

目 錄

頁次

中文摘要	i
英文摘要	ii
誌謝	iii
目錄	iv
表目錄	vii
圖目錄	viii

第一章、床論.	and the second sec	1
1.1	紫質在生物系統的作用	1
1.1.1	原血紅素	1
1.1.2	葉綠素	3
1.2	紫質及鋅紫質的靜態光譜及動態學相關研究	3
1.2.1	H ₂ TPP 及 ZnTPP 的吸收、螢光光譜及量子效率	3
1.2.2	H ₂ TPP 及 ZnTPP 的動態學相關研究	4
1.2.3	重原子效應	6
1.2.4	電子轉移現象	7
1.2.5	紫質的聚集	8
1.3	本論文的研究	9

第二章、	實驗技術	11
2.1	時間相關單光子計數系統	11

2.1.1	雷射光源	14
2.1.2	雙光柵光譜儀	23
2.1.3	電子元件	23
2.2	紫外-可見光光譜儀	27
2.3	螢光光譜儀	27
2.4	低溫系統	27
2.5	資料分析	28
2.6	樣品處理	31

第三:	章、紫質及	及其衍生物在溶液中的光譜及動力學	32
	3.1	H ₂ BPP 及 ZnBPP 之吸收及螢光光譜	32
	3.2	H ₂ BPP及ZnBPP之S ₁ 激發態生命期的測量	36
	3.3	氧致螢光淬熄效應	41
	3.4	重原子效應	48
	3.5	温度效應	50
	3.6	分子內重原子效應的驗證:H ₂ BPPBr、H ₂ BPPBr ₂ 、ZnBPPBr 及	
		ZnBPPBr ₂	56
3	3.7	溴取代紫質衍生物的吸收及螢光光譜	56
	3.8	溴取代紫質衍生物的 S1 激發態生命期的測量	56
	3.9	激發態紫質分子在溶液中的光物理過程	60

第四章、	紫質衍生物官能化-二氧化鈦的光譜及動力學	61
4.1	H ₂ CATPP、ZnCATPP、ZnCAPEBPP 及 ZnCA(PE) ₂ BPP	61

4.2 吸收及螢光光譜	
-------------	--

4.3	ZnCATPP、ZnCAPEBPP 及 ZnCA(PE)2BPP 在溶液中及 TiO2 薄膜	
	上的測量結果	62

第五章、結論

表 目 錄

		頁次
表 3.1	ZnBPP 去氧苯溶液的 TCSPC 擬合結果	39
表 3.2	H ₂ BPP 去氧苯溶液的 TCSPC 擬合結果	41
表 3.3	H ₂ BPP 在不同溶劑中所測得 S ₁ 激發態生命期	44
表 3.4	不同氧氣濃度下所測得 H ₂ BPP 苯溶液的 k ^{obs} 值	45
表 3.5	ZnBPP 在不同溶劑中所測得 S1 激發態生命期	47
表 3.6	不同溫度下 H ₂ BPP 四氫呋喃溶液的 S ₁ 激發態生命期	53
表 3.7	不同溫度下 ZnBPP 四氫呋喃溶液的 S1 激發態生命期	53
表 3.8	紫質衍生物的吸收及螢光頻帶位置	58
表 4.1	ZnCAPEBPP 的 TCSPC 擬合結果	67
表 4.2	ZnCA(PE)2BPP 的 TCSPC 擬合結果	67
表 4.3	ZnCATPP 的 TCSPC 擬合結果	67

圖 目 錄

			頁次
圖	1.1	(A)紫質; (B)原血紅素; (C)葉綠素的分子結構。	2
圖	1.2	(A)H ₂ TPP 及 (B)ZnTPP 的分子結構及吸收、螢光光譜。	5
圖	1.3	紫質衍生物的結構。	9
圖	2.1	TCSPC 的工作原理。	12
圖	2.2	Fluo Time 200 儀器配置圖。	12
圖	2.3	TCSPC 模組之訊號擷取及計時程序。	13
副	2.4	克爾透鏡鎖模的脈衝壓縮機制: (A)光束幾何圖形; (B)光束横切面示意圖。	16
圖	2.5	(A)不同波長的電磁波通過介質時,所對應的折射率n值不同。(B) 群速度色散的補償。	16
圖	2.6	Model 900-D Mira 儀器配置圖。	17
圖	2.7	脈衝選擇器示意圖。	18
圖	2.8	自相干儀工作原理示意圖。	20
圖	2.9	自相干儀儀器配置圖。	21
圖	2 10	(A) LDH-P-C 400 的儀器相關函數。此時雪射光源平均功率為 130	

圖 2.10 (A) LDH-P-C 400 的儀器相關函數。此時雷射光源平均功率為 130 mW, 脈衝重複頻率為 40 MHz, 半高寬為 54 ps。 (B) LDH-P-C 435 的儀器相關函數。此時雷射光源平均功率為 0.5 mW, 脈衝重複頻率為 40 MHz, 半高寬為 63 ps。 (C) LDH-P-C 635B 的儀器相關函數。此時雷射光源平均功率為 0.53 mW, 脈衝重複頻率為 40 MHz, 半高寬為 88 ps。 (D) PLS 500 的儀器相關函數。此時雷射光源平均功率為 20 μW, 脈衝重複頻率為 40 MHz, 半高寬為 635 ps。.....

22

圖	2.11	當輸入鑑別器的訊號低於一特定門檻的電壓高度時,則被分數式時間鑑別器視為雜訊去除。	23
圖	2.12	將輸入的訊號分成兩部分,並將其一反轉並延遲一時間後進行加總。將 電壓值為零的時間作為原始脈衝的到達時間。	24
圖	2.13	TAC 偵測單一光子的計時機制。	25
圖	2.14	恆溫器構造圖。	29
B	3.1	在除氧及未除氧的情況下,所測得 (A)H ₂ BPP及 (B)ZnBPP的吸收及螢光光譜。樣品濃度為1×10 ⁻⁶ M,測量螢光光譜所使用的激發波 長為405 nm。	33
圖	3.2	 (A) H₂BPP 及 (B) ZnBPP 苯溶液的吸收及螢光光譜。樣品濃度為 1×10⁻⁶ M ,測量螢光光譜所使用的激發波長皆為 390 nm。 	35
国	3.3	在不同濃度下所測得 ZnBPP 苯溶液的 (A) 吸收光譜及 (B) 螢光光 譜。測量螢光光譜所使用的激發波長為 390 nm。	36
日回	3.4	在不同濃度下所測得 H ₂ BPP 苯溶液的 (A) 吸收光譜及 (B) 螢光光 譜。螢光光譜的測量,其激發波長皆為 390 nm。	37
B	3.5	激發 ZnBPP 去氧苯溶液 ($C_M = 1 \times 10^{-6} M$) 到 S ₂ 激發態, 偵測波長為 550、580 及 630 nm 的時間-解析螢光光譜。激發波長為 405 nm。圈圈 為實驗值,實線為擬合結果,點線為兩者之差。	38
圖	3.6	激發 H ₂ BPP 去氧苯溶液 ($C_M = 1 \times 10^{-6}M$) 到 S ₂ 激發態,偵測波長為 600、630 及 690 nm 的時間-解析螢光光譜。激發波長為 405 nm。圈圈 為實驗值,實線為擬合結果,點線為兩者之差。	40
国	3.7	在除氧及未除氧的情況下,激發 (A) H_2 BPP 及 (B) ZnBPP 苯溶液 ($C_M = 1 \times 10^{-6}M$) 到 S_2 激發態, 偵測 Q (0,0) 頻帶的時間-解析螢光 光譜。激發波長為 405 nm。	43

圖 3.8	H ₂ BPP 苯溶液在不同氧氟分壓下所測得系統間轉換速率值。Error bar	
	表示標準偏差值。	46
圖 3.9	H ₂ BPP 苯溶液在不同溶氧濃度下的系統間轉換速率常數值進行線性擬	

合的結果。.....

46

- 圖 3.12 H₂BPP 四氫呋喃溶液 (*C_M* = 1×10⁻⁶*M*)在不同溫度下,偵測波長位置 630 nm 的時間-解析螢光光譜。激發波長為 405 nm。實驗溫度分別為 299、150、80 K。圈圈為實驗值,實線為擬合結果,點線為兩者之差。 51
- 圖 3.13 H₂BPP 四氫呋喃溶液 ($C_M = 1 \times 10^{-6} M$)在不同溫度下,偵測波長位置 690 nm 的時間-解析螢光光譜。激發波長為 405 nm。實驗溫度分別為 299、150、80 K。圈圈為實驗值,實線為擬合結果,點線為兩者之差。 52
- 圖 3.14 ZnBPP 四氫呋喃溶液(C_M =1×10⁻⁶M)在不同溫度下,偵測波長位置
 590 nm 的時間-解析螢光光譜。激發波長為 405 nm。實驗溫度分別為
 299、150、80 K。圈圈為實驗值,實線為擬合結果,點線為兩者之差。
- 圖 3.15 ZnBPP 四氫呋喃溶液(C_M =1×10⁻⁶M)在不同溫度下,偵測波長位置
 630 nm 的時間-解析螢光光譜。激發波長為405 nm。實驗溫度分別為
 299、150、80 K。圖圖為實驗值,實線為擬合結果,點線為兩者之差。

圖 3.16	 (A)H₂BPP、H₂BPPBr、H₂BPPBr₂及(B)ZnBPP、ZnBPPBr、ZnBPPBr₂ 苯溶液的吸收及螢光光譜。樣品濃度為1×10⁻⁶M,螢光光譜的測量, 其激發波長皆為405 nm。 	57
圖 3.17	激發 $H_2BPP \cdot H_2BPPBr \mathcal{B} H_2BPPBr_2 苯溶液(C_M = 1 \times 10^{-6} M)$ 到 S_2 激發 態上,偵測波長位置 630 nm 的時間-解析螢光光譜。激發波長為 405 nm。	59
圖 3.18	激發 ZnBPP、ZnBPPBr 及 ZnBPPBr ₂ 苯溶液($C_M = 1 \times 10^{-6} M$)到 S ₂ 激發 態上,偵測波長位置 590 nm 的時間-解析螢光光譜。激發波長為 405 nm。	59
圖 3.19	H ₂ BPP 及 ZnBPP 分子的光物理反應機制。	60
圖 4.1	ZnBPP、ZnCAPEBPP 及 ZnCA(PE) ₂ BPP 四氫呋喃溶液的吸收、螢光光 譜。樣品濃度為1×10 ⁻⁶ M,在螢光光譜的測量,其激發波長分別為405、 435 及 435 nm。	63
圖 4.2	ZnTPP 及 ZnCATPP 四氫呋喃溶液的吸收、螢光光譜。樣品濃度為 1×10 ⁻⁶ M,螢光光譜的測量,其激發波長為405 nm。	63
圖 4.3	H ₂ TPP 及 H ₂ CATPP 四氫呋喃溶液的吸收、螢光光譜。樣品濃度為 1×10 ⁻⁶ M,螢光光譜的測量,其激發波長為 405 nm。	64
圖 4.4	ZnCAPEBPP 在四氫呋喃溶液(<i>C_M</i> =1×10 ⁻⁶ <i>M</i>)及 TiO ₂ 薄膜上的時間-解 析螢光光譜比較。激發波長為 435 nm, 偵測波長位置為 620 nm。	64
圖 4.5	ZnCA(PE) ₂ BPP 在四氫呋喃溶液(<i>C_M</i> =1×10 ⁻⁶ <i>M</i>)及 TiO ₂ 薄膜上的時間- 解析螢光光譜比較。激發波長為 435 nm, 偵測波長位置為 620 nm。	66
圖 4.6	ZnCATPP 在四氫呋喃溶液(<i>C_M</i> = 1×10 ⁻⁶ <i>M</i>)及 TiO ₂ 薄膜上的時間-解析 螢光光譜比較。激發波長為 405 nm, 偵測波長位置為 620 nm。	66

xi