國 立 交 通 大 學 光 電 工 程 研 究 所 博士論文

使用全像空間偏離偏極器之 偏極獨立波長交織雙向光學循環器

Polarization-independent wavelength-interleaving bidirectional optical circulators by using holographic spatial walk-off polarizers

研究生:謝博任

指導教授:蘇德欽 教授

中華民國 九十七年 五 月

使用全像空間偏離偏極器之波長交織雙向光學循環器

研究生:謝博任

指導教授:蘇德欽 教授

國立交通大學 光電工程學系

摘要

利用耦合波理論設計出全像空間偏離偏極器,並以短波長拍攝長波長重建技術加上 感光乳劑厚度收縮與折射率變化的修正條件,製造出品質良好可取代傳統的晶體式偏離 偏極器;且將它應用於傳統的四埠循環器,進而將此四埠循環器加以改良,提出新型多 埠偏極獨立準循環器。其次結合 Lyot-Őhman filter 的波長交織術,提出新的四埠偏極獨 立波長交織雙向循環器;又將此循環器加以改進,進一步提出效能更高的多埠偏極獨立 波長交織雙向準循環器,接著討論各循環器的操作原理及其功能。為了驗證這些新穎循 環器的效能,利用所製造的全像偏離偏極器、半波片、法拉第旋轉器、薄玻璃片、面鏡, 以及 Lyot-Őhman filter 組裝這四種循環器並測量其特性;所提出的元件均具有與偏極無 關、低偏極模色散、高隔絕性、易製作及易成模組等優點。

Polarization-independent wavelength-interleaving bidirectional optical circulators by using holographic spatial walk-off polarizers

Student: Po-Jen Hsieh

Advisor: Prof. Der-Chin Su

Department of Photonics & Institute of Electro-Optical Engineering, National Chiao Tung University

ABSTRACT

Based on the coupled-wave theory, a new type of holographic spatial walk-off polarizer is designed. It can be fabricated by using the shorter-wavelength construction for longer-wavelength reconstruction technology and the compensation method to physically correct the influences due to the thickness shrinkage and refractive-index shift of the recordingmaterial. It is better than the conventional one made of crystals. It is applied to improve the conventional 4-port optical circulator. This new type of 4-port optical circulator is modified and applied to develop a new multiple-port polarization-independent optical quasi-circulator. Next, a novel 4-port polarization-independent wavelength-interleaving bidirectional circulator is proposed with the wavelength-interleaving characteristics of the Lyot-Öhman filter and the fabricated holographic spatial walk-off polarizers. Then, it is introduced to develop a functional multiple-port polarization-independent wavelength-interleaving bidirectional quasi-circulator. In addition, the prototypes of these four circulators are assenbled and experimentally tested. Their operating principles and performances are discussed. They have such merits as polarization-independence, compactness, high isolation, lack of polarization mode dispersion and ease of fabrication.

致謝

本論文能夠順利的完成,首先要感謝<u>蘇德欽</u>教授的指導與協助,<u>蘇</u>教授在我 修業期間,無論在學業或是人生各方面,給了我很多的教導與啟發,也要謝謝在 元智修業期間的<u>張明文</u>教授給我的指導,讓我能夠有讀博士班的動力,以及<u>許根</u> <u>玉</u>教授、<u>賴暎杰</u>教授、<u>謝太炯</u>教授,及<u>鄭益祥</u>教授能在百忙之中幫忙修正我的論 文以及給予專業上的寶貴意見。除此之外,我更要謝謝所上的<u>陳智弘</u>教授,在研 究上給予我一些寶貴的意見以及專業上的諮詢。

另外,我也要感謝陪伴我一路成長的全像實驗室的研究夥伴,敬恒、正治、 俊佑、坤煌、阿揮、彦良、鴻志及阿聰等人在一路上的幫助與指教,還有在光電 系所生涯中認識的眾多好朋友們,蕭義男大哥、俊廷、小強、重佑、清祥、嘉建 等,以及一路走來的好朋友翔年、建良、育旻,意智等人的陪伴與幫助。最後, 感謝我的父母與我的姊姊與弟弟,還有我的老婆慧琦,謝謝你們一路的支持、照 顧與鼓勵,今後我若是能在人生上有一點點成就的話,這都要歸功於你們的幫 助,謝謝你們!!

iii

目錄

中文摘要	i
英文摘要	ii
誌謝	iii
目錄	iv
表目錄	viii
圖目錄	ix

第一章 緒論	.1
--------	----

第二章 全像光學元件	9
2.1 前言	9
2.2 特性與應用	9
2.3 耦合波理論	13
2.4 短波長拍攝長波長重建技術	14
2.5 全像空間偏離偏極器	16
2.5.1 設計與原理	17
2.5.2 偏極選擇條件	
2.5.3 記錄和重建	
2.5.4 製造結果	22
2.6 討論	23
2.7 小結	25
參考文獻	

第三章 光學循環器	
3.1 前言	28
3.2 傳統光學循環器	
3.2.1 元件架構與原理	29
3.2.2 應用	
3.2.3 相關參數	
3.3 二維多埠偏極獨立光學循環器	
3.3.1 平面型全像空間偏極模組	
3.3.2 組成與特性	
3.3.3 結果與討論	
3.4 三維多埠偏極獨立光學循環器	40
3.4.1 正交型全像空間偏極模組	40
3.4.2 組成與特性	45
3.4.3 結果與討論	47
3.5 小结	49
参考文獻	

第四章 使用 Lyot-Öhman 濾波器的波長交織術	52
4.1 前言	52
4.2 波長交織技術	53
4.2.1 特性	53
4.2.2 應用	54
4.3 Lyot-Őhman 濾波器	57
4.3.1 組成與原理	57
4.3.2 相關參數	63

4.4	討論	.64
4.5	小結	.64
參考	芳文獻	

第五章 四埠偏極獨立的波長交織雙向光學循環器	69
5.1 前言	69
5.2 三維全像偏離偏極模組	71
5.3 工作原理與特性	76
5.3.1 設計與組成	76
5.3.2 特性	81
5.4 實驗分析結果	81
5.5 討論	84
5.6 小結	86
參考文獻	

第六章 多埠偏極獨立的波長交織雙向準光學循環器	
6.1 前言	89
6.2 二維全像偏離偏極模組	
6.3 工作原理與特性	92
6.3.1 工作原理	92
6.2.2 特性	97
6.4 實驗分析結果	99
6.5 討論	100
6.6 小結	103
參考文獻	

第七章	結論	106
-----	----	-----

簡	歷	•••	•••	 •••	 	 	 • •	•••	 • •	• •	••	• •	• •	 • •	 	•	••	• •	•	 	•	• •	 	 ••	• •	 	••	•••	 	 •	••	• •	•	 • •	• • •	 	• •	 . 1	0	18
著	作			 •••	 	 	 		 	•				 	 	•			•	 	•		 	 		 			 	 •			•	 • •		 		 . 1	0)9

表目錄

Table 2.1	全像空間偏離偏極器之相關設計參數18
Table 3.1	使用所製作 HSWPs(η _s =3%,η _p =90%)之六埠光學準循環器,操作於
	1300nm 之相關參數
Table 3.2	使用理想 HSWPs(η _s <1%,η _p >99%)之六埠光學準循環器,操作於
	1300nm 之相關參數
Table 3.3	使用所製作 HSWPs(η_s =3%, η_p =90%)之 5 埠光學準循環器, 操作於
	1300nm 之相關參數48
Table 3.4	使用理想 HSWPs(η _s <1%, η _p >99%)之 5 埠光學準循環器,操作於
	1300nm 之相關參數48
Table 5.1	四埠雙向光學循環器的相關損耗以及隔離度(不含 fiber coupler)82
Table 5.2	四埠雙向光學循環器的相關損耗以及隔離度(不含 fiber coupler)85
Table 6.1	操作在中心波長 1550nm 下,所製作的 5-port 雙向光學循環器的相關
	參數(不含 fiber coupler)99
Table 6.2	操作在中心波長 1550nm 下,以理論值製作的全像空間偏離偏極器與
	抗反射處理所製作的 5-port 雙向光學循環器的相關參數(不含 fiber
	coupler)

圖目錄

Fig. 1.1	(a)現存的雙向波長分隔傳輸的架構輔以光纖放大器來實現,(l	b)加入雙
	向光學獨立器的架構	3
Fig. 2.1	體積型全像片結構	10
Fig. 2.2	穿透式和反射式體積型全像片	10
Fig. 2.3	全像光學元件與傳統光學元件的特性比較	11
Fig. 2.4	基片型全像光學元件	12
Fig. 2.5	短波長拍攝長波長重建的K-向量幾何關係圖形	15
Fig. 2.6	YVO4(Yttrium vanadate)晶體式空間偏離偏極器	16
Fig. 2.7	全像空間偏離偏極器	17
Fig. 2.8	穿透式體積型全像片(a)拍攝之幾何關係;(b)重建之幾何關係	20
Fig. 2.9	感光記錄材料在曝光顯影前後之乳劑收縮示意圖	20
Fig. 2.10	穿透式體積型全像片補償修正之K-向量圖	21
Fig. 2.11	全像空間偏離偏極器於中心工作波長1550nm之繞射效率	24
Fig. 3.1	光學循環器傳輸路徑示意圖,(a) 3-port 光學循環器;(b) 4-por	rt 光學準
	循環器	28
Fig. 3.2	光學循環器之主要組成要件	29
Fig. 3.3	3埠光學準循環器之組成與操作原理	30
Fig. 3.4	光學循環器在存取多工/解多工之應用	31
Fig. 3.5	平面型全像空間偏極模組之結構與操作原理	33
Fig. 3.6	串聯一對平面型全像空間偏極模組之結構和操作特性	34
Fig. 3.7	非偏極入射光之 s-和 p-偏極分量於 PHM 內之操作特性	35
Fig. 3.8	211埠光學準循環器之架構與操作原理	36
Fig. 3.9	PBSs 和 RPs 光束導引模組	
Fig. 3.10	偏極模色散補償之2n-port光學準循環器之設計與操作原理	

Fig. 3.11 全像空間偏離偏極器之正交型空間構造和操作原理......40 Fig. 3.12 非偏極光分別入射於兩種 OHM 模組的操作方式與原理, (a)、(b)為

	OHMx 之架構,(c)、(d)為 OHMy 之架構42
Fig. 3.13	沿+z方向入射串聯OHMx與OHMy之模組的操作原理43
Fig. 3.14	沿-z方向入射串聯OHMx與OHMy之模組的操作原理43
Fig. 3.15	任意偏極入射光之 s-和 p-偏極分量往返於 HSPMs 之操作特性44
Fig. 3.16	5埠光學準循環器之模組與 port-1→port-2 的操作原理46
Fig. 3.17	5埠光學準循環器之模組與 port-4→port-5 的操作原理47
Fig. 3.18	全像空間偏離偏極器在鄰近中心工作波長1300nm之繞射效率48
Fig. 4.1	決定光纖網路的資訊量三大因素52
Fig. 4.2	Interleaver 可將週期性的波長訊號分離54
Fig. 4.3	1×4 Interleaver 能將光訊號分離為四個群組輸出54
Fig. 4.4	1×8 Interleaver 能將光訊號分離為八個群組輸出54
Fig. 4.5	利用 interleaver 可增加 DWDM 架構下的系統傳輸量55
Fig. 4.6	GT-based Michelson interferometer 架構的 interleaver
Fig. 4.7	運用 Mach-Zehnder 干涉之波導式架構的 interleaver
Fig. 4.8	Lyot-Öhman filter 的架構以及正反向輸入操作圖58
Fig. 4.9	1L架構下的y方向偏極光輸出譜62
Fig. 4.10	L-2L 架構下的 x 方向偏極光輸出譜62
Fig. 5.1	運用雙向循環器用做雙向網路與單向網路之連結70
Fig. 5.2	乳劑面向-z 擺置的三維全像空間偏極模組操作圖72
Fig. 5.3	乳劑面向+z 擺置的三維全像空間偏極模組操作圖74
Fig. 5.4	三維全像空間偏極模組在不同方向上的輸出效果75
Fig. 5.5	於 Port-1 輸入四埠雙向光學循環器模組的工作原理 (a)模組架構, (b)各
	偏光之分佈圖

Fig. 5.6 於 port-2 輸入四埠雙向光學循環器模組的工作原理 (a)模組架構, (b)各
偏光之分佈圖
Fig. 5.7 於 Port-3 輸入四埠雙向光學循環器模組的工作原理 (a)模組架構, (b)各
偏光之分佈圖
Fig. 5.8 於 Port-4 輸入四埠雙向光學循環器模組的工作原理 (a)模組架構, (b)各
偏光之分佈
Fig. 5.9 四埠雙向光學循環器操作特性示意圖,(a)處於 even-channel下,(b)處於
odd-channel下
Fig. 5.10 Port-1 在 odd-channel (2→1)以及 even-channel (4→1)操作下的光訊號輸
山双千次間
Tig. 5.11 Folt-2 在 out-channel (5→2)以及 even-channel (1→2)採作下的无訊號潮
出效率頻譜
Fig. 5.12 Port-3 在 odd-channel (4→3)以及 even-channel (2→3)操作下的光訊號輸
出效率頻譜
Fig. 5.13 Port-4 在 odd-channel (1→4)以及 even-channel (3→4)操作下的光訊號輸
出效率頻譜
Fig. 5.14 針對中心波長在 1550nm 所製作之全像空間偏離偏極器之繞射效率頻
譜圖
Fig. 5.15 在 C-band 中, even-channel 由循環器的 Port-1 至 Port-2 的輸出效率頻譜
圖
Fig. 6.1 兩種全像空間偏極模組的架構與操作圖:(a)將 y 偏光位移-d 的 HM,以
及(b)將 y 偏光位移 d 的 HM'91
Fig. 6.2 在 even-channel 操作下的多埠雙向光學準循環器94
Fig. 6.3 在 odd-channel 操作下的多埠雙向光學準循環器96
Fig. 6.4 多埠雙向光學準循環器之操作特性,以及等效之循環器示意圖,(a)在
even-channel 訊號操作之下,以及(b)在 odd-channel 訊號操作之下97
Fig. 6.5 模組中各埠在 xy 平面上的相關位置圖

頻100	even-channel 訊號在 Port-1→Port-2 操作下所得之頻	Fig. 6.6
下所得之頻譜102	Port-1→Port-2 的 even-channel 訊號在理想的模組下	Fig. 6.7
亡的實驗頻譜及理論頻	Port-1→Port-2的 even-channel 訊號在中心波長附近的	Fig. 6.8
102	譜	