The Photophysics and Photochemistry of Porphyrins in solution and on TiO₂ crystalline thin film

Student : Chia-Chen Chiang

Advisor : Dr. Eric Wei-Guang Diau

Institute of Applied Chemistry National Chiao Tung University

ABSTRACT

With picosecond resolution, using time-correlated single photon counting (TCSPC), we have carried out measurements on free-base biphenylporphine (H₂BPP) and zinc biphenylporphine (ZnBPP) in benzene solution, pumping in each of the S₂ and S₁ state. We provide a model for describing the elementary intramolecular processes. The measured time scales are as follows: less than instrument response function (IRF) which is assigned to the processes of deactivation from S₂ state to S₁, 14.0 ns and 2.5 ns which are assigned to the lifetime of S₁ state in H₂BPP and ZnBPP, respectively. When O₂-induced fluorescence quenching and heavy atom effect are observed, the process of intersystem crossing (ISC) $S_1 \rightarrow T_1$ is confirmed. Since the ISC rate of different concentration of O₂ dissolved in H₂BPP solution is measured, we derived natural ISC rate coefficient and O₂-induced ISC rate coefficient $7.2 \pm 0.6 \times 10^7 s^{-1}$ are $5.3 \pm 0.2 \times 10^{10} M^{-1} s^{-1}$ and , respectively. inter-molecular (affected by heavy atom solvents which have Cl $\$ Br $\$ I) $\$ intra-molecular (porphyrins which have Br atom by their own) heavy atom effect and temperature effect are mentioned in this thesis.

When $ZnCA(PE)_xBPP(x = 1, 2), ZnCATPP$ functionalized on TiO₂ thin film, interfacial electron transfer and inter-molecular energy transfer due to molecular aggregation are observed.