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Abstract—Wireless sensor networks have been proposed for facilitating various monitoring applications (e.g., environmental

monitoring and military surveillance) over a wide geographical region. In these applications, spatial queries that collect data from

wireless sensor networks play an important role. One such query is the K-Nearest Neighbor (KNN) query that facilitates collection of

sensor data samples based on a given query location and the number of samples specified (i.e., K). Recently, itinerary-based KNN

query processing techniques, which propagate queries and collect data along a predetermined itinerary, have been developed. Prior

studies demonstrate that itinerary-based KNN query processing algorithms are able to achieve better energy efficiency than other

existing algorithms developed upon tree-based network infrastructures. However, how to derive itineraries for KNN query based on

different performance requirements remains a challenging problem. In this paper, we propose a Parallel Concentric-circle Itinerary-

based KNN (PCIKNN) query processing technique that derives different itineraries by optimizing either query latency or energy

consumption. The performance of PCIKNN is analyzed mathematically and evaluated through extensive experiments. Experimental

results show that PCIKNN outperforms the state-of-the-art techniques.

Index Terms—K-Nearest neighbor query, wireless sensor networks.
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1 INTRODUCTION

RECENT advances in microsensing MEMS and wireless
communication technologies have set off the rapid

development of wireless sensor networks (WSNs) in the
past few years. A WSN, which consists of a large number of
sensor nodes capable of sensing, computing, and commu-
nications, has been used for a variety of applications,
including border detection, ecological monitoring, and
intelligent transportation. Typically, WSNs are deployed
over a wide geographical area to facilitate data collection in
long-term monitoring. Due to the importance of geographi-
cal features in WSN applications, spatial queries that aim at
extracting sensed data from sensor nodes located in certain
proximity of interested areas become an essential function in
WSNs [11], [15]. In this paper, we focus on efficient
processing of K-Nearest Neighbor (KNN) query, which
facilitates data sampling of the sensors located in a
geographical proximity specified by a given query point q
and a sample sizeK.1 The KNN query is one of the most well-
studied spatial queries under the context of centralized
databases, which has received tremendous research effort in
optimizing its processing performance [16], [18], [6], [19], [3].

However, these traditional KNN processing techniques are
not feasible for wireless sensor network applications due to
the limited network bandwidth and energy budget in sensor
nodes. Basically, collecting a massive amount of sensed data
from a large-scale sensor network periodically to a centra-
lized database for query processing is not a good choice due
to a number of issues, such as data freshness, redundant
transmission, and high energy consumption.

To overcome these issues, a number of in-network
processing techniques for KNN queries have been devel-
oped [4], [1], [20], [21], [24], [22], [23]. In these works, a KNN
query is submitted to the network via an arbitrary sensor
node (referred to as the source node) and propagated to the
other sensor nodes qualified by specified parameters in the
query. As a result, sensed data from these nodes are
collected and returned to the source node. Existing in-
network KNN query processing techniques can be classified
into two categories: 1) infrastructure-based and 2) infrastruc-
ture-free. The former relies on a network infrastructure (e.g.,
based on a spanning tree [12], [13]) for query propagation
and processing [4], [20], [21]. Maintenance of such a network
infrastructure is a major issue, especially when the sensor
nodes are mobile [2], [5]. The latter does not rely on any
preestablished network infrastructure to process queries but
propagates a KNN query along some well-designed itiner-
aries to collect data. Two infrastructure-free KNN query
processing techniques, which are based on itinerary
structures, have been proposed [24], [22], [23].

An itinerary-based KNN query processing algorithm

typically consists of three phases: 1) routing phase, 2) KNN

boundary estimation phase, and 3) query dissemination and

data collection phase.2 An example of itinerary-based KNN

query processing is shown in Fig. 1. Initially, a KNN query,
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1. The KNN query considered in this paper focuses on collecting sensor
data samples. Thus, we do not consider the data aggregation issues.

2. Phase 3 is also called query dissemination phase in short.
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issued at a source node, is routed to the sensor node nearest

to the query point q (referred the home node) at the routing

phase.3 Next, in the KNN boundary estimation phase, the

home node estimates an initial KNN boundary (i.e., the

solid boundary line circle in Fig. 1a), which is likely to

contain K nearest sensor nodes from q. Finally, in the query

dissemination phase (as shown in Fig. 1b), the home node

propagates the query to each node within the estimated

initial KNN boundary. While the KNN query propagates

along certain well-designed itineraries, query results are

collected at the same time. It has been shown that, by

avoiding the significant overhead of maintaining a network

infrastructure, the itinerary-based KNN query processing

techniques outperform the infrastructure-based KNN tech-

niques [22], [23], [24].
Clearly, the performance (such as the query latency and

the energy consumption) of itinerary-based KNN query
processing techniques is dependent on the design of
itineraries. With a long itinerary, long query latency and
high energy consumption may be incurred due to a long
itinerary traversal. On the other hand, allowing a query to
run on an arbitrary number of short itineraries in parallel
may result in significant collisions in the query dissemina-
tion phase [26]. Thus, itinerary planning is an important
design issue for itinerary-based KNN query processing.
Prior works in [22], [23], [24] develop several itinerary
structures. However, their proposals are not optimized
neither in terms of the energy consumption nor the query
latency. In this paper, we propose a new itinerary-based
KNN query processing technique, called Parallel Concentric-
circle Itinerary-based KNN (PCIKNN) query processing
technique, which is based on parallel itineraries derived
for optimizing either performance criterion of query latency
or energy consumption.

While prior works have tested the idea of concurrent
itineraries, the number of concurrent itineraries is not
optimized. In contrast, PCIKNN allows a KNN query to
propagate on an optimal number of concurrent itineraries
(referred to as KNN threads in short) in order to achieve high
efficiency in query latency or energy consumption. By
avoiding the collision issue, PCIKNN reduces the query

latency and the energy consumption by facilitating a larger
number of concurrent KNN threads. Analytical models for
the query latency and the energy consumption of PCIKNN
are derived. By optimizing the query latency and the energy
consumption, PCIKNN provides parallel itineraries in two
modes: 1) min_latency mode and 2) min_energy mode,
specifically tailored to minimize the query latency and the
energy consumption, respectively.

Another important issue for itinerary-based KNN query
processing techniques is to estimate an initial KNN
boundary to decide a coverage area for itinerary planning.
By exploring regression techniques, we propose a boundary
estimation method that accurately determines the KNN
boundary. Note that sensors tend to be spread in a wide
geographical space nonuniformly, which is called spatial
irregularity [22]. Due to the spatial irregularity, communica-
tion voids may exist, and thus, degrade the performance of
KNN processing. Explicitly, the spatial irregularity results
in the inaccuracy of KNN query results because the KNN
query and partial results may be blocked or dropped due to
the communication voids. Moreover, KNN boundary is
difficult to estimate precisely under spatial irregularity. To
overcome the spatial irregularity, we develop methods to
bypass void areas and dynamically adjust the KNN
boundary. In addition, we propose a rotated itinerary
structure for PCIKNN to alleviate an energy exhaustion
problem in PCIKNN. The performance of PCIKNN is
analyzed mathematically and evaluated through extensive
experiments based on simulation. Experimental results
show that PCIKNN is superior, in terms of accuracy,
energy consumption, query latency, and scalability, to the
state-of-the-art techniques. The contributions of this study
are summarized as follows:

. An efficient itinerary design for in-network itinerary-
based KNN query processing has been developed.
The derived itineraries are tailored to optimize either
query latency or energy consumption.

. A KNN boundary estimation method is developed
to improve the query accuracy in wireless sensor
networks.

. Methods to deal with issues caused by the spatial
irregularity are developed to make PCIKNN robust
in a large-scale sensor network.

. A comprehensive performance evaluation is con-
ducted. Experimental results show the superiority of
our proposal methods over other existing techniques.

The rest of the paper is organized as follows: Preliminaries
are presented in Section 2. The ideas and design of the
PCIKNN technique are described in Section 3. A KNN
boundary estimation method is developed in Section 4 and
the issues of spatial irregularity are addressed in Section 5.
The performance of PCIKNN is evaluated in Section 6.
Finally, the paper is concluded in Section 7.

2 PRELIMINARIES

In this section, we first state the assumptions made in this
paper and define the KNN problem in wireless sensor
networks. Next, we discuss the issues of query dissemina-
tion in itinerary-based KNN query processing and review
some closely related works. Finally, we provide an over-
view of PCIKNN.
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Fig. 1. An overview of itinerary-based KNN query processing.

3. Several geo-routing protocols (e.g., GPSR [7], PSGR [25], and other
geo-routing protocols [8], [9]) are available for this task.



2.1 Assumptions and Problem Definition

We consider a wireless sensor network, where sensor nodes
are deployed in a two-dimensional space. Each sensor is
aware of its location via GPS or other localization
techniques [14]. By periodically exchanging beacon infor-
mation with sensor nodes nearby, a sensor node maintains a
list of neighboring nodes. Moreover, the sensed data are
stored locally in sensor nodes. In this network, a KNN
query is issued at an arbitrary sensor node (called source
node), which is the starting node for in-network query
processing. The source node is responsible for reporting the
final query result to the user. The KNN query in wireless
sensor networks is formally defined as follows:

Definition (K-Nearest Neighbor query). Given a set of sensor
nodes M and a geographical location (denoted by a query
point q), find a subset M 0 of M with K nodes (M 0 �M;
jM 0j ¼ K) such that 8n1 2M 0 and

8n2 2M �M 0; distðn1; qÞ � distðn2; qÞ;

where distð�; �Þ is the euclidean distance function.

Generally speaking, the “exact” result set of the KNN
contains the recently sensed readings of the K sensor nodes
nearest to the query point q. In this paper, however, due to
the mobility of sensor nodes and dynamics of WSNs, the
KNN query result may not contain the exact set of K-nearest
neighbor nodes. Therefore, we measure the accuracy of the
KNN query result as the precision of returned data, i.e., the
ratio of correct KNN sensed data among the query result
returned to the source node, where the correct KNN result
refers to the set of sensed data from K nearest sensor nodes at
the time when the query result is received at the source node.

2.2 Query Dissemination

As discussed before, query dissemination is a critical phase
in itinerary-based KNN query processing. The detailed
steps of itinerary-based query dissemination are illustrated
in Fig. 2a, where the dotted line is a predesigned itinerary
[26]. As shown in the figure, sensor nodes are divided into
Q-node (marked as black nodes) and D-node (marked as
white nodes). Upon receiving a query, a Q-node broadcasts
a probe message that includes the KNN query to its
neighbors. Each neighbor node (i.e., D-node) receives the
probe message and then sends its sensed data to the
Q-node. After collecting data from D-nodes nearby, the
Q-node finds the next Q-node along the itinerary and

forwards the current query result to the next Q-node. The
next Q-node is determined based on the maximum progress
heuristic, i.e., the next Q-node with the farthest distance
from the current Q-node along the proceeding itinerary
direction. According to a prior work [26], the width of the
itineraries w is set to

ffiffi
3
p

2 r, where r is the transmission range
of a sensor node (see Fig. 2b for illustration). In the query
dissemination phase, only the D-nodes within the transmis-
sion range of a Q-node will send their sensed data to the
Q-node. For example, as shown in Fig. 2a, D-nodes D1, D2,
and D3 send their data to Q1. Since a D-node may receive
multiple data probe messages from different Q-nodes, a flag
is set when the D-node first receives a probe message for a
given query in order to avoid redundant data collection.
Finally, the last Q-node forwards the collected query result
to the source node.

2.3 Related Work

In this section, we describe two itinerary-based KNN query
processing algorithms in [24] and [22]. The authors in [26]
first explore the idea of itinerary-based processing for
window queries. They then further employ the idea for
KNN query processing [24]. Thus, the proposed algorithm
is called Itinerary-based KNN (IKNN) processing. In IKNN,
the issue of KNN boundary determination is not addressed.
The authors focus on the issues of designing itinerary
structures and propose both sequential and parallel
itinerary processing approaches. For the sequential itinerary
approach, IKNN disseminates a KNN query along a spiral
itinerary and collects data during the query dissemination
phase. Once the query result contains sensed data from
K nearest sensors, it is returned to the source node. To
reduce the query latency, the parallel approach in IKNN
allows two threads to disseminate query and collect data
via two itineraries (see Fig. 3a). These two threads exchange
the collected query results to determine whether the KNN
query should be further propagated or not.

On the contrary, the authors in [22] propose to estimate a
KNN boundary that is likely to contain K nearby sensor
nodes. Accordingly, the KNN query is quickly propagated
within this estimated boundary. Note that the KNN
boundary is determined based on the node density
estimated during the routing process. Thus, the proposed
algorithm is called Density-aware Itinerary-based KNN
(DIKNN). The itinerary structure for DIKNN is shown in
Fig. 3b, where the KNN boundary is divided into several
cone-shaped sectors. In each sector, KNN query is
propagated along an itinerary. Among itineraries, the
interitinerary information exchanging is adopted when
adjacent itineraries are encountered at the sector border
line. When the KNN query reaches the KNN boundary, the
last Q-node in each sector directly sends the partial results
to the source node. Through a good estimation of the KNN
boundary, DIKNN improves its query latency over IKNN.
However, the accuracy of the KNN boundary estimation is
very critical. Although DIKNN dynamically adjusts its
estimated KNN boundary, redundancy still exists in the
KNN query result of DIKNN since the partial KNN query
results from all sectors are sent back to the source node
without any validation. Furthermore, itinerary structures
developed in IKNN and DIKNN do not explore the issues
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Fig. 2. Query dissemination in itinerary-based KNN query processing.



of optimizing the number of KNN query threads. To deal
with the above issues discussed, we propose a new
itinerary-based query processing algorithm based on
optimized parallel concentric-circle itineraries, namely PCIKNN.

2.4 Overview of PCIKNN

PCIKNN has also three processing phases: the routing phase,
the KNN boundary estimation phase, and the query
dissemination phase, as in the prior works [24], [22]. In
addition, to improve the query accuracy of KNN query,
PCIKNN employs several innovative ideas to improve the
accuracy of KNN query result. Explicitly, the estimated KNN
boundary is dynamically refined while the query is propa-
gated within the KNN boundary. Moreover, to reduce
redundant data transmission and improve the query accu-
racy, partial query results are collected at the home node and
then sent back to the source node. The design of collecting
partial results at the home node is able to dynamically adjust
the KNN boundary, which further guarantees that the final
query result contains K nearest sensor nodes.

A number of factors are considered in the design of
PCIKNN, including the length and the number of itiner-
aries. A query processed via long itineraries is expected to
carry a large amount of collected data for a long way,
thereby resulting in long query latency and severe energy
consumption. On the other hand, by allowing a larger
number of concurrent threads propagated along short
itineraries, the latency of KNN query processing may be
improved. The prior works [24], [22], [23], while exploring
multiple itineraries, only allow the number of KNN query
threads to be exactly the same as the number of itineraries.
On the contrary, in PCIKNN, we aim at designing
itineraries that allow more concurrent KNN query threads
to be propagated. Since the routing phase of PCIKNN is the
same as in [24], [22], [23], in the following sections, we only
describe the itinerary structure employed in PCIKNN, our
method for boundary estimation, and our proposals for
improving the accuracy of KNN query result.

3 ITINERARY STRUCTURES IN PCIKNN

In this section, we first present the design of parallel
concentric-circle itineraries in PCIKNN. Then, aiming at
optimizing query latency or energy consumption, we

analytically derive the number of parallel itineraries to be
employed in PCIKNN. Analysis of itinerary structures
among PCIKNN, IKNN, and DIKNN is then presented.
Finally, we develop a rotated itinerary structure for
PCIKNN to avoid the energy exhaustion in sensor nodes.

3.1 Design of Concentric-Circle Itineraries

Given a query point q and an estimated KNN boundary, the
area within the boundary can be divided into multiple
concentric-circle itineraries. The issue of estimating the KNN
boundary will be addressed later in Section 4. Let Ci denote
the ith circle with a radius w� i, where w is the itinerary
width, i.e., the distance between itineraries. As mentioned, w
is set as

ffiffi
3
p

2 r, where r is the transmission range of a sensor
node. To propagate KNN query along concentric-circle
itineraries, we partition the KNN boundary into multiple
sectors. Fig. 4a shows an example of concentric-circle
itineraries, where the number of sectors is 4. For each sector,
we have three types of itinerary segments: 1) a branch-
segment, 2) a set of peri-segments, and 3) two return-segments.
As shown in Fig. 4b, a branch-segment is a straight line
through concentric-circles with the itinerary width w in each
sector, two return-segments are the boundary lines among
sectors with the itinerary width w

2, and peri-segments are
portions of concentric-circles between branch-segments and
return-segments. Obviously, there is no peri-segment in a
concentric-circle if the regions of branch-segments and
return-segments fully cover this concentric-circle. As shown
in Fig. 4b, the arrows indicate the directions of query
propagations. Following the itineraries in PCIKNN, a KNN
query is executed concurrently.

In light of the itinerary structure derived above, a KNN
query is first propagated along branch-segments in each
sector. Along the branch-segment, a Q-node broadcasts a
probe message and collects partial results from D-nodes
within the region width of w. For each sector, when the
KNN query reaches one of the concentric-circles, two KNN
query threads are forked to propagate along the two peri-
segments, while the original KNN query continues to move
along the branch-segment. To propagate a KNN query in
two peri-segments, the Q-node in the branch segment first
finds two Q-nodes in peri-segments and evenly divides the
partial query result collected to these two Q-nodes. Then,
these two Q-nodes will start performing KNN query
dissemination and data collection along peri-segments.
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Fig. 3. Itinerary structures in (a) IKNN and (b) DIKNN.



When the KNN threads that propagate along peri-segments
arrive the boundary lines of their sectors, partial results
collected by the KNN threads are sent back to the home
node through return-segments. The above process of query
dissemination pauses to wait for further instruction from
the home node when the KNN query reaches the KNN
boundary. If partial results collected at the home node do
not contain K nearest sensor nodes, the KNN boundary will
be extended and then the KNN query continues to
propagate until the number of K nearest sensor nodes is
collected. The adjustment of the KNN boundary is an
important issue and will be described later. Clearly, in
PCIKNN, the number of the concurrent KNN threads is
greater than that in IKNN and DIKNN. Given an optimiza-
tion objective in minimizing either the minimum latency or
the minimum energy, we optimize the number of con-
current KNN query threads.

In PCIKNN, because the home node receives all partial
results from sectors within the KNN boundary, the home
node is thus able to determine whether to continue the KNN
query propagation or not. In PCIKNN, if partial results
collected at the home node contain K nearest sensor nodes,
the home node will inform the KNN query to stop query
propagation even if the KNN query has not yet reached the
KNN boundary. With our design of collecting partial results
at the home node, the KNN boundary is dynamically
adjusted. When the KNN query arrives the KNN boundary
and the number of K nearest sensors is not larger thanK, the
home node is able to dynamically extend the KNN boundary
to discover more sensor nodes. According to the optimiza-
tion goal (i.e., the minimum latency or the minimum
energy), the corresponding scheme for adjusting the KNN
boundary is developed in Section 5. Consequently, by
collecting partial results at the home node, PCIKNN not
only improves the query accuracy but also avoids unneces-
sary query propagation.

One may argue that our design of itineraries will result
in a prolonged query latency and quick energy exhaustion
in sensor nodes along the return-segments. For example, as
Fig. 5 shows, returning via a path from a boundary point to
the source node (indicated by dotted line) is always shorter
than bypassing the home node than the source node
(indicated by the solid lines). This results in a longer query
latency of PCIKNN than that of IKNN and DIKNN.

However, as we will show in Section 6 later, the gain in
query latency obtained due to the high parallelism of
PCIKNN can easily offset the delay discussed here. In
addition, as shown in Section 3.4, we further propose a
rotated itinerary structure in PCIKNN to alleviate the
energy exhaustion of sensor nodes along the return-
segments. In summary, with a proper itinerary design,
PCIKNN achieves high performance in terms of both the
query latency and the energy consumption.

3.2 Optimal Number of Sectors in PCIKNN

PCIKNN aims at exploring parallel concentric-circles
itineraries to achieve parallelism while reducing query
latency or energy consumption in KNN query processing.
Thus, to determine an appropriate number of sectors
(denoted by S) is a critical issue. In this section, we first
discuss the trade-off between the number of sectors in
PCIKNN and the itinerary length within a sector. Then we
derive analytical models to determine the optimal number
of sectors based on two optimization goals: 1) the minimum
latency (referred to as min_latency) and 2) the minimum
energy (referred to as min_energy), respectively.

3.2.1 Trade-Off in PCIKNN Itinerary Design

In PCIKNN, when the number of sectors is increased, the
maximal length of itineraries in each sector becomes shorter.
Clearly, the query latency and the energy consumption in
each sector are reduced. However, the total length of
itineraries is likely to become longer as the number of
sectors increases. As a result, the energy consumption may
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Fig. 4. Parallel concentric itineraries in PCIKNN.

Fig. 5. An illustrative example of returning partial results to the home
node.



be increased. On the other hand, when a smaller number of
sectors are adopted in PCIKNN, the itinerary length within a
sector may increase due to the existence of peri-segments.
This leads to a higher energy consumption and a longer
query latency for each sector. From the above observations,
we recognize a need to strike a balanced trade-off between
the number of sectors and the itinerary length in each sector
in order to optimize the performance of PCIKNN.

As query latency and energy consumption are the two
most critical performance metrics for KNN query proces-
sing in wireless sensor networks, we derive optimized
PCIKNN itinerary structures using them as the optimiza-
tion objectives.

3.2.2 Notations and Assumptions

Given a KNN boundary with radius R and the network
density d, we intend to derive an optimal number of sectors
to meet the optimization objectives. Note that the network
density can be estimated while routing KNN query to the
home node, which will be described later. Assume that
sensor nodes are uniformly distributed and message
transmissions are reliable. Moreover, KNN queries propa-
gate along branch-segments and return-segments hop by
hop at each concentric-circle. Each Q-node is ideally located
in the itineraries. Symbols used in our analysis are
summarized in Table 1.

3.2.3 Minimum Latency for PCIKNN

In PCIKNN, when the number of sectors is increased, the
length of peri-segments is expected to be shortened, thus,
reducing the latency. Once a KNN query along peri-
segments arrives the boundaries among sectors, the partial
result is transmitted to the home node along return-
segments. Thus, we have the following observation:

Observation 1. Since the latency on propagating the KNN
query along the branch-segments remains a constant, the
primary factors for the overall latency of PCIKNN are
1) the latency of propagating KNN query along the peri-
segments at the concentric-circle “farthest” from the
home node and 2) the corresponding latency for
returning the partial results back to the home node.

Let latencyperi denote the latency of propagating KNN
query along the peri-segments at the concentric-circle
farthest from the home node and latencyhome denote the

latency for delivering the collected partial results to the
home node. Therefore, the latency of PCIKNN is
formulated as

latency ¼ latencyperi þ latencyhome:

To determine latencyperi, we take into account message
delays for sending probe messages and receiving D-nodes’
messages at each Q-node. Thus, the value of latencyperi is
formulated as follows:

latencyperi ¼ Eperi
hop �

�
1þ Eperi

Dnum

�
�Delay;

where Eperi
hop is the expected number of Q-nodes in the peri-

segment at the farthest concentric-circle and Eperi
Dnum

is the
expected number of D-nodes of a Q-node.

Observation 2. The expected number of D-nodes is estimated
as the number of D-nodes in the gray area in Fig. 6.

In light of Observation 2, we have

Eperi
hop ¼

2� ��R� w
2� S �Er ; Eperi

Dnum
¼ Er� w� d;

where Er is the expected length of each hop of Q-
nodes. According to [22], [23], Er ¼ r2

ffiffiffi
d
p

=ð1þ r
ffiffiffi
d
p
Þ.

As for the latency spent on collecting partial results at the
home node, assume that partial results are sent to the home
nodes at the same time (in the worst-case scenario). The
latency for collecting partial results at the home node is
formulated as follows:

latencyhome ¼ 2� S �Delay:

According to the above deviations, the overall query
latency for PCIKNN is derived as follows:

latency ¼
�
��R� w
S � Er � ð1þ w� Er� dÞ �Delay

�
þ ð2� S �DelayÞ:

In order to obtain the optimal number of sectors to
achieve the minimum latency, we differentiate the above
equation to derive the optimal number of sectors as follows:

S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� ��R� w
Er

�
� ð1þ w� Er� dÞ

2

vuut
:

3.2.4 Minimum Energy for PCIKNN

Similar to IKNN and DIKNN [22], [24], the KNN query
considered in this paper facilitates sampling/collection of
sensed data in correspondence with a given query location
and the number of samples specified (i.e., K). As a result,
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TABLE 1
Summary of Symbols Used in the Analytical Models

Fig. 6. Information statistics in a routing path.



we do not take any aggregation function into consideration
in this work. Since the main function of the KNN query here
is data collection, a longer itinerary length incurs more
energy consumption.

Observation 3. A small number of sectors lead to long
itineraries within a sector, incurring heavy energy
consumption overhead in carrying data collected from
D-nodes. On the contrary, a large number of sectors
increase the number of branch-segments and return-
segments, increasing the total energy consumption on
the query propagation and data collection along the
branch-segments, and the partial result delivery along
the return-segments.

Inspired by the above observation, we derive an optimal

number of sectors for minimizing energy consumption.

Generally speaking, the energy consumption of PCIKNN

involves two parts in each itinerary segment: 1) energy

consumed for carrying data hop by hop along with the KNN

query and 2) energy consumed for propagating the KNN

query among Q-nodes. Without loss of generality, the

energy consumption is modeled as a communication cost

in terms of the number of bits transmitted among sensor

nodes. Thus, the energy consumption of PCIKNN is the sum

of energy consumption corresponding to branch-segment,

peri-segment, and return-segment of all sectors. We denote

energy consumption on the type-segment in the ith con-

centric-circle itineraries by energytype;Ci . For example, the

energy consumption of peri-segment itineraries in the first

concentric-circle is represented as energyperi;C1
. Conse-

quently, we have

energy ¼
XR=w
i¼1

ðS � ðenergybranch;Ci þ energyperi;Ci þ energyreturn;CiÞÞ;

where the number of concentric-circles is R=w.
The energy consumption on data transmission is mod-

eled as Ehop �Bits, where Ehop is the expected number of

hops and Bits is the energy consumption to transmit one

data bit per hop. Let Etype
hop;Ci

denote the expected number of

hops in the type-segment on Ci. For example, Ebranch
hop;Ci

is the

expected number of hops in the branch-segment on Ci.

Furthermore, Etype
Dnum

represents the expected number of D-

nodes of a Q-node in the type-segment. Let the radius of Ci
be i� w. In the following, we derive the energy consump-

tion along the itinerary segments.
First, the energy consumption of sensor nodes along the

branch-segment to Ci is formulated as follows:

energybranch;Ci ¼ Ebranch
hop;Ci

�
�
Hsize þ

�
Ebranch
Dnum

�Dsize

��
�Bits;

where Ebranch
hop;Ci

¼ 1, Ebranch
Dnum

¼ 0 since Q-nodes are assumed to

be connected hop by hop along with a branch-segment and

D-nodes data collected are divided into peri-segments.
Next, the energy consumption of sensor nodes along the

peri-segments is derived as follows:

energyperi;Ci ¼

2�
 �
Eperi
hop;Ci

�Hsize

�
þ
  XEperi

hop;Ci

j¼1

ðj�Eperi
Dnum

�!
�Dsize

!!
�Bits;

where

Eperi
hop;Ci

¼ 2� �� i� w
2� S � Er

and

Eperi
Dnum
¼ Er� w� d:

Finally, the energy consumption of sensor nodes along
two return-segments in each sector is modeled as follows:

energyreturn;Ci ¼
2� Ereturn

hop;Ci
�
�
Hsize þ

�
Ereturn
Dnum;Ci

�Dsize

��
�Bits;

where

Ereturn
hop;Ci

¼ i; Ereturn
Dnum;Ci

¼ Eperi
hop;Ci

� Eperi
Dnum

:

By putting the above derivations together, we could
further utilize differentiation to derive the optimal number
of sectors to minimize the energy consumption of PCIKNN.
Consequently, the optimal number of sectors is derived as
follows:

S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2w3d

Er
�
ð2 R

w þ 1Þ
6

�Dsize

Hsize

vuuut
:

3.2.5 Model Validation

We develop a simulator to validate our derivations. We
simulate a wireless sensor network that consists of 1,000 sen-
sor nodes randomly distributed in a 500� 500 field. A total of
100 KNN queries are issued and K is set to 300. The
simulation results are shown in Fig. 7. The minimum latency
model determines the value of sectors to be 6 (rounded from
our analytical result 6.4). As shown in Fig. 7a, we select the
number of sectors to be 6, which incurs the minimum query
latency. Moreover, the optimal number of sectors for the
minimum energy consumption is 7 (rounded from our
analytical result 7.1), which is consistent with the experi-
mental result as shown in Fig. 7b. The above comparisons
show that our analysis is very accurate. From our analytical
models, we could easily determine the number of sectors
based on the targeted optimization objectives. Note that the
above derivations are under the assumption that sensors are
uniformly distributed. To further validate the applicability of
our derivations under various network conditions, we
conduct experiments by varying the network density. Fig. 8
shows the experimental results under various network
densities. The number of sensor nodes is from 500 to 1,500
within a fixed monitored region (i.e., 500� 500 m2). As
shown in Fig. 8, when the network density is larger, the
optimal numbers derived from analytical models for mini-
mum latency and minimum energy (and thus, denoted by
Minimum Latency Model and Minimum Energy Model in
the figures, respectively) are very close to the optimal
numbers obtained empirically (denoted by Latency and
Energy in the figures, respectively). On the other hand, with a
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smaller network density, the difference between analytical
and experimental results is increased. This is because of the
voids appearing in networks with low network density.
While the analytical models may not be used directly in this
situation, they do provide good insight for network plan-
ning. Moreover, we may still choose to empirically deter-
mine the optimal number of sectors in this situation.

3.3 Analysis of Itinerary Structures

In this section, we analyze the performances of IKNN,
DIKNN, and PCIKNN in terms of the number of concurrent
query threads, the query latency, and the energy consump-
tion. Without loss of generality, we assume that sensor
nodes are uniformly distributed in the monitored region.
Moreover, the KNN boundary is known (i.e., it will be
derived as shown in Section 4). The radius R of the KNN
boundary is set to c� w, where c is the number of
concentric-circles in the KNN boundary and w is the width
of itineraries for query propagation and data collection. For
example, as shown in our illustrative example (see Fig. 4),
the radius of the KNN boundary is 4 � w since there are four
concentric-circles. Since the query latency and the energy
consumption are proportional to the length of itineraries,
we compare DIKNN and PCIKNN in terms of the length of
itineraries. Note that since DIKNN outperforms IKNN, we
only compare DIKNN and PCIKNN.

3.3.1 Number of Concurrent Query Threads

Fig. 3a shows the itinerary structure of IKNN proposed in
[24]. As shown, the number of concurrent query threads in
IKNN is 2. For DIKNN and PCIKNN, the number of sectors

directly affects the number of concurrent query threads. It
can be seen in Fig. 3b that only one itinerary exists in a
DIKNN sector, and hence, the number of concurrent query
threads in DIKNN is exactly the same as the number of
sectors. In each PCIKNN sector, there are one query thread
along the branch-segment and two query threads along the
peri-segments in each concentric-circle. Therefore, the
maximal number of concurrent KNN query threads is
ð2� cþ 1Þ � S. For example, if the number of sectors is set
to 4 and the number of concentric-circles is 4, we have 4 and
36 concurrent KNN query threads in DIKNN and PCIKNN,
respectively. Clearly, PCIKNN has more query threads than
IKNN and DIKNN.

3.3.2 Query Latency

The query latency is determined by the maximal length of
itineraries in DIKNN and PCIKNN. Therefore, we derive the
maximal length of itineraries shown by the dotted lines in
Fig. 3b (for DIKNN) and Fig. 4a (for PCIKNN) to represent
the analytical latency. As shown in Fig. 3b, the analytical
query latency of DIKNN, denoted by latencyDIKNN , is the
sum of the total lengths of concentric-circles in a sector and
the length of a branch-segment. Hence, we have

latencyDIKNN ¼
XRw
i¼0

ðLengthCiÞ þ Lengthbranch;

where the length of itinerary in the ith concentric-circle,
denoted by LengthCi , is formulated as 2�ði�wÞ

S , and the length
of branch-segment, expressed by Lengthbranch, is set to
ðc� 1

2Þ � w.
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Fig. 7. Comparison of the optimal number of sectors derived by analytical model to simulation results. (a) Minimum latency model. (b) Minimum
energy model.

Fig. 8. Models validation with the network density varied. (a) Minimum latency model. (b) Minimum energy model.



Because the query latency is affected by the maximal

length of itineraries, the analytical query latency of

PCIKNN, denoted by latencyPCIKNN , is derived as the

sum of the length of a peri-segment in the maximal

concentric-circle and the length of a branch-segment. Thus,

we have

latencyPCIKNN ¼ Lengthperi þ Lengthbranch;

where the length of the peri-segments represented as

Lengthperi is ��R
S in the farthest concentric-circle and the

length of a branch-segment, denoted by Lengthbranch, is

derived as ðc� 1
2Þ � w.

The analytical latency of DIKNN and PCIKNN is

compared by varying the number of sectors S (as shown in

Fig. 9a). It can be seen in Fig. 9a that the analytical latency in

DIKNN and PCIKNN decreases when the number of S

increases. As the number of sectors increases, the maximal

length of itineraries in both DIKNN and PCIKNN decreases.

As shown, the analytical latency of PCIKNN is smaller than

that of DIKNN. Thus, we expect PCIKNN to achieve a better

latency performance than DIKNN.

3.3.3 Energy Consumption

With a longer itinerary, the number of Q-nodes on the

itinerary and the amount of data carried are increased.

Thus, the analytical energy consumption is estimated as

S � energys, where energys is the energy consumption

within one sector and S is the number of sectors. Intuitively,

the value of energys can be derived by integrating the length

of itineraries and the amount of data carried. Denote the

length of itineraries in a sector by lengths. Since the amount

of data carried is directly proportional to the itinerary

length, we could use a continuous function of itinerary

lengths, denoted by Damountð�Þ, to model the energy

consumption. Hence, we have the following formula:

energys ¼
Z lengths

x¼0

DamountðxÞ � dðxÞ / ðitinerary lengthÞ2:

As shown, the analytical energy is a quadratic function

of itinerary lengths within a sector. The analytical energy of

DIKNN is formulated as the sum of the square of the total

lengths of concentric-circles in a sector and the length of a

branch-segment. Hence, we have the following:

energyDIKNN ¼ S �
XRw
i¼0

ðLengthCiÞ þ Lengthbranch

0
@

1
A2

:

Note that the itineraries for the data collection of PCIKNN
in a sector include a branch-segment and peri-segments.
When a KNN query propagating along a branch-segment
encounters a new concentric-circle, the KNN query is forked
into two KNN query threads along the two peri-segments.
Meanwhile, the data collected along the branch-segment are
equally divided into two parts for two new KNN query
threads. As a result, the amount of data carried along these
itineraries becomes smaller, thereby reducing the energy
consumption. The analytical energy of PCIKNN is formu-
lated as the sum of the square of each subitinerary (a partial
branch-segment and a peri-segment in a concentric-circle):

energyPCIKNN ¼

S �
XRw
i¼0

ðLengthperi;Ci þ Lengthbranch;CiÞ
2

0
@

1
A;

where the length of a peri-segment in the concentric-
circle Ci is Lengthperi;Ci ¼ Lengthperi ¼ ��R

S and the partial
branch-segment from a concentric-circle Ci�1 to its next
concentric-circle Ci is Lengthbranch;Ci (i.e., w).

In light of the analytical energy formulas for DIKNN and
PCIKNN, we compare the analytical energy results by
varying the number of sectors. As shown in Fig. 9b, both
DIKNN and PCIKNN have decreased the energy consump-
tion as the number of sectors increases. Furthermore,
PCIKNN has a smaller energy consumption than DIKNN.
From the above, we observe that PCIKNN obtains a smaller
query latency and the energy consumption than IKNN and
DIKNN. This is because PCIKNN achieves a good
parallelism by allowing as many concurrent KNN query
threads as possible.

3.4 Rotated Itinerary Structures of PCIKNN

In PCIKNN, partial results are returned along the return-
segments to the home node. A potential concern is that
sensor nodes along the return-segments may get their
energy exhausted faster than other sensor nodes. To
overcome this issue, we develop a rotated itinerary structure
in PCIKNN. Without loss of generality, we consider an
example, where the number of concentric-circles is 4 (i.e.,
C ¼ 4). Fig. 10 shows an example of a rotated itinerary
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structure in PCIKNN, where the bold line shows an
itinerary structure within a sector. As shown in Fig. 10, for
each concentric-circle, the branch-segment is rotated by �
degree. Assume that S is the number of sectors and C is the
number of concentric-circles. The rotation angle � is set to

2�
S�C such that the return-segments of all concentric-circles
are evenly distributed within a KNN boundary. The dotted
straight lines in Fig. 10 are the return-segments. For each
concentric-circle, sensor nodes along the return-segments
are different, and thus, the energy consumption of sensor
nodes along the return-segments is balanced. While the
rotated itinerary of PCIKNN deals with the energy exhaus-
tion problem of sensor nodes along the return-segments, the
query latency is slightly increased because the total length of
branch-segments in one sector is increased. Experimental
results to be presented later show that the rotated itinerary
of PCIKNN is effective since the overhead in query latency
is very low.

4 KNN BOUNDARY ESTIMATION

An overestimated KNN boundary leads to excessive energy
consumption and long latency, whereas an underestimated
KNN boundary deteriorates the accuracy of query results.
Thus, boundary estimation is very critical to itinerary-based
KNN query processing. Without a priori knowledge about
the network density and distribution of sensor nodes, it’s
challenging to obtain an accurate estimation of the KNN
boundary. To address this issue, DIKNN [22], [23] collects
network information during the routing path of KNN query
to derive the network density, which, in turn, is used to
estimate a KNN boundary. Clearly, how to determine the
network density precisely from the partial information
gathered in the routing phase is an important research issue.

Via a geo-routing protocol, such as GPSR, a KNN query
is greedily forwarded from the source node to the home
node. Let Ai denote the area covered by relaying messages
up to the ith hop and Num denote the total number of
nodes within the coverage area of the routing path. By
collecting the information for Ai and Num while the KNN
query moves hop by hop toward the home node, the
network density can be estimated.

Here, we describe how PCIKNN updates these two

values during the routing phase. Fig. 11a shows a message

transmitting from node Ni to node Niþ1. In the figure, the

gray area is the newly explored area, denoted by EAi. The

number of sensor nodes in EAi is denoted by inciþ1. By

adding inciþ1 to Num, we have the updated number of

nodes encountered so far. The value of EAi is formulated as

EAi ¼ �r2 �Hð2r� distðNi;Niþ1ÞÞ, where r is the transmis-

sion range of a sensor node, H(�) is a linear function, and

distðNi;Niþ1Þ is the euclidean distance between Ni and

Niþ1. From experiments shown in Fig. 12, we observed that

the intersected area between two sensor nodes is almost

negative correlated with distðNi;Niþ1Þ. Thus, in this paper,

to precisely estimate the intersection area between two

sensor nodes, we employ a linear regression technique to

formulate H(�) as follows:

HðdistðNi;Niþ1ÞÞ ¼ c1 þ c2 � distðNi;Niþ1Þ;

where c1 and c2 are coefficients determined by Leon [10].
Hence, the total area covered by relaying messages up to

the ith hop is as follows:

Ai ¼ EAi þAi�1; for i > 1 and A1 ¼ �r2:

When a KNN query reaches the home node, the network

densityD is formulated asD ¼ Num
A , whereA is the total area

covered by relaying messages from the source node. As a

result, the radius of KNN boundary is estimated as follows:

�R2 �D ¼ K

R ¼
ffiffiffiffiffiffiffi
K

�D

r
:

Although DIKNN [22], [23] also explores the network

density in estimating the KNN boundary region, an extra-list

is used to record collected local information in each hop

visited in the routing phase. This list, sent along with the

KNN query, incurs extra energy overhead. Furthermore,

DIKNN estimates KNN boundary by Algorithm KNNB in

[22] based on the collected local information. On the contrary,

PCIKNN utilizes a linear regression technique to estimate the

total area covered by sensor nodes. Our proposal is validated

by experiments and will be presented later.
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Fig. 10. A rotated itinerary structure in PCIKNN.

Fig. 11. Coverage areas estimated in the routing phase.



5 SPATIAL IRREGULARITY

Thus far, the analytical models and boundary estimation we
derived are based on an assumption that the sensor nodes
are uniformly distributed in the monitored region. How-
ever, as discussed before, spatial irregularity is likely to
occur in large-scale networks, resulting in communication
voids. The voids may deteriorate the accuracy of KNN
boundary estimation and KNN query results. Following up
the ideas previously explored in GPSR, we develop a
mechanism to bypass voids during KNN query propaga-
tion. Additionally, we develop another mechanism to
dynamically adjust KNN boundary.

5.1 Bypassing Void Regions in PCIKNN

In the scenario where a message (with the KNN query or
partial results) reaches a void region, the message needs to
find a way to bypass the void. Similar to GPSR, PCIKNN
adopts two modes (i.e., the greedy mode and the perimeter
mode) in the KNN query propagation. In the greedy mode, a
message is forwarded by selecting the sensor node making
the most progress toward the destination. When a void
region is encountered, PICKNN switches to the perimeter
mode. After bypassing voids, it changes back to the greedy
mode and continues to move forward. Since void regions
may appear in branch-segments, peri-segments, and return-
segments, we develop methods to bypass void regions,
correspondingly. Fig. 13 shows an example of bypassing
void region along the branch-segments and peri-segments,
where gray areas are void regions. In the figure, the bold and
dotted lines refer to the KNN query propagation along the
branch-segments andperi-segments, respectively. Also, the
black and gray nodes are Q-nodes and D-nodes, respectively.

When a KNN query reaches a void region on a branch-
segment, the KNN query is split into two KNN query
threads. To simplify our discussion, we call them the left
KNN query thread and the right KNN query thread. The
left KNN query thread continues to move forward by using
the left-hand rule to select the next Q-node close to the
branch-segment. The right KNN query thread acts similarly
based on the right-hand rule. If these two KNN query
threads reach a concentric-circle, both two KNN query
threads fork two additional KNN query threads and move
forward along the peri-segments. Note that after bypassing
void regions, both the left and the right KNN query threads
will merge into one KNN query that keeps propagating
along the branch-segment. If a void exists on a peri-
segment, the KNN query will decide which rule to use

according to the relative position of the peri-segment. If a
KNN query thread is on the left (or right, respectively) peri-
segment from the perspective of the propagating direction,
the KNN query thread will perform the left-hand (or right-
hand, respectively) rule. Similar to the bypassing method
for voids on peri-segments, a message carrying partial
results along return-segments decides its bypassing rules
based on the relative position of return-segments.

5.2 Adjusting Estimated KNN Boundary

The KNN boundary initially estimated at the home node may
actually contain less than K sensor nodes. Thus, there is a need
to adjust the KNN boundary when the KNN query reaches
nodes at the KNN boundary. In PCIKNN, partial results from
each sector are returned to the home node. Therefore, the
home node is able to decide whether the estimated boundary
should be further extended or not. Corresponding to the two
optimization objectives (i.e., the minimum energy mode or
the minimum latency mode), we develop two different
schemes for adjusting the KNN boundary.

5.2.1 KNN Boundary Adjustment for the

Min_Energy Mode

When a KNN query reaches a sensor node at the KNN
boundary, the KNN query will wait at the node for a control
message from the home node to signal whether the KNN
query should continue to the next concentric-circle or not.
Upon reception of all partial results from sectors within the
initial KNN boundary, the home node checks its data
collection against the query parameter K. If the number of
collected sensor readings is smaller than K, the home node
broadcasts a control message to inform the KNN query to
further propagate to the next concentric-circle in order to
collect more data. Note that the radius of the KNN boundary
is extended in a step-by-step manner to conserve energy. The
process of extending KNN boundary stops when the home
node has collected data from the K nearest sensor nodes.

5.2.2 KNN Boundary Adjustment for the

Min_Latency Mode

In this mode, the ultimate goal for PCIKNN is to minimize
the query latency. Thus, KNN boundary adjustment is
proceeded in an aggressive manner to reduce query latency.
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Fig. 13. An example of bypassing void regions in PCIKNN.

Fig. 12. Intersection covered area with various node distances.



The idea is to allow the KNN query to continue to propagate
toward outer concentric-circles as long as the home node
does not have sufficient data from the K nearest sensor
nodes. Specifically, when the KNN query arrives the KNN
boundary, the KNN query will hold for a period of time to
wait for the control message that indicates the updated
radius of KNN boundary. The holding time is set as the sum
of the latency of KNN query propagation along peri-
segments, the time of sending partial results along return-
segments, and the transmission time of broadcasting control
messages along branch-segments to the KNN query. In fact,
the holding time can be determined by our derivation in
Section 3.2.3. Different from the scheme for the Min_Energy
Mode, the KNN query will continue to propagate outward
when the holding time is expired. At the home node, some
partial results are returned as the KNN query propagates
along itineraries in each sector. Once the number of sensor
readings collected is equal to or larger than K, the radius of
the KNN boundary is updated as the distance between the
query point and the Kth nearest sensor node so far. The
updated KNN boundary is broadcasted along the branch-
segments to the KNN query. According to the updated
KNN boundary and the position of the KNN query, the
nodes holding KNN query determine whether they should
continue to propagate or not. If the KNN query is outside
the updated KNN boundary, this KNN query stops.
Otherwise, the KNN query will keep propagating.

6 PERFORMANCE EVALUATION

In this section, we develop a simulator to evaluate the
performance of PCIKNN, IKNN, and DIKNN. The
simulation model and parameter settings are presented
in Section 6.1 and the experimental results are reported in
Section 6.2.

6.1 Simulation Model

Our simulation is implemented in CSIM [17] and some
simulation settings are the same as the prior work [24].
There are 1,000 sensor nodes randomly distributed in a
500� 500 m2 region and the transmission range of a node is
40 m. For each sensor node, the average number of
neighboring nodes is 20 by default. The message delay for
transmitting or receiving messages is 30 ms. In our default
settings, sensor nodes are static. For each query, the location
of a query point q is randomly selected. The default value of
K for each KNN query is 100. A sensed datum is 4 bytes
long and the query result is not aggregated. The broad-
casting period of beacon messages is 3 s. A KNN query is
considered as answered when the query result is returned
to the source node. In each round of experiment, five
queries are issued from randomly selected source nodes.
Each experimental result is derived by obtaining average
results from 50 rounds of experiments.

Three itinerary-based KNN algorithms (i.e., PCIKNN,
IKNN, and DIKNN) are implemented. For a fair compar-
ison, we obtain the result of DIKNN for all possible number
of sectors and use the result of DIKNN with the minimum
latency/energy consumption. In PCIKNN, we show the
results for the minimum latency mode and the minimum
energy mode, respectively. We compare these three algo-
rithms in terms of energy consumption, query latency, and
query accuracy under various environment factors such as

the network density, the number of sample sizes (i.e., K for
KNN queries), the node mobility, and the failure rate of
nodes. Three performance metrics are defined as follows:

. Energy Consumption (Joules): The total amount of
energy consumed for processing a KNN query.

. Query Latency (milliseconds): The elapsed time
between the time a query is issued and the time the
query result is returned to the source node.

. Query Accuracy (percent): The ratio of the correct
sensor readings of K nearest sensor nodes to the
total number of sensor readings returned to the
source node.

6.2 Experimental Results

6.2.1 Impact of Network Density

First, we investigate the impact of network density on the
performance of examined algorithms. Here, the network
density is measured as the number of sensor nodes
deployed in a fixed monitored region (i.e., 500� 500 m2).
Thus, we investigate the impact of network density by
varying the number of nodes from 500 to 1,500. As a result,
the average number of neighbors for each node is varied
from 10 to 30. Fig. 14a shows that all three algorithms have
better query accuracy when the network density is
increased. However, when the network is sparse (i.e., the
number of nodes is smaller than 800 nodes), PCIKNN
outperforms IKNN and DIKNN. The reason is that the
itineraries in IKNN and DIKNN are longer than that in
PCIKNN. Thus, the KNN query on IKNN and DIKNN may
easily get dropped. Due to the high parallelism and short
length in itineraries, PCIKNN is very robust. Furthermore,
DIKNN does not have a way to ensure the accuracy of KNN
query results since all partial results are directly sent to the
source node. As a result, the query accuracy of DIKNN is
significantly affected by spatial irregularity. In a dense
network (i.e., the number of nodes is larger than 900 nodes),
both IKNN and PCIKNN have better query accuracy. As
can be seen in Fig. 14b, the latency of PCIKNN in both
minimum latency and minimum energy modes is the lowest
among these three algorithms, showing the strength of
concurrent KNN query propagation. In a dense network, the
latency of the three algorithms tends to decrease. Clearly,
the KNN boundary is small in a dense network, leading to a
short latency. Fig. 14c shows the energy consumption of the
three algorithms. PCIKNN has the lowest energy consump-
tion, showing the merits of itinerary design in PCIKNN.
Note that when the network density is smaller, there are
more voids in the monitored region. Fig. 15 depicts sensor
distributions under various network density settings. As
shown in Fig. 15a, void regions frequently appear in
networks with low network density. From the experimental
results observed above, PCIKNN has the best performance
under the settings with low network density because
PCIKNN has a mechanism to bypass voids.

6.2.2 Impact of the Sample Size

Next, we study the impact of the sample size K on
scalability of the three examined algorithms. Clearly, K
has a direct impact on the number of nodes involved in
query processing. In this experiment, the value of K is
varied from 50 to 400. The query accuracy of IKNN,
DIKNN, and PCIKNN is shown in Fig. 16a. It can be
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observed that the query accuracy of DIKNN is drastically
decreased as K increases. With a larger value of K, DIKNN
seriously suffers from spatial irregularity. This is because
the KNN query result obtained via each itinerary in DIKNN
is directly sent back to the source. On the other hand,
PCIKNN and IKNN have good query accuracy under
varied K because both IKNN and PCIKNN have built-in
mechanisms at the home node to ensure result accuracy.
The latency of the three algorithms tends to increase as K
increases. As can be seen in Fig. 16b, PCIKNN has the
smallest latency, validating our analytical model for mini-
mum latency of PCIKNN. Meanwhile, the energy consump-
tion of all algorithms tends to increase as K increases. This
is because the number of sensor nodes involved in KNN
query is increased. Still, PCIKNN has the smallest energy
consumption. Furthermore, PCIKNN with the minimum
energy mode (i.e., PCIKNN min_energy) indeed has the
minimal energy consumption, validating the correctness of

our optimization. Note that whenK is small, the perfor-
mance of DIKNN is very close to that of PCIKNN although
PCIKNN is still better. From the experimental results, we
could observe that when K is small, the performance of
DIKNN is almost the same as the PCIKNN in terms of the
query latency and the total energy consumption. On the
other hand, PCIKNN is significantly better than DIKNN
when the value of K is larger.

6.2.3 Impact of Node Mobility

We now conduct experiments with some mobile sensor
nodes. Clearly, sensor node movements have an impact on
the query accuracy. The moving speed of mobile sensor
nodes is varied from 1 to 15 m/s. The accuracy of query
results is shown in Fig. 17a. From Fig. 17a, the accuracy of
query results obtained by the three algorithms drastically
decreases as the moving speed increases. Clearly, with
faster moving speeds of mobile sensor nodes, the query
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Fig. 14. Impact of network density. (a) Query accuracy. (b) Query latency. (c) Energy consumption.

Fig. 15. Visualization of sensor distributions under various network density settings. (a) Low density. (b) High density.
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Fig. 16. Impact of K. (a) Query accuracy. (b) Query latency. (c) Energy consumption.

Fig. 17. Impact of node mobility. (a) Query accuracy. (b) Query latency. (c) Energy consumption.



accuracy is likely to decrease. The reasons are 1) the packet
loss of messages, including queries and partial results
increases, 2) the movements of sensor nodes influence the
KNN query result. Among the three algorithms, PCIKNN
has the best query accuracy. Equipped with high paralle-
lism in itinerary design, PCIKNN has the smallest query
latency. Hence, PCIKNN quickly captures the snapshot of
sensor nodes, leading to a better query accuracy. Fig. 17b
demonstrates the query latency under the three algorithms.
With faster moving speeds, the packet loss problem is more
serious, resulting in dropping of the KNN query. Thus, all
of the three algorithms need to wait for a longer time for the
query processing to complete due to the packet loss
problem. The energy consumption of the three algorithms
is shown in Fig. 17c. As can be seen in Fig. 17c, high moving
speeds of mobile sensor nodes result in more packet loss,
thereby increasing more energy consumption of sensor
nodes for resending packets. Similarly, with a smaller
length of itineraries in PCIKNN, PCIKNN with the
min_energy mode incurs a much smaller energy consump-
tion as well.

6.2.4 Impact of Node Failure

In this experiment, we investigate the impact of node failure
to the performance of three algorithms. The node failure
rate of sensors clearly affects the performance of KNN
query processing. Once nodes are failed, message drop-
pings occur, thereby affecting KNN query processing. For
example, a Q-node failure may result in the drops of KNN
query threads, decreasing the query accuracy. The node
failure rate is varied from 0 to 0.8 percent. Performance
study of these three algorithms is shown in Fig. 18. It can be
seen in Fig. 18a that PCIKNN has the best query accuracy,
which is still larger than 70 percent even when the node
failure rate is high (i.e., 0.8 percent). As shown in Figs. 18b

and 18c, the latency and energy consumption results of each
algorithm tend to increase when the node failure rate
increases. PCIKNN has a better performance since paralle-
lizing itineraries leads to a number of concurrent KNN
query threads and a smaller itinerary length for each KNN
query thread. Consequently, the risk of message dropping
is decreased, showing the strength of the parallelized
itineraries in PCIKNN. In addition, the design of collecting
partial results at the home node in PCIKNN increases the
KNN query accuracy.

6.2.5 Impact of Link Failure

In this experiment, we examine the impact of link failures to
the performance of IKNN, DIKNN, and PCIKNN. A link
failure may occur due to the mobility of sensor nodes or
environmental interferences in wireless sensor networks.
Clearly, a link failure results in the packet losses in wireless
sensor networks. Thus, we vary the packet loss rate, i.e., the
probability of packet losses during wireless transmissions,
to investigate the impact of link failures. With a higher
packet loss rate, the links become more unstable, leading to
more packet losses in transmissions. To deal with packet
losses, a sensor node replies an ACK message upon
reception of a message from another sensor node. If a
sender does not receive an ACK message from the receiver
after a predefined time-out period, the sender will resend
the same message until the ACK message is received. We
implement the above operation in IKNN, DIKNN, and
PCIKNN for comparison. The query accuracy of the three
algorithms is shown in Fig. 19a. As the packet loss rate
increases, the query accuracy of all the algorithms tends to
decrease. As shown, since PCIKNN collects partial results
at the home node, it achieves a better query accuracy than
IKNN and DIKNN. Furthermore, due to the multiple
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Fig. 18. Impact of node failure. (a) Query accuracy. (b) Query latency. (c) Energy consumption.



concurrent query threads in PCIKNN, the amount of data
transmission in each itinerary of PCIKNN is smaller than
that of IKNN and DIKNN. Thus, as shown in Fig. 19b, the
query latency of PCIKNN is better. The energy consump-
tion of the examined three algorithms is shown in Fig. 19c.
PCIKNN with the minimum latency mode may have more
KNN query threads, which increases the number of re-sent
packets. On the other hand, PCIKNN with the minimum
energy mode still has the best performance in terms of
energy consumption.

6.2.6 Impact of Noisy Data

In wireless sensor networks, some noisy data may occur in
transmissions. When a noise occurs, the data are likely to
contain some errors. To detect such errors occurred in
wireless transmissions, one could utilize some existing error
detection methods. In this paper, we utilize Cyclic Redun-
dancy Check (CRC), a well-known error detection method in
telecommunication, to detect possible errors occurred in
transmissions. Each message includes a corresponding CRC
code determined based on its message content. Upon
receiving a message, a sensor node will check the CRC
code to verify the correctness of messages received. If this
sensor node finds an error by the evaluation of CRC codes, a
retransmission is required. To simulate the noisy environ-
ment, a noisy data rate, which is the probability of having
noisy data during message transmissions, is varied to study
its impact on IKNN, DIKNN, and PCIKNN. With a higher
noisy data rate, messages are likely to have more noisy data
during message transmissions. The accuracy result of the
examined algorithms is shown in Fig. 20a. PCIKNN has the

best accuracy in both modes due to the design of collecting
partial results at the home node. The latency and energy
results are shown in Figs. 20b and 20c. It can be seen in
Fig. 20b that the latency of IKNN, DIKNN, and PCIKNN is
increased. This is due to the retransmissions incurred in a
noisy environment. Furthermore, the energy consumption
of all the three algorithms is slightly increased along with
the increased noisy data rate. Clearly, with a higher noisy
data rate, the more message transmissions are incurred.

6.2.7 KNN Boundary Estimation and Maintenances

To evaluate the proposed KNN boundary estimation
technique, we set the value of K to be 300. To avoid the
effect of network boundary, query points in the middle
region (i.e., 100 m� 100 m) are selected. The linear regres-
sion function of PCIKNN is set to HðdistðNi;Niþ1ÞÞ ¼
ð�76:9166� distðNi;Niþ1Þ þ 4;999:0903Þ by linear regression
technique in [10]. The optimal KNN boundary is the average
distance of the Kth distant nodes of all queries derived by
the experiments. As shown in Fig. 21, PCIKNN is very close
to the optimal KNN boundary under various network
density. However, the boundary estimated in DIKNN does
not fit well with the trend of the optimal KNN boundary.
Moreover, in Fig. 21, when the number of nodes is smaller
than 800, the KNN boundary estimated in DIKNN is smaller
than the optimal value because the KNN boundary is large
and the routing path from the source node to the home node
is not long enough to estimate a region contained K sensor
nodes.

In addition, we further evaluate the performance of the
two schemes we proposed for adjusting the KNN boundary
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Fig. 19. Impact of link failure. (a) Query accuracy. (b) Query latency. (c) Energy consumption.



in PCIKNN. We set the value of K to be 300, and the result is
shown in Fig. 22. It can be seen in Fig. 22 that, when the
value of K increases, the query accuracy is worsen if the
KNN boundary is not adjusted by the home node. This is
because whenK increases, the gap between the real KNN
boundary and the estimated boundary increases, and thus,
affecting the accuracy of KNN query significantly.

6.2.8 Rotated Itinerary Structures

As mentioned before, when K is larger, the energy of sensor
nodes along return-segments is likely to drain out. To deal
with this problem, we propose rotated itineraries. In this
experiment, we evaluate this proposal by varying the value
of K from 50 to 400. As shown in Fig. 23a, PCIKNN with
rotated itineraries has a high query accuracy. Fig. 23b depicts
the query latency under PCIKNN and PCIKNN with rotated
itineraries. As shown, the latency of PCIKNN with rotated

itineraries slightly increases because the length of branch-

segments is increased. It can be seen in Fig. 23c that the total

energy consumption of PCIKNN and PCIKNN with rotated

itineraries is almost the same. Thus, both PCIKNN and

PCIKNN with rotated itineraries consume a similar amount

of energy since all sensor nodes within the same KNN

boundary are involved. However, from the standard devia-

tion of energy consumption shown in Fig. 23d, it can be seen

that PCIKNN with the rotated itineraries has a more balance

energy consumption distribution in both the minimum

latency and the minimum energy mode.

7 CONCLUSION

In this paper, we propose an efficient itinerary-based KNN

algorithm, namely PCIKNN, for KNN query processing in a
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Fig. 20. Impact of noisy data. (a) Query accuracy. (b) Query latency. (c) Energy consumption.

Fig. 21. KNN boundary estimation of DIKNN and PCIKNN. Fig. 22. Performance of KNN boundary adjustments in PCIKNN.



wireless sensor network. The basic idea of PCIKNN is to

disseminate a KNN query and collect data along predesigned

itineraries with “high parallelism.” We derive analytical

models in terms of the query latency and the energy

consumption for PCIKNN. Accordingly, PCIKNN is able to

determine the number of sectors for a given KNN query. To

deal with the spatial irregularity, we developed methods to

bypass voids and to dynamically adjust the KNN boundary.

In addition, via linear regression, PCIKNN obtains an

estimated KNN boundary very close to the optimal. Due to

the design of returning all partial results to the home node in

PCIKNN, we further proposed a rotated itinerary structure

for PCIKNN to alleviate the energy exhaustion issue along

the return-segments. Extensive experiments have been

conducted and impact analysis on several important factors,

including network density, node failure, and mobility of

sensors, is conducted. Experimental results show that

PCIKNN significantly outperforms the existing itinerary-

based KNN query processing techniques in terms of energy

consumption, query latency, query accuracy, and scalability.
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