
- Fig. 4 The energy band diagrams of a highly biased MOSLEDs using SiO_x 129 grown at different PECVD conditions. Left: the SiO_x grown at normal ICP power without Si nano-pyramids but with dense interfacial radiant defects. Right: the SiO_x grown at threshold ICP power with Si nano-pyramids at the SiO_x/Si interface.
- Fig. 5 The I-V and I-P curves of the ITO/SiO_x/p-Si/Al MOSLEDs with 129 SiO_x films grown at different ICP powers. Upper: ICP power of 45 W. Middle: ICP power of 40 W. Lower: ICP power of 30 W.
- Fig. 6 TEM images of nc-Si within the annealed SiO_x film grown without 130 (left) and with (right) interfacial Si nano-pyramids.
- Fig. 7 EL spectra of ITO/SiO_x/p-Si/Al MOSLEDs with (solid) or without 130 (dashed) interfacial Si nano-pyramids.
- Fig. 8 EL patterns of three MOSLED samples without (upper) and with 131 Si-nano-pyramid concentrations of $\rho=10^9/\text{cm}^2$ (middle) and $\rho=10^{11}/\text{cm}^2$ (lower).
- Fig. 9 Output power stability of three MOSLED samples with different 131 Si-nano-pyramid concentrations.
- Fig. 10 SEM image of Ni nano-dots precipitated from the evaporated Ni 132 film on SiO₂/Si with different film thickness.
- Fig. 11 SEM image of Si nano-pillars formed after ICP-RIE with different 132 RF/Bias power recipes.
- Fig. 12 Density and average diameter of Si nano-pillars on Si substrate as a 133 function of RF/Bias power ratio in ICP-RIE system
- Fig. 13 (a) Micro-PL spectrum of as-made Si nano-pillar array. (b) 133

 Normalized PL spectra of unprocessed pure Si wafer and etched Si nano-pillar. (c) Si nano-pillar related PL and pure Si PL spectrum.

 (d) PL spectra of etched Si nano-pillars.
- Fig. 14 Peak wavelength of Si nano-pillar as a function of rod size. Inset: 134 Plan-view SEM picture of etched Si nano-pillars.
- Fig. 15 (a) SEM image of Ni nano-dots precipitated from the evaporated Ni 134 film on SiO₂/Si. (b) SEM image of Si nano-pillars formed after ICP-RIE with RF/Bias power recipe of 50/100W. (c) Device structure of a silicon nanocrystal based MOSLED on Si nano-pillar array. (d) An ITO/SiO_x/Si/Al diode with a circular contact diameter

of 0.8 mm.

- Fig. 16 Normalized PL spectra of nc-Si based MOSLEDs (a) without and 135 (b)with Si nano-pillars. Normalized EL spectra of nc-Si based MOSLEDs (c) with and (d) without Si nano-pillars.
- Fig. 17 I-V and I-P curves of nc-Si based MOSLEDs with/without Si 135 nano-pillars. Inset: EL pattern of nc-Si based MOSLED with Si nano-pillars.
- Fig. 18 The ratio of the EL power from nc-Si MOSLED made on Si 136 nano-pillar to that made on smooth Si wafer at different biased current.

