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In this study, we numerically investigate the lowest instability boundary of nonaxisymmetric
Taylor vortex flow (TVF) for different axial wavenumbers. The variation in the axial wavenumber
of a supercritical TVF can affect the instability of the flow, because the wavelength of a Taylor
vortex is constant only when the flow is axisymmetrical. When the nonaxisymmetric TVF is
transformed to a wavy vortex flow (WVF), the instability boundary is changed with the variation
in the axial wavenumber. We carry out an instability analysis of the nonaxisymmetric TVF
between two concentric rotating cylinders, which have a radius ratio of 0.88.
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1. Introduction

After the Taylor vortex flow (TVF) problem had
teetered on the brink of being classified as a non-
linear problem for many years, Coles [1965] was
the first to report on the nonuniqueness of the
wavy vortex flow (WVF) in the Taylor–Couette
flow. The entire pattern of wavy vortices moves
with a uniform velocity in the azimuthal direc-
tion. Since the term “wavy” is typically associated
with motion that includes periodic vertical oscilla-
tions, this study emphasizes that WVF move in the
azimuthal direction as rings that have k1 fixed sinu-
soidal upward and downward deformations, where
k1 is an integer number of azimuthal waves. WVF
was observed by Taylor [1923], Lewis [1928], Coles
[1965], and Schultz-Grunow and Hein [1956]; how-
ever, they were not recognized as a characteris-
tic feature of the flow. After Coles’ preliminary
results were published, WVF was also observed
by Nissan et al. [1963]. Schwarz et al. [1956] con-
ducted experiments in which a nonaxisymmetric
mode with azimuthal wavenumber k1 = 1 was
observed.

Burkhalter and Koschmieder [1929] found that
in the case of large radius ratios, the wave-
length of axisymmetrical vortices is independent of
the Reynolds number in fluid columns of infinite
length; the Reynolds number in such fluid columns
increases quasi-statically. However, the wavelength
of Taylor vortices is constant only as long as the flow
is axisymmetrical. Jones [1985] presented the insta-
bility boundary for an axial wavenumber of 3.13,
the critical value for a quasi-static transition, for a
wide range of radius ratios. Jones [1985] considered
the problem of calculation of nonlinear axisymmet-
rical Taylor vortices. A spectral method together
with Newton–Raphson iterations was used to solve
the nonlinear algebraic equations.

While Taylor’s study analyzed Tayor–Couette
flow under supercritical conditions, Stuart [1958]
observed that the shape, i.e. the size, of the vor-
tices remains unchanged above the critical Reynolds
number. Numerous studies (see [Ahlers et al., 1982;
Andereck et al., 1986; Coles, 1965; Park et al., 1981;
Burkhalter & Koschmieder, 1929, 1973; Antoni-
joan, 2002]) have demonstrated the importance of
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considering the acceleration/deceleration of the flow
in determining the final state of the flow. These
vortices have axial wavelengths that are different
from those of vortices observed after a quasi-static
transition. The present study demonstrates that
the instability boundary occurs at a critical wave-
length corresponding to the quasi-static transition
in addition to another wavelength. These solutions
are related to the standard Taylor vortices and can
be obtained quasi-statically for certain radius ratios
when a mechanism is used for modifying the axial
wavelength (see [Hall, 1979]).

2. Numerical Method

The system geometry is specified by the inner radius
R1 and outer radius R2 of the cylinders with an
infinite aspect ratio. Ri = R1Ω1d/ν and Ro =
R2Ω2d/ν are the Reynolds numbers in the case
of the inner and outer cylinder rotations, ν is the
dynamic viscosity, Ω1 and Ω2 are the angular veloc-
ity of the inner and outer cylinder rotations and
d = R2−R1 is the gap of the cylinders, respectively.
The dimensionless parameters in this problem are
the radius ratio η = R1/R2, axial wavenumber α,
and axial wavelength λ(λ = 2π/α) (see Table 1).
First, the TVF is solved numerically. The solu-
tions to the Navier–Stokes equations are determined
using a pseudo-spectral Fourier–Chebyshev colloca-
tion method, taking advantage of the orthogonality
properties of Chebyshev polynomials and assuming
exponential convergence. The space can be defined
as Tn(ξ) = cos(n · cos−1 ξ), and φn is a base func-
tion that satisfies the boundary conditions. φn is
expressed as

φn(ξ) = Tn − [1 − (−1)n]
T1

2
− [1 + (−1)n]

T0

2
,

n = 2, 3, 4, . . . (1)

where ξ ∈ [−1, 1]. The domain of r in the govern-
ing equation is transformed from η/(1 − η) ≤ r ≤
1/(1 − η) to −1 ≤ ξ ≤ 1 through the relational
equation ξ = 2r− (1 + η)/(1− η). The time scheme

Table 1. Notations.

Dimensionless Parameters

Ri Reynolds number of inner cylinder rotation λ Axial wavelength
Ro Reynolds number of outer cylinder rotation Ta Taylor number
η Radius ratio k1 wavenumber of the perturbation in the azimuthal direction
α Axial wavenumber k2 wavenumber of the perturbation in the axial direction

is semi-implicit and second-order accurate. It corre-
sponds to a combination of the second-order back-
ward implicit Euler scheme (for the time term) and
an explicit Adam–Bashforth scheme (for the nonlin-
ear terms). The discretized form of the momentum
equation is

3Vj+1 − 4Vj + Vj−1

2δt

+ 2(Vj · ∇)Vj − (Vj−1 · ∇)Vj−1

= −∇pj+1 +
1
Re

∆Vj+1 (2)

where V = (V r, V θ, V z) and j is the solution at
time tj = jδt, δt being the time step. We assume
infinite cylinders with fix rotational speed and a
periodic solution in the axial direction. The bound-
ary conditions are

V r = V z = 0, V θ = Ri at ξ = −1, and

V r = V z = 0, V θ = Ro at ξ = 1 (3)

The flow velocity and pressure profile of the super-
critical TVF are obtained using the following
equations:

V r =
M−1∑
m=0

N+1∑
n=2

Amnφn(ξ) cos mαZ (4)

V θ =
=
V (r) +

M−1∑
m=0

N+1∑
n=2

Bmnφn(ξ) cos mαZ (5)

V z =
M∑

m=1

N+1∑
n=2

Cmnφn(ξ) sin mαZ (6)

p =
M−1∑
m=0

N−1∑
n=0

DmnTn(ξ) cos mαZ (7)

Here, M and N are the number of terms in the
Fourier series expansion and Chebyshev polyno-
mial expansion, respectively, and Amn, Bmn, Cmn

and Dmn are amplitude coefficients.
=
V (r) is the

basic flow velocity of one-dimensional Couette flow.
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The momentum and continuity equations are trans-
formed into an algebraic equation, which can be
expressed as a matrix equation:




A11 0 0 A14

0 A22 0 0

0 0 A33 A34

A41 0 A43 0







Amn

Bmn

Cmn

Dmn




i+1

=




F1

F2

F3

0




i,i−1

(8)

The matrix equation represents a system of equa-
tions with (4 × M × N)2 unknown parameters. The
coefficients Amn, Bmn, Cmn and Dmn are deter-
mined iteratively until the convergence condition
is satisfied. When the cylinders rotate with a fixed
rotational speed, the convergence condition is

∣∣∣∣
Ai

mn − Ai−1
mn

Ai+1
mn

∣∣∣∣ < 10−4 (9)

The coefficient that satisfies the convergence
condition is substituted in the appropriate equa-
tion among Eqs. (4)–(7); the speed and pressure
in each time interval can then be determined. If
the cylinders rotate periodically, the largest value
of axial speed attained in a particular time interval
at a selected observation point in the flow is com-
pared with the axial speed in the preceding time
interval. If the difference is less than 10−4, then the
convergence condition is considered to be fulfilled.

The instabilities of supercritical TVF are stud-
ied by introducing disturbances in the nonlinear
TVF. This flow type is expressed as follows:

f(Vr, Vθ, Vz, p) = f(V r, V θ, V z, p)
+ f ′(V ′

r, V
′
θ, V

′
z, p

′) (10)

where f denotes the flow velocity and pressure pro-
file of the supercritical TVF and f ′ represents the
perturbations. The equations employed for the anal-
ysis, only out-of-phase wavy modes are investigated,
of perturbations in normal modes are as follows:

V ′
r =

Q∑
q=1

S+1∑
s=2

aqsφs(ξ) sin qαZ

· exp[στ + i(k1θ + k2Z)] (11)

V ′
θ =

Q∑
q=1

S+1∑
s=2

bqsφs(ξ) sin qαZ

· exp[στ + i(k1θ + k2Z)] (12)

V ′
Z =

Q−1∑
q=0

S+1∑
s=2

cqsφs(ξ) cos qαZ

· exp[στ + i(k1θ + k2Z)] (13)

p′ =
Q∑

q=1

S−1∑
s=0

dqsTs(ξ) sin qαZ

· exp[στ + i(k1θ + k2Z)] (14)

Here, Q and S are the number of terms in the
Fourier series expansion and Chebyshev polynomial
expansion, respectively. k1 (an integer) and k2 (a
real number) are wavenumbers of the perturbations
in the azimuthal and axial directions, respectively,
and aqs, bqs, cqs and dqs are amplitude coefficients.

The dimensionless Navier–Stokes and continu-
ity equations are as follows:

∂tf + f · ∇f = −∇p + ∆f , ∇ · f = 0 (15)

The boundary conditions are

f ′ = 0 at ξ = −1 and ξ = 1 (16)

Substituting Eq. (10) into Eq. (15) and linearizing
the dimensionless Navier–Stokes equation, we can
obtain the characteristic perturbation equations,
which constitute a generalized eigenvalue problem:

AX = σBX, A =




A11 A12 A13 A14

A21 A22 A23 A24

A31 0 A33 A34

A41 A42 A43 0


 ,

B =




B11 0 0 0
0 B22 0 0
0 0 B33 0
0 0 0 0


 ,

X =




aqs

bqs

cqs

dqs




(17)

Here, A and B are complex matrices that
depend on k1 and k2, and the eigenvector X con-
tains the amplitudes of the eigenfunctions. The sta-
bility of the flow can be determined by the real
part of the growth rate of a complex disturbance
σ. When σr < 0, the entire flow is stable. The dis-
turbance decreases with an increase in time. When
σr > 0, the disturbance increases with time and the
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flow becomes unstable. When σr = 0, the flow has
neutral stability.

The eigenvalue of the generalized eigensystem
is obtained by using the subroutine DGVLCG in
the IMSL library, which determines all eigenvalues
with a high level of accuracy. Ri is searched on the
neutral stable curve, i.e. the curve on which the real
part of the most unstable eigenvalue vanishes, using
the secant method; this method requires two initial
guesses. The iteration is not terminated until the
real part of the most unstable eigenvalue is less than
10−6. The Ri values for different axial wavenum-
bers can be obtained for neutral stable states. The
minimum Reynolds number is called the critical
Reynolds number and corresponds to the critical
axial wavenumber.

3. Results and Discussion

Theoretically, the greater the number of terms in
the Fourier series expansion and Chebyshev poly-
nomial expansion, the higher is the accuracy of
the eigenvalues determined; however, the use of
too many terms will render the computation time-
consuming. Therefore, the best option is to consider
the least number of terms in the expansion that
can provide the required accuracy. A comparison
was made between the values obtained from the M
and N terms in the computational model of the
TVF used in this study and the values obtained by
Jones [1985] for the case where the inner cylinder
rotated at a constant velocity and outer cylinder is
stationary. Jones [1985] used the Taylor number to
obtain the rotational velocity of the inner cylinder;
the velocities obtained by Jones [1985] are listed in
Table 2.

When a low Ri (Ri = 72.5) is derived, both
M and N are increased to 6 terms and each veloc-
ity component of the flow field converges to 0.19%.
However, when a high Ri (Ri = 259.8) is derived,
both M and N are increased to more than 10 so
that each velocity component of the flow field can
converge to 0.14%. These results are in agreement
with those obtained by Jones [1985]. As shown in
Table 2, in this study, the number of terms consid-
ered for the computation of the eigenvalues of the
TVF (M,N) and WVF (Q,S) is ten.

Figure 1 shows the numerical result (with
k2 = 0) together with the experimental data
obtained by Ahlers et al. [1982]. Each symbol (solid
circle) corresponds to a solution in their study
(onset of the WVF at k1 = 3). The range of axial

Table 2. When the outer cylinder is stationary and the
inner cylinder is revolving at a constant velocity, the radial
velocity at the observatory point is η = 0.5 (ξ = 0, Z = 0)
(Ta = 2(1 − η)R2

i /(1 + η)).

Ri

Ta 72.5 106.1 150 212.1 259.8
M × N (3500) (7500) (15000) (30000) (45000)

4 × 4 4.6991 17.5775 — — —
5 × 5 3.9956 17.1988 30.5700 41.92323 —
6 × 6 4.2333 17.8566 32.8350 52.7493 67.0024
7 × 7 4.2253 17.9733 33.5851 52.8491 69.8342
8 × 8 4.2340 17.9840 33.5712 54.9975 70.7955
9 × 9 4.2376 17.9733 33.6452 55.5914 71.8347

10 × 10 4.2354 17.9840 33.6900 55.6550 72.2764
11 × 11 4.2347 17.9840 33.6754 55.6763 72.3803
12 × 12 4.2354 17.9840 33.6754 55.6975 72.4063
13 × 13 4.2354 17.9840 33.6754 55.6975 72.4063

Study of 4.2336 17.9733 33.6768 55.7187 72.2764
Jones [1985]

wavenumbers considered is 2.6–4.0 and the range of
Ri/Ri,c is 0.8–2.0. Ri,c is the critical value of Ri, i.e.
the value at which the axisymmetrical TVF occurs.
The model used in the present study assumes that
the WVF are perfectly periodic in the axial direc-
tion and thus ignores the end effects. This model is
similar to that developed by Ahlers et al. [1982]. A
comparison of the model used in the present study
with the models developed by Park [1984] and Jones
[1981] indicates that the agreement between exper-
imental and theoretical values for k1 = 2 is good.
k1 = 3 is out of the scope of Jones [1981] and this
study (see Table 3).

The regime diagram of the onset of WVF was
determined by Coles [1965]. The Coles’ result is a

Fig. 1. Experimental curves for the onset of WVF for η =
0.893.
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Table 3. Comparison of experimental and theoretical values for η = 0.782.

Numerical Method

Experiment (Park [1984]) Study of Jones [1981] This Study

Onset of k1 = 1 Not observed 110 109.5
Onset of k1 = 2 137.3 120 119.5
k1 = 2 gone 161.3 163 167.5
k1 = 1 gone Not observed 169 167.8
Onset of k1 = 3 322 None None

(a)

(b)

Fig. 2. Lowest stability boundary for different azimuthal
wavenumbers k1 corresponding to nonaxisymmetric TVF
that is transformed to a WVF (a) for Ri versus Ro (b) for
Ri/Ri,c versus Ro.

remarkable confirmation of Taylor’s [1923] stabil-
ity diagram for the onset of axisymmetric TVF as
a function of the rotation rate of both cylinders.
The nonaxisymmetric TVF will be transformed
to WVF when the rotational speed of the cylin-
ders exceeds the critical value Ri,c, the instability
boundary will be changed with different axial wave-
length, rotational direction and speed of the cylin-
ders. In this study, we consider the case wherein
η = 0.88, α = 2.7–3.5, and k1 = 1–3, and we solve
the lowest instability boundary of TVF for two con-
centric rotating cylinders. Figure 2(a) shows that
the TVF is more stable during corotation rather
than counterrotation of the cylinders. In the case
of flow in corotational cylinders, the lowest insta-
bility occurs when Ri/Ri,c = 2–4 for 0 < Ro < 400;
however, Ri/Ri,c = 1.31 for Ro = 0. The numeri-
cal result is in good agreement with that obtained
by Coles [1965]. However, with regard to the flow
in the case of counterrotating cylinders, the insta-
bility boundary, with various azimuthal wavenum-
bers k1 = 1–3 and axial wave numbers α = 2.7–3.5,
is different from that of axisymmetric TVF. Fig-
ure 2(b) shows that the lowest TVF instability
boundary occurs when the rotational speed of the
outer cylinder is (1) −290 ≤ Ro ≤ 0 for k1 = 1
or 2, (2) −1000 ≤ Ro ≤ −290 for k1 = 3, and
(3) −1300 ≤ Ro ≤ −1000 for k1 = 2 or 3. When
Ro(−4000 ≤ Ro ≤ −1300) increases gradually for
any value of k1, the instability of TVF is occurrs
immediately by Ri/Ri,c = 1.006−1.06.

4. Conclusion

We investigated the lowest stability boundary in the
case of different azimuthal wavenumbers k1 corre-
sponding to a nonaxisymmetric TVF that is trans-
formed to a WVF. The effect of the variation of the
axial wavenumber of a TVF on the instability of
the flow can be studied by using an infinite cylinder
approximation. The axial wavenumber is considered
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as an external parameter and is not determined the-
oretically, but is measured experimentally. In some
apparatuses, such as those used by King and Swin-
ney [1982], fluid can be added or removed even
during the rotation of the cylinders, thereby allow-
ing direct control of the axial wavelength. In the
present study, we determined a new lowest stabil-
ity boundary curve for the transition from a super-
critical TVF to a WVF. This curve differs from
that obtained by Coles [1965], who assumed that
the TVF was axisymmetric and that the Reynolds
number of the cylinders increased quasi-statically.
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