第四章 紫質衍生物官能化-二氧化鈦 的光譜及動力學

近年來,科學家致力於開發新能源取代石油。他們發現將光敏劑(photosensitizer) 塗佈到半導體(semiconductor)二氧化鈦(TiO₂)薄膜上做成元件,應用在將太陽能轉 換為光能的儲存上,具有高潛力的發展性。^[1-10]金屬紫質在可見光範圍內具有很大的吸 收值,尤其是在波長400到700nm之間,是一極佳的光敏劑。在太陽能電池應用上,金 屬紫質分子吸收太陽光,電子被激發到激發態上,並經由金屬紫質轉移到TiO₂薄膜上。

在本實驗中,我們利用紫質衍生物 ZnCATPP、ZnCAPEBPP 及 ZnCA(PE)₂BPP 當做 光敏劑,將其塗佈在 TiO₂薄膜上,其分子上的羧基以共價健形式鍵結到 TiO₂ 奈米結構 上。以波長為 405、435 nm 的二極體雷射作為激發光源,利用時間相關單光子計數系統 進行時間-解析螢光光譜的測量,觀測分子間電子及能量轉移的過程。

4.1 H₂CATPP、ZnCATPP、ZnCAPEBPP 及 ZnCA(PE)₂BPP

H₂CATPP 分子的結構為 H₂TPP 的其中一苯環對位位置上接上一羧基結構; ZnCATPP 分子的結構則為 H₂CATPP 分子的紫質環中心位置以一鋅(Ⅱ)離子取代兩個

1896

^[1]Kalyanasundaram K., Gratzel M., Coord. Chem. Rev. 1998, 77, 347-414.

^[2] Gregg B. A., Fox M. A., Bard A. J., J. Phys. Chem. 1990, 94, 1586-1598.

^[3] Gregg B. A., J. Phys. Chem. B 2003, 107, 4688-4698.

^[4] Kalyanasundaram K., Vlachopoulos N., Krishnan V., Monnier A., Gratzel M., J. Phys. Chem. 1987, 91, 2342-2347.

^[5] O'Regan B., Gratzel M., Nature 1991, 353, 737-740.

^[6] Hagfeldt A., Gratzel M., Acc. Chem. Res. 2000, 33, 269-277.

^[7] Ashbury J. B., Ellingson R. J., Ghosh H. N., Ferrere S., Nozik A. J., Lian T., J. Phys. Chem. B 1999, 103, 3110-3119.

^[8] Kay A., Gratzel M., J. Phys. Chem. 1993, 97, 6272-6277.

^[9] Kay A., Humphry-Baker R., Gratzel M., J. Phys. Chem. 1993, 97, 6272-6277.

^[10] Jasieniak J., Johnston M., Waclawik E. R., J. Phys. Chem. B 2004, 108, 12962-12971.

氫原子; ZnCAPEBPP 分子的結構為 ZnBPP 第三個 meso 位置上接上一個炔基(ethynyl) 和一個苯基 (phenyl),再於苯基對位位置上接上羧基; ZnCA(PE)₂BPP 分子的結構則 為將 ZnCAPEBPP 及 TiO₂ 薄膜間的距離以交互接上一炔基和一苯基做延長(如第一章、 圖 1-3 所示)。這些紫質分子皆以一共軛雙鍵的側鏈鍵結在 TiO₂ 薄膜上。在此實驗系統 中,我們藉以比較該側鏈長度的不同對分子內電子轉移的影響。

4.2 吸收及螢光光譜

圖 4-1 所示為 ZnBPP、ZnCAPEBPP 及 ZnCA(PE)₂BPP 四氫呋喃溶液的吸收、螢光 光譜的測量,其激發波長分別為 405、435 及 435 nm。和 ZnBPP 的吸收及螢光光譜相較 下,ZnCAPEBPP 及 ZnCA(PE)₂BPP 的光譜有明顯的紅位移。圖 4-2 所示為 ZnTPP 及 ZnCATPP 四氫呋喃溶液的吸收、螢光光譜,其激發波長為 405 nm。圖 4-3 所示為 H₂TPP 及 H₂CATPP 四氫呋喃溶液的吸收、螢光光譜,其激發波長為 405 nm。H₂CATPP 分子的 結構為 H₂TPP 的其中一苯環對位位置上接上一羧基結構,由圖 4-3 比較兩者的吸收及 螢光光譜發現:其苯環對位位置上的取代基對其光譜產生的影響不大,該取代基並未造 成紫質環上共軛π電子系統的延伸,其原因歸咎為紫質環及苯環並不在同一平面上,其 大的二面角夾角 (dihedral angle)使此π電子系統不共振。^[11]如圖 4-2 所示,ZnTPP 及 ZnCATPP 的吸收、螢光光譜亦十分相近。

4.3 ZnCATPP、ZnCAPEBPP及ZnCA(PE)2BPP在溶液中及TiO2薄膜上的测量結果

利用 435 nm 二極體雷射激發 ZnCAPEBPP 分子到 S₂ 激發態上,並觀測其光緩解的 過程。如圖 4-4 所示為 ZnCAPEBPP 溶於四氫呋喃溶劑中所測得的時間-解析螢光光 譜,其短時間範圍常數 τ₁ 指派為分子由 S₂ 激發態快速緩解到 S₁ 激發態上的過程;其 長時間範圍常數 τ₂則指派為系統間轉換的過程。將 ZnCAPEBPP 分子塗佈在 TiO₂ 薄膜 上時,測得長時間範圍過程的貢獻 (contribution) 銳減。比較在兩個情況下所測得的結

^[11] Fleischer E. B., J. Am. Chem. Soc., 1963, 85, 1353.

圖 4-2. ZnTPP 及 ZnCATPP 四氫呋喃溶液的吸收、螢光光譜。樣品濃度為1×10⁻⁶M, 螢光光譜的測量, 其激發波長為 405 nm。

圖 4-3. H₂TPP 及 H₂CATPP 四氫呋喃溶液的吸收、螢光光譜。樣品濃度為1×10⁻⁶M,螢

圖 4-4. ZnCAPEBPP 在四氫呋喃溶液($C_M = 1 \times 10^{-6} M$)及 TiO₂ 薄膜上的時間-解析螢光光 譜比較。激發波長為 435 nm, 偵測波長位置為 620 nm。

果:ZnCAPEBPP 在四氫呋喃溶液中所測得系統間轉換過程為 2.4 ns ,在 TiO₂ 薄膜上 則為 0.5 ns,當分子塗佈在 TiO₂薄膜上時,後面過程的生命期變短,我們推測原因有二: 一為電子由 S₂激發態轉移到 TiO₂薄膜上;一為分子產生聚集而導致分子間能量轉移的 現象發生。

由於將紫質分子塗佈在玻璃上,可以排除電子轉移的過程,因此我們將紫質分子 塗佈在玻璃上進行時間-解析螢光光譜的測量,如圖 4-4 所示,我們由光譜觀測到:系 統間轉換過程的生命期仍然銳減,因此,我們推測原因為:分子在固態情況下產生聚集, 因此產生分子間能量轉移的現象。

另一方面,我們參考本實驗室駱立揚學長的實驗結果:將樣品混於聚合物 poly(methyl methacrylate)(以下簡稱 PMMA)後塗佈在玻璃上所測得的光物理性質。^[12] 將紫質分子與 PMMA 充分混合後,分子不易形成聚集,均勻分散於 PMMA 的環境中, 此時測得系統間轉換過程的生命期為 2.3 ns,與在溶液中所測得結果相一致,由此證實: 當紫質分子塗佈在 TiO₂ 薄膜及玻璃上時,分子容易進行堆疊,分佈較為緊密,產生分 子間能量轉移的現象,因此光譜中觀測到系統間轉換過程的生命期銳減。

然而,電子被激發到 S₂激發態後,電子轉移到 TiO₂薄膜上的過程,發生在短時間 的衰減常數,無法經由 TCSPC 進行解析,需利用時間解析度更高的儀器進行實驗,這 部分的研究由本實驗室駱立揚學長所進行。^[12]

圖 4-5、6 所示為將 ZnCA(PE)₂BPP 及 ZnCATPP 配置於溶液中以及塗佈在 TiO₂ 薄膜上的時間-解析螢光光譜,也得到相類似的結果。其擬合結果如表 4-1、4-2、4-3 所 示。

^[12] 本實驗室未發表結果。

圖 4-6. ZnCATPP 在四氫呋喃溶液($C_M = 1 \times 10^{-6} M$)及 TiO₂ 薄膜上的時間-解析螢光光譜 比較。激發波長為 405 nm, 偵測波長位置為 620 nm。

表 4-1. ZnCAPEBPP 的 TCSPC 擬合結果^a

ZnCAPEBPP	短時間的衰減常數 τ_1 (ps)	長時間的衰減常數 τ_2 (ns)
在四氫呋喃溶液中 ^b	< 90	2.4
在 TiO ₂ 薄膜上	< 90	0.5
塗佈在玻璃上	< 90	
PMMA 塗佈在玻璃上 °	< 90	2.3

^a激發波長為 435 nm,輻射波長為 620 nm。^b樣品濃度為1×10⁻⁶*M*。^c 參考本實驗室駱立 揚學長的實驗結果。

表 4-2. ZnCA(PE)2BPP 的 TCSPC 擬合結果 a				
ZnCA(PE) ₂ BPP	短時間的衰減常數 t1 (ps)	長時間的衰減常數 t ₂ (ns)		
在四氫呋喃溶液中 b	90 miles	2.3		
在 TiO2 薄膜上	< 90	0.3		

^a激發波長為 435 nm,輻射波長為 620 nm。^b樣品濃度為 $1 \times 10^{-6} M$ 。

表 4-3. ZnCATPP 的 TCSPC 擬合結果^a

ZnCATPP	短時間的衰減常數 τ_1 (ps)	長時間的衰減常數 τ_2 (ns)
在四氫呋喃溶液中 ^b	< 70	1.9
在 TiO2 薄膜上	< 70	0.8

^a激發波長為 405 nm,輻射波長為 620 nm。^b樣品濃度為 $1 \times 10^{-6} M$ 。