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ABSTRACT

In this article, we consider the problem of sorting a linear=circular, multi-chromosomal
genome by reversals, block-interchanges (i.e., generalized transpositions), and translocations
(including fusions and fissions) where the used operations can be weighted differently, which
aims to find a sequence of reversal, block-interchange, and translocation operations such
that the sum of these operation weights in the sequence is minimum. It is known that this
sorting problem can be solved in polynomial time on the basis of breakpoint graphs, when
block-interchanges are weighted 2 (or �3) and the others are weighted 1. In this study, we
design a novel and easily implemented algorithm for this problem by utilizing the permuta-
tion group theory in algebra.

Key words: algebra, block-interchange, fission, fusion, generalized transposition, genome rear-

rangement, permutation group, reversal, translocation.

1. INTRODUCTION

Genome rearrangement studies based on genome-wide analysis of gene orders play an important

role in the phylogenetic tree reconstruction (Sankoff et al., 1992; Hannenhalli and Pevzner, 1995, 1999;

Pevzner and Tesler, 2003; Belda et al., 2005). In the studies of genome rearrangements, a gene is usually

represented by a signed integer, where the associated sign indicates on which of the two complementary DNA

strands the gene is located, a chromosome by a sequence of genes and a genome by a set of chromosomes.

Given two genomes of the same set of genes, the genome rearrangement problem aims to compute a minimum

sequence of rearrangement operations required to transform one genome into another. The operations used as

rearrangement events within genomes with single chromosomes include reversals (Hannenhalli and Pevzner,

1999; Kaplan et al., 1999; Bader et al., 2001; Tannier et al., 2007), transpositions (Bafna and Pevzner, 1998;

Elias and Hartman, 2005), and block-interchanges (Christie, 1996; Lin et al., 2005), where reversals, also

called inversions, affect a block of consecutive integers in the chromosome by reversing the order and flipping

the signs of the integers; transpositions affect two adjacent blocks in the chromosome by exchanging their

positions; block-interchanges are generalized transpositions by allowing the exchanged blocks not being

adjacent in the chromosome. In genomes with multiple chromosomes, the rearrangement operations include
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translocations (Hannenhalli and Pevzner, 1995; Hannenhalli, 1996; Bergeron et al., 2006a; Ozery-Flato and

Shamir, 2006), fusions (Hannenhalli and Pevzner, 1995; Meidanis and Dias, 2001; Lu et al., 2006), and

fissions (Hannenhalli and Pevzner, 1995; Meidanis and Dias, 2001; Lu et al., 2006), where translocations

exchange the end segments between two chromosomes; fusions join two chromosomes into a bigger one;

fissions break a chromosome into two smaller ones. Usually, the genome rearrangement problem is viewed as

a problem of sorting one permutation into another using rearrangement operations, if the given genomes are

represented by permutations with one having positive, sorted integers.

Meidanis and Dias (2000) were the first to relate the theory of permutation groups to the study of genome

rearrangements, by demonstrating that many properties and simple operations related to permutation groups

in algebra can be directly applied to model several commonly used rearrangement events that affect the

permutations of representing genomes. Indeed, a few subsequent studies (Meidanis and Dias, 2001; Lin

et al., 2005; Lu et al., 2006; Mira and Meidanis, 2007) have proved that the permutation groups seem to be

a useful tool in the design of efficient algorithms for some genome rearrangement problems, especially

involving reversals, transpositions, block-interchanges, fusions and=or fissions. To date, however, no algo-

rithmic research has been done on how to apply permutation groups to the genome rearrangement problems

with translocations being involved.

In this study, we focus on the problem of sorting a signed permutation by reversals, generalized trans-

positions (or, equivalently, block-interchanges here) and translocations (including fusions and fissions), and

discuss the design of its efficient algorithms by the utilization of permutation groups. The complexity of

this problem is still unknown so far, if all of the used rearrangement operations are assigned the same

weight (hereinafter, designated as the unweighted case). In real biological data, however, transpositions,

acting as a special case of block-interchanges on a genome, occur with about half the frequency of reversals

(Blanchette et al., 1996). Moreover, Eriksen (2002) used simulations to find that the optimal weights for

reversals and transpositions (including inverted transpositions) are 1 and 2, respectively, reflecting that the

optimal reversal in the generic case will remove one breakpoint, while the optimal transposition removes

two breakpoints. Therefore, it seems to be biologically meaningful to assign at least twice the weight to

block-interchanges than to the others. In this differently weighted case, the problem consists in finding a

sequence of rearrangement operations such that the sum of the operation weights in the sequence is

minimum. If block-interchanges are at least three times the weight of reversals, this weighted genome

rearrangement problem then becomes that of sorting a signed permutation by reversals and translocations

(including fusions and fissions), which is now solvable in polynomial time (Hannenhalli and Pevzner,

1995), because a block-interchange can be mimicked by three reversals (e.g., three consecutive blocks [A,

B, C] can be transformed into [C, B, A] by a block-interchange, as well as by three reversals with scenario

of [A, �C, �B], [C, �A, �B], and [C, B, A]), and as a result, there is always an optimal solution for the

problem that contains nothing but only reversals and translocations. When block-interchanges are weighted

2 and the others are weighted 1, the weighted genome rearrangement problem can still be solved in poly-

nomial time on the basis of breakpoint graphs (Yancopoulos et al., 2005). In this article, we present a novel

and easily implemented algorithm for this weighted genome rearrangement problem by the application of

permutation groups. Notably, if the block-interchanges in this problem are restricted to only ordinary trans-

positions, Eriksen (2002) has proposed a (1þ e)-approximation algorithm, although the complexity of finding

an exact solution for the problem is still unknown so far.

Recently, Alekseyev and Pevzner (2008; Alekseyev, 2008) introduced a more general rearrangement

model by defining a new and more powerful operation called multi-break operation (or simply k-break)

acting on a breakpoint graph. Given two genomes, say P (the initial genome) and Q (the target genome), for

a genome rearrangement problem, their breakpoint graph is an edge-colored graph G(P, Q) defined as

follows: (1) Each gene is represented by two vertices in G(P, Q) that denote the two ends of the gene and

are labelled as tail and head, respectively, where the direction from tail to head corresponds to the sign

(strand) of the gene. (2) There is a black (respectively, gray) edge to connect two vertices in G(P, Q) if their

corresponding gene ends are adjacent in P (respectively, Q). Given k black edges, forming a matching on 2k

vertices, in a breakpoint graph, a k-break is defined as replacement of these edges with a set of k black

edges that form another matching on the same set of 2k vertices. Note that an h break is a special case of a k

break for h< k, in which case only h edges are replaced and the others remain the same. Basically,

reversals, translocations, fusions, and fissions can be modeled by 2-breaks, while transpositions and block

interchanges can be modeled by 3-breaks and 4-breaks, respectively. Although the k-break rearrangements

may be unlikely to occur for k> 3 in chromosomal evolution, they can provide a unifying and simpler
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model for studying genome rearrangements. In fact, the 2-breaks are equivalent to the so-called double-cut-

and-join (DCJ) operations, first introduced by Yancopoulos et al. (2005). Particularly, two consecutive DCJs

can still model transpositions and block-interchanges. Later, Bergeron et al. (2006b) further utilized the DCJ

operations by introducing a dual graph of breakpoint graph, called adjacent graphs, by replacing every edge

of the breakpoint graph by a vertex and every vertex by an edge. Basically, the breakpoint and adjacent

graphs are dual to each other and any properties can be found from one can also be found from the other.

The rest of this article is organized as follows. Some basic concepts and properties of permutation groups

in algebra are introduced in Section 2, and their relationships with genome rearrangements are further

described in Section 3. In Section 4, based on the permutation groups, we present an exact algorithm for the

problem of sorting a circular chromosome by reversals and block-interchanges with a weight proportion 1:2

and also show its applicability to linear chromosomes. In Section 5, we further consider additional trans-

locations (including fusions and fissions), which are weighted 1, when dealing with multi-chromosomal

genomes and propose an efficient algorithm for the problem with circular=linear genomes. Finally, in Sec-

tion 6, we provide conclusions.

2. PRELIMINARIES

Here, we briefly review a few basics on permutations in group theory that we will use for the study of

genome rearrangement, by following the definitions and notation as introduced in Meidanis and Dias

(2000) and Mira and Meidanis (2007). These concepts can be found in any textbook of algebra (Fraleigh,

2003). Given a set E of some integers, a permutation is a one-to-one mapping from E into itself. For

instance, we may define a permutation a for E¼ {1, 2, 3, 4, 5, 6} by specifying a(1)¼ 3, a(2)¼ 1, a(3)¼ 2,

a(4)¼ 4, a(5)¼ 6 and a(6)¼ 5. Furthermore, the above mapping for a can be expressed using a cycle

notation as illustrated in Figure 1 and simply denoted by a¼ (1, 3, 2)(4)(5, 6) (i.e., a product of three

cycles). A cycle of length k, say a0 ¼ (a1, a2, . . . , ak), is called k-cycle and its length is denoted by ja0j. In

addition, this cycle can be rewritten as (ai, aiþ 1, . . . , ak, a1, a2, . . . , ai� 1) (i.e., indices are cyclic), where

1� i� k. For example, (1, 3, 2)¼ (3, 2, 1)¼ (2, 1, 3). Any two cycles are said to be disjoint if they have no

elements in common. Then a permutation can be written in a unique way as the product of disjoint cycles,

which is called the cycle decomposition of this permutation, if the order of the cycles in the product is

ignored. In the rest of this article, we say ‘‘cycle in a permutation’’ to mean ‘‘cycle in the cycle decom-

position of this permutation,’’ unless otherwise specified. Usually, a 1-cycle, in which its element is said to

be fixed, in a permutation is not written explicitly. Hence, the permutation a exemplified above is usually

written as (1, 3, 2)(5, 6). The so-called identity permutation, denoted by 1, is the permutation whose

elements are all fixed.

Given two permutations a and b of E, their composition (or product), denoted by ab, is defined to be a

permutation of E with ab(x)¼ a(b(x)) for all x 2 E. Clearly, ab¼ ba, if a and b are disjoint cycles. The

inverse of a is a permutation, denoted as a�1, such that aa�1¼ a�1a¼ 1. Notably, if a permutation is ex-

pressed by the product of disjoint cycles, then its inverse can be obtained by just reversing the order of the

elements in each cycle. For instance, the inverse of a permutation (1, 3, 2)(5, 6) of E¼f1, 2, . . . , 6g is (2, 3,

1)(6, 5). The conjugation of b by a, denoted by a � b, is the permutation aba�1, which actually is a

permutation with the same cycle structure of b but each element x is changed by a(x). More clearly, if

b¼ (b1, b2, . . . , bj)(bjþ 1, bjþ 2, . . . bk), then a � b¼ aba�1¼ (a(b1), a(b2), . . . , a(bj))(a(bjþ 1), a(bjþ 2), . . . ,

a(bk)).

FIG. 1. Cycle diagram of a permutation a¼ (1, 3, 2)(4)(5, 6), meaning that a(1)¼ 3, a(3)¼ 2, a(2)¼ 1, a(4)¼ 4,

a(5)¼ 6 and a(6)¼ 5.
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Let a¼ (a1, a2) be a 2-cycle and b be an arbitrary permutation of E. Then the effect of applying a to b
can be described as follows:

� If a1 and a2 are in the same cycle in b, then this cycle is broken into two smaller cycles in ab (or ba),

that is, a functions as a split operation of b. For example, if a¼ (1, 2) and b¼ (1, 4, 5, 2, 3), then

ab¼ (1, 4, 5)(2, 3) and ba¼ (3, 1)(4, 5, 2).
� If a1 and a2 are in two different cycles in b, then these two cycles are joined into a bigger cycle in ab

(or ba), that is, a functions as a join operation of b. For example, if a¼ (1, 3) and b¼ (1, 4, 5)(2, 3),

then ab¼ (1, 4, 5, 3, 2) and ba¼ (4, 5, 1, 2, 3).

Basically, every permutation a of E can be expressed as a product of 2-cycles (notably, in which 1-cycles

are not written explicitly). There are, however, many ways of expressing a as a product of 2-cycles. For

example, (a1, a2, . . . , ak)¼ (a1, a2)(a2, a3) . . . (ak� 1, ak)¼ (a1, ak)(a1, ak� 1) . . . (a1, a2), where k � 3. The

norm of a, denoted by kak, is defined to be the minimum number k such that a can be expressed by a

product of k 2-cycles. Let nc(a) denote the number of disjoint cycles in the cycle decomposition of a. It

should be noticed that nc(a) counts also the non-expressed 1-cycles. For example, a¼ (1, 3, 2)(5, 6) is a

permutation of f1, 2, . . . , 6g and then nc(a)¼ 3, instead of nc(a)¼ 2, since a¼ (1, 3, 2)(4)(5, 6). For two

permutations a and b, a is said to divide b, simply denoted by ajb, if and only if kba�1k¼kbk�kak. For

instance, let a¼ (1, 2) and b¼ (1, 4, 5, 2, 3) be two permutations of E¼f1, 2, . . . , 5g. Then ba�1¼ (1,

3)(2, 4, 5). According to Lemma 2.1 below, we have kba�1k¼ 3, kbk¼ 4 and kak¼ 1. As a result,

kba�1k¼kbk� kak and hence ajb.

The following six lemmas are basic and useful, and the reader can refer to a textbook of algebra or

Appendix A here for the details of their proofs.

Lemma 2.1. For any permutation a of E, kak¼ jEj � nc(a).

Corollary 2.1. Let a and b be any two permutations of E. Then ajb if and only if nc(ba�1)¼
nc(b)þkak.

Lemma 2.2. Let a and b be any two permutations of E. Then ka � bk¼kbk.

Lemma 2.3. Let a and b be any two permutations of E. Then kabk¼kbak.

Lemma 2.4. Let a and b be any two permutations of E. Then kabk�kakþkbk.

Lemma 2.5. Let a, b and g be any three permutations of E and a¼ bg. If bja or gja, then kak¼
jbkþkck.

Lemma 2.6. Let a, b and g be any three permutations of E. If ajb and bjg, then ajg.

Lemma 2.7. Let a1, a2, . . . , ak 2 E and b be any permutation of E. Then a1, a2, . . . , ak are in the same

cycle of b and they appear in this cycle in the order of a1, a2, . . . , ak if and only if (a1, a2, . . . , ak)jb.

Proof. We prove this lemma by induction on k. First, assume that k¼ 2. Let a¼ (a1, a2), and let

b0 ¼ (b1¼ a1, . . . , bi¼ a2, . . . , bj) be a cycle in b, where 2� i< j, and b¼ b00b0. Then ba�1¼
b00b0(b1, bi)

�1¼ b00(b2, b3, . . . , bi)(biþ 1, . . . , bj, b1). Clearly, nc(ba
�1)¼ nc(b)þ 1 and kak¼ 1. By Lemma

2.1, kba�1k¼ jEj � nc(ba�1)¼ jEj � nc(b)� 1¼kbk�kak, resulting in that ajb. Conversely, suppose that

ajb. Then by Corollary 2.1, nc(ba�1)¼ nc(b)þkak¼ nc(b)þ 1. If a1 and a2 are not in the same cycle of b,

then ba�1¼ b(a1, a2) that causes two disjoint cycles in b, one containing a1 and the other containing a2, to

be joined together. This implies that nc(ba
�1)¼ nc(b)� 1, a contradiction.

Next, assume that the lemma holds for some k. Let a¼ (a1, a2, . . . , akþ 1) and a0 ¼ (a1, a2, . . . , ak).

Clearly, a¼ a0(ak, akþ 1) and kak¼ka0kþ 1¼ kþ 1. Now, suppose that a1, a2, . . . , akþ 1 appear in this

order in a cycle b0 of b, where we let b¼ b00b0. Then ba�1¼ b00b0(ak, akþ 1)a0 � 1, in which b0 is partitioned

into two disjoint cycles, say b01 containing a1, a2, . . . , ak in this order and b02 containing akþ 1. That is,

ba�1¼ b00b01b
0
2a
0 � 1 (therefore, nc(ba�1)¼ nc(b00b01b

0
2a
0 � 1)) and nc(b)¼ nc(b00b01b

0
2)� 1. Moreover,
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a0jb00b01b02 by the induction hypothesis and hence nc(b00b01b
0
2a
0 � 1)¼ nc(b00b01b

0
2)þka0k. As a result,

nc(ba�1)¼ nc(b)þkak and, therefore, ajb by Corollary 2.1. Conversely, suppose that ajb. Then (a1, ak,

akþ1)ja and a0ja based on the induction hypothesis and, consequently, (a1, ak, akþ 1)jb and a0jb by Lemma

2.6. By the induction hypothesis again, we understand that a1, ak, akþ1 appear in this order in a cycle of b,

and a1, a2, . . . , ak also appear in this order in a cycle of b. As a result, a1, a2, . . . , akþ 1 appear in this order

in the same cycle of b. &

3. PERMUTATION GROUPS VERSUS GENOME REARRANGEMENTS

As mentioned before, a gene is usually represented by a signed integer in the genome rearrangement

studies. Here, we follow this convention, although it can be any label (e.g., gene name) commonly used by

biologists. To properly model a DNA, which is well known as a double stranded molecule, we let

E¼f�1, 1, �2, 2, . . . , �n, ng, in which n is the number of genes and each gene i has counterpart gene �i

in the same location in the opposite strand. Let C¼ (1, � 1)(2, � 2) . . . (n, � n). Clearly, G2¼ 1, that is,

G�1¼G. A cycle is said to be admissible if it does not contain i and �i simultaneously for some gene i 2 E.

Then an admissible n-cycle can be used to represent a DNA strand that is constituted by n genes in some

order. Given a DNA strand, say p1, p2¼C � p�1
1 is its reverse complement, since p�1

1 is the reverse of p1

and C � p�1
1 is the complement of p�1

1 . For our purpose, we here represent the DNA molecule, named p, by

the product of the two strands p1 and p2, that is, p¼ p1p2¼ p2p1 (since p1 and p2 are disjoint). In such a

representation, flipping p into C � p�1 does not affect the DNA molecule, since

C � p�1¼C � (p1p2)�1¼C � (p�1
2 p�1

1 )¼C� (Cp1Cp�1
1 )¼C2p1Cp�1

1 C¼ p1p2¼ p. This representation of a

DNA molecule (or chromosome), which can certainly be applied to a genome with multiple chromosomes,

was first introduced in the pioneering work by Meidanis and Dias (2000) in the study of genome re-

arrangement using permutation groups in algebra. In the following, we shall explain how to model ele-

mentary rearrangement operations in a genome, such as reversals and block-interchanges acting on single

chromosome and fusions, fissions and translocations acting on multiple chromosomes, in a simple way,

particularly from the permutation group point of view.

Lemma 3.1. Let p¼ p1p2 be a (single-=multi-chromosomal ) genome with n genes. Then pC¼Cp�1

and Cp¼ p�1C.

Proof. First, we have p¼ p1p2¼ p1Cp�1
1 C, since p2¼C � p�1

1 ¼Cp�1
1 C�1 and G�1¼G. Then

p�1¼ (p1Cp�1
1 C)�1¼C�1p1C

�1p�1
1 ¼Cp1Cp�1

1 and hence, Gp�1G¼ p and GpG¼ p�1 (since G2¼ 1).

Consequently, pG¼Gp�1 and Gp¼ p�1G. &

Suppose that p¼ p1p2 is a single chromosomal genome. Essentially, a reversal operation acting on p can

be simply considered as a kind of block-interchange between p1 and p2. For the purpose of illustration, let

us take Figure 2 for an example. Note that the previous gene of a gene x in p1 is p�1(x) and its counterpart

in p2 is G(x). Hence, the counterpart of p�1(x) in p2 is Gp�1(x), which equals to pG(x) by Lemma 3.1.

Suppose that the genome p in Figure 2 is rearranged by a reversal g that in effect replaces the path A1 of

genes from u to v (including u but excluding v) in strand p1 with its reverse complement, and simulta-

neously the path A2 of genes from G(v) to G(u) (including G(u) but excluding G(v)) in strand p2 with its

reverse complement. Notably, the reverse complement of A1 is A2, and vice versa. As a result, the

rearrangement of gp can be done simply by an interchange between A1 in p1 and A2 in p2. Most particularly,

this genome rearrangement can be modeled by the composition of two 2-cycles and p, as represented in the

following lemma.

Lemma 3.2. If u and v are in the same strand of p, then c¼ (v, pC(u))(u, pC(v)) is a reversal operation

acting on p.

The following details the rearrangement result that is exemplified in Figure 2 by applying the reversal

c¼ (v, pC(u))(u, pC(v)) to genome p¼ p1p2.
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cp¼ (v, pC(u))(u, pC(v))p1p2

¼ (v, pC(u))(u, pC(v)) (u, . . . , p�1(v)
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{A1

, v, . . . , p�1(u)) (pC(v), . . . , C(u)
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{A2

, pC(u), . . . , C(v))

¼ (v, pC(u))(u, . . . , p�1(v), v, . . . , p�1(u), pC(v), . . . , C(u), pC(u), . . . , C(v))

(i:e:, (u, pC(v)) functions as a join operation.)

¼ (pC(v), . . . , C(u)
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{A2

, v, . . . , p�1(u)) (u, . . . , p�1(v)
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{A1

, pC(u), . . . , C(v))

(i:e:, (v, pC(u)) functions as a split operation.)

As demonstrated above, c¼ (v, pC(u))(u, pC(v)) indeed acts as a reversal rearrangement when applied to

chromosome p¼ p1p2, by reversing the segment of p from gene u to gene v (but excluding v). In the

composition of gp, intriguingly, (u, pG(v)) operates as a join of p1p2 and (v, pG(u)) as a split of (u,

pG(v))p1p2.

In fact, a block-interchange rearrangement on a chromosome p¼ p1p2 can also be implemented by the

composition of four 2-cycles and p1p2, just based on our previous work on sorting by block-interchanges

(Lin et al., 2005). Here, we simply take Figure 3 for an illustration. Suppose that b is a block-interchange

that affects p by exchanging the path A1 of genes from v to p�1(w) and the path B1 of genes from x to

p�1(u), and also exchanging the path A2 of genes from pG(w) to G(v) and the path B2 of genes from pG(u)

to G(x). Then we have the following lemma immediately, where (v, x)(u, w) functions as the block-inter-

change on p1 and (pC(w), pC(u))(pC(x), pC(v)) as the block-interchange on p2.

Lemma 3.3. If u,v,w and x are in the same strand of p in this order, then b¼ (v, x)(u, w) (pC(w),

pC(u))(pC(x), pC(v)) is a block-interchange operation acting on p.

The genome rearrangement result obtained by the composition of b and p, as exemplified in Figure 3, is

detailed as follows.

a

b

FIG. 2. (a) A chromosome p¼ p1p2, where solid arrows indicate consecutive genes and dashed arrows indicate paths

of solid arrows. (b) The resulting chromosome s by applying a reversal g to p.
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bp¼ (v, x)(u, w)(pC(w), pC(u))(pC(x), pC(v))p1p2

¼ (v, x)(u, w)(u, . . . , p�1(v), v, . . . , p�1(w)
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{A1

, w, . . . , p�1(x), x, . . . , p�1(u))
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{B1

(pC(w), pC(u))(pC(x), pC(v))(pC(x), . . . , C(w), pC(w), . . . , C(v)
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{A2

, pC(v), . . . ,

C(u), pC(u), . . . , C(x))
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{B2

¼ (v, x)(u, . . . , p�1(v), v, . . . , p�1(w))(w, . . . , p�1(x), x, . . . , p�1(u))(pC(w), pC(u))

(pC(x), . . . , C(w), pC(w), . . . , C(v))(pC(v), . . . , C(u), pC(u), . . . , C(x))

(i.e., (u, w) and (pC(x), pC(v)) are split operations of p1 and p2, respectively.)

¼ (u, . . . , p�1(v), x, . . . , p�1(u)
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{B1

, w, . . . , p�1(x), v, . . . , p�1(w)
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{A1

)

(pC(x), . . . , C(w), pC(u), . . . , C(x)
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{B2

, pC(v), . . . , C(u), pC(w), . . . , C(v)
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{A2

)

(i:e:, (v, x) and (pC(w), pC(u)) are join operations of p1 and p2, respectively.)

Now, suppose that p¼ p1p2 is a genome of multiple chromosomes and t is a fission=fusion acting on p.

Then, as demonstrated in the previous section, t can easily be modeled by two 2-cycles, both functioning as

split=join operations of p. For instance, as exemplified in Figure 4, if t is a fission that affects a chro-

mosome p by splitting it into two smaller chromosomes, then t can be modeled as (u, w)(pC(w), pC(u)),

where (u, w) and (pC(w), pC(u)) function as a split operation of p1 and p2, respectively. Clearly, on the

other hand, the reverse process of the fission (by applying (u, w)(pC(w), pC(u)) to tp) becomes a fusion, in

which both (u, w) and (pC(w), pC(u)) function as join operations of tp. In other words, the product of two

2-cycles, (u, w)(pC(w), pC(u)), acts as a fission for p and as a fusion for s¼ tp.

Lemma 3.4. If u and w are in the same strand of p, then s¼ (u, w)(pC(w), pC(u)) is a fission=fusion

acting on p.

Particularly, it should be noted here that translocations are equivalent to fusions for circular chromosomes

(Alekseyev and Pevzner, 2008; Alekseyev, 2008). However, for linear chromosomes, fusions and fissions are

just special cases of translocation. A translocation acts on two linear chromosomes by exchanging an end

a

b

FIG. 3. (a) A chromosome p¼ p1p2. (b) The resulting chromosome s by applying a block-interchange b to p.

SORTING GENOMES USING PERMUTATION GROUPS 691



segment of one chromosome with an end segment of the other chromosome. There are two types of trans-

locations (i.e., prefix-prefix and prefix-suffix translocations) usually mentioned in related literature. However,

we can mimic one type of translocation by a flip of one of the chromosomes, followed by a translocation of the

other type, because, as mentioned before, flipping a chromosome entirely does not change the chromosome

and is thus free. As exemplified in Figure 5, the translocation t affects p with two linear chromosomes A and B

by exchanging the end segment A2 of A with the end segment B2 of B. In fact, by representing the linear

chromosomes using (circular) permutations, the above translocation can be modeled by four 2-cycles, as

demonstrated as follows. Note that in this case where p is represented as a (circular) permutation, we have

pG(u)¼G(y) and pG(w)¼G(z).

sp¼ (u, w)(v, x)(pC(w), pC(u))(pC(x), pC(v))p

¼ (u, w)(v, x)(C(z), C(y))(pC(x), pC(v))p

¼ (u, w)(v, . . . , y, u, . . . , p�1(v), x, . . . , z, w, . . . , p�1(x))

(C(z), C(y))(pC(x), . . . , C(w), C(z), . . . , C(x), pC(v), . . . , C(u), C(y), . . . , C(v))

¼ (u, . . . , p�1(v)
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{A1

, x, . . . , z)
zfflfflfflfflffl}|fflfflfflfflffl{B2

(w, . . . , p�1(x)
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{B1

, v, . . . , y)
zfflfflfflfflffl}|fflfflfflfflffl{A2

(C(z), . . . , C(x)
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{B2

, pC(v), . . . , C(u))
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{A1

(C(y), . . . , C(v)
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{A2

, pC(x), . . . , C(w))
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{B1

a

b

FIG. 4. (a) A genome p¼ p1p2. (b) The resulting genome s by applying a fission t to p. Note that its reverse process

corresponds to a fusion.

a

b

FIG. 5. (a) A genome p with two linear chromosomes A and B. (b) The resulting genome s by applying a translo-

cation t to p.
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Lemma 3.5. If u and v are in the same strand of p, w and x are also in the same strand of p, and u and

w are at the ends of p, then s¼ (u, w)(v, x)(pC(w), pC(u))(pC(x), pC(v)) is a translocation acting on p.

4. ALGORITHMS FOR SORTING BY WEIGHTED REVERSALS
AND BLOCK-INTERCHANGES

In this section, we shall first utilize the properties of permutation groups to design an efficient exact

algorithm for solving the problem of transforming a circular chromosome p¼ p1p2 into another s¼ s1s2

by reversals and block-interchanges with a weight ratio 1:2. For brevity, we denote this weighted genome

rearrangement problem as SoRT(1,2) in the following. Next, we shall show that the problem of sorting by

reversals and block-interchanges is equivalent for circular and linear chromosomes. It should be mentioned

here that Mira and Meidanis (2007) have independently used the permutations groups to propose an O(n2)-

time algorithm for solving the SoRT(1,2) problem with circular chromosomes, which is actually the same

as ours in spirit, where n is the number of genes in the studied chromosome. Recall that any cycle can be

expressed as a product of 2-cycles and moreover, every reversal (respectively, block-interchange) affecting

a genome p can be implemented by a product of two (respectively, four) 2-cycles and p. Furthermore, the

composition of sp�1 and p is s, intuitively suggesting that sp�1 can be expressed as a product of 2-cycles

that operates as a sequence of reversals and block-interchanges to optimally transform p into s. We shall

demonstrate in the sequel how to fulfill such an idea.

Lemma 4.1. Let p and s represent two different chromosomes. If a is a cycle in sp�1, then (pG) � a�1 is

also a cycle in sp�1.

Proof. Let u and v be two consecutive elements in a. That is, a(u)¼ v, or, equivalently, sp�1(u)¼ v,

since a is known to be a cycle in (the cycle decomposition of) sp�1. In the following, we show that pG(v)

and pG(u) are two consecutive elements in a cycle of sp�1, meaning that sp�1(pG(v))¼ pG(u).

rp�1(pC(v))¼ rp�1pC(v) (by the definition of composition)

¼ rC(v) (since p�1p¼ 1)

¼ rC(rp�1(u)) (since rp�1(u)¼ v)

¼ rr�1Cp�1(u) (since Cr¼ r�1C, by Lemma 3.1)

¼Cp�1(u) (since rr�1¼ 1)

¼ pC(u) (since Cp�1¼ pC, by Lemma 3.1)

It should be noticed that if a is a cycle of length 1, e.g., a(u)¼ u, then with the similar discussion as

described above, we can show that sp�1(pG(u))¼ pG(u), meaning that pG(u) is fixed in sp�1. Clearly,

(pG) � a�1¼ (pG(u)) is another cycle in sp�1 and hence the lemma holds. Now, let a¼ (a1, a2, . . . , ak),

where 2� k� n. According to the above discussion, sp�1 must contain the cycle a0 ¼ (pC(ak), pC
(ak� 1), . . . , pC(a1)) and clearly, a0 ¼ (pG) � a�1. We claim that a and a0 are two different cycles in sp�1.

Suppose that a and a0 are the same cycle in sp�1. Then ai 6¼ pC(ai) for each 1� i� k; otherwise, for some

i, we have ai¼ pG(ai)¼ p(�ai), causing both genes �ai and ai to be in the same chromosome strand of p,

which is not allowed because p is represented as an admissible chromosome. Without loss of generality, we

let a1¼ pG(aj), where 2� j� k, and immediately, ai¼ pC(aj� iþ 1) for 2� i� j, due to the assumption of

a¼ a0. In this case, if j is odd, then ab j
2
cþ 1¼ pC(ab j

2
cþ 1), a contradiction. In other words, j is even and

consequently, we have aj
2
¼ pC(aj

2
þ 1) and aj

2
þ 1¼ pC(aj

2
). The fact, moreover, that aj

2
and aj

2
þ 1 are con-

secutive in a of sp�1 leads to rp�1(aj
2
)¼ aj

2
þ 1, resulting in rp�1pC(aj

2
þ 1)¼ aj

2
þ 1 and consequently

rC(aj
2
þ 1)¼ aj

2
þ 1. This suggests, however, that �aj

2
þ 1 and aj

2
þ 1 should be two consecutive genes in the

same chromosome strand of s, which is again not allowed because s is denoted as an admissible chro-

mosome. Thus, a and a0 are different cycles in sp�1 and the lemma holds completely. &

According to Lemma 4.1, every cycle a in sp�1 has a mate cycle (pG) � a�1, which also has its own mate

cycle (pG)2 � a that equals to a, since (pG)2¼ pGpG¼ pGGp�1¼ pp�1¼ 1 (by Lemma 3.1 and G2¼ 1).
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That is, a and (pG) � a�1 are each other’s mate cycles in sp�1, also implying that nc(sp
�1) is even. Given a

cycle a in sp�1, we say x and y to be adjacent in a if a(x)¼ y or a(y)¼ x.

Lemma 4.2. Let p and s represent two different chromosomes. Suppose that (a, b)jp for any two

elements a and b in a cycle of sp�1 (i.e., (a, b)jsp�1). Then we have rp�1¼ (r1p�1
1 )(r2p�1

2 ) and

nc(rp�1)¼ nc(r1p�1
1 )þ nc(r2p�1

2 ) with nc(r1p�1
1 )¼ nc(r2p�1

2 ).

Proof. Let p1¼ (a1, a2, . . . , an) and p2¼ (b1, b2, . . . , bn). According to Lemma 2.7, the given as-

sumption implies that all the elements in each cycle a of sp�1 belong to either p1 or p2. The fact that

s¼ (sp�1)p indicates clearly that s1 (respectively, s2) is a permutation of fa1, a2, . . . , ang (respectively,

fb1, b2, . . . , bng). Recall that rp�1¼ r1r2p�1
2 p�1

1 , in which, as indicated by the above property, both

s1 and p�1
1 are disjoint to s2, as well as p�1

2 , and therefore, rp�1¼ r1p�1
1 r2p�1

2 and nc(rp�1)¼
nc(r1p�1

1 )þ nc(r2p�1
2 ). Next, for simplicity of our discussion, we assume that all the numbers in p1 have

the same sign, say ‘‘þ ’’, and let a¼ (c1, c2, . . . , ck) belong to r1p�1
1 , where 1� k (i.e., a can be a 1-cycle).

By Lemma 4.1, a has a mate cycle a0 ¼ (pG) � a�1 in sp�1. By definition, a0 ¼ (pC(ck), pC(ck� 1), . . . ,

pC(c1))¼ (p(� ck), p(� ck� 1), . . . , p(� c1))¼ (p2(� ck), p2(� ck� 1), . . . , p2(� c1)). Clearly, all the num-

bers in a0 have the same sign of ‘‘� ’’, suggesting that a0 is a cycle in r2p�1
2 , instead of r1p�1

1 . In other

words, for each cycle a in r1p�1
1 , we can find another cycle a0 that is in r2p�1

2 . As a result,

nc(r1p�1
1 )¼ nc(r2p�1

2 ). &

Now, we suppose that the condition of Lemma 4.2 holds, that is, (a, b)jp for any two elements a and b in

a cycle of sp�1. By Lemma 4.2, we know that p1 (respectively, p2) is a permutation of s1 (respectively, s2)

and nc(rp�1)¼ nc(r1p�1
1 )þ nc(r2p�1

2 ), where nc(r1p�1
1 )¼ nc(r2p�1

2 ). Recall that in our previous study

(Lin et al., 2005, see Theorem 1), we can use a minimum sequence of k¼ jEj=2� nc(r1p�1
1

)

2
¼ jEj � nc(rp�1)

4

block-interchanges, say b1, b2, . . . , bk, to transform p1 into s1 and moreover, each bi, 1� i� k, can be

expressed by a product of two 2-cycles, say bi¼ (v, x)(u, w). We have also shown in (Lin et al., 2005) that u

and w are adjacent in a cycle a1 of r1p�1
1 and v and x are adjacent in a cycle a2 of r1p�1

1 (u, w) such that

(u, w) acts on p1 as a split and (v, x) acts on (u, w)p1 as a join. By Lemma 4.1, we can first find two adjacent

elements pG(w) and pG(u) in the cycle (pC) � a�1
1 of r2p�1

2 and then two adjacent elements pG(x) and

pG(v) in the cycle (pC) � a�1
1 of r2p�1

2 (pC(w), pC(u)). Let b0i¼ (pC(w), pC(u))(pC(x), pC(v)). By Lemma

3.3, bib
0
i is clearly a block-interchange of p. In other words, b1b

0
1, b2b

0
2, . . . , bkb

0
k are k block-interchanges

that can transform p into s. Therefore, we have the following lemma immediately. &

Lemma 4.3. Let p and s represent two different chromosomes. Suppose that (a, b)jp for any two

elements a and b in a cycle of sp�1. Then p can be transformed into s through a sequence of
jEj � nc(rp�1)

4

block-interchanges.

Lemma 4.4. Let p and s represent two different chromosomes. Suppose that there are at least two

elements a and b in a cycle a of sp�1 such that (a, b)6 jp. Then we can find two 2-cycles (u,pG(v)) and

(v,pG(u)) with a(u)¼ pG(v) and (pG) � a�1(v)¼ pG(u) such that g¼ (v, pG(u))(u,pG(v)) acts on p as a

reversal operation. Moreover, nc(r(cp)�1)¼ nc(rp�1)þ 2.

Proof. Let a¼ (a1¼ u, a2¼ pC(v), . . . , ak), where k> 1. According to the given assumption, as well as

Lemma 2.7, there are at least two adjacent elements, say u and pG(v), in a such that for example, u is in p1

and pG(v) is in p2. By Lemma 4.1, a has a mate cycle (pG) � a�1, that by definition is (pC(ak), . . . ,

pC(a2)¼ v, pC(a1)¼ pC(u)) in sp�1. The above statement indicates that a(u)¼ pG(v) and (pG) � a�1(v)¼
pG(u). By Lemma 3.2, g that is (v, pG(u))(u,pG(v)) acts on p as a reversal. r(cp)�1¼ rp�1c�1¼ rp�1

(u, pC(v))(v, pC(u)), resulting in both pG(v) and pG(u) being fixed. The reason is that a(u, pC(v))¼
(a1, a3, . . . , ak)(u, pC(v))2 ¼ (a1, a3, . . . , ak) and similarly (pC) � a�1(v, pC(u))¼ (pC(ak), pC(ak� 1), . . . ,

pC(a2)). Therefore, nc(r(cp)�1)¼ nc(rp�1)þ 2. &

Lemma 4.5. Let p and s be two different chromosomes. For the SoRT(1,2) problem, let F be a

minimum weighted sequence of reversals and block-interchanges needed to transform p into s. Then the

weight of F is greater than or equal to
jEj � nc(rp�1)

2
.
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Proof. Let F contain x reversals and y block-interchanges. Clearly, the weight of F is xþ 2y. As

discussed previously, a reversal can by expressed by a product of two 2-cycles and a block-interchange by a

product of four 2-cycles. Therefore, F can be written as a product of 2xþ 4y 2-cycles such that Fp¼ s,

equivalently meaning that sp�1 can be expressed by a product of 2xþ 4y 2-cycles and hence krp�1k�
2xþ 4y. By Lemma 2.1, we have 2xþ 4y� jEj � nc(rp�1) and, consequently, the weight of F is greater

than or equal to
jEj � nc(rp�1)

2
. &

Suppose that there are at least two elements a and b in a cycle a of sp�1 such that (a, b)6 jp. Then, based

on Lemma 4.4, we can find from sp�1 a reversal c1¼ (v, pC(u))(u, pC(v)) to transform p into g1p. We

continue with g1p in the same way and finally find a sequence of f reversals c1, c2, . . . , c/ until

r(c/c/� 1 . . . c1p)�1 has no cycle in which there are two elements a and b such that (a, b)6 jp. In this

situation, p has become s¼ c/c/� 1 . . . c1p, which by Lemma 4.3, can be further transformed into s just

by a sequence of w¼ jEj � nc(rs�1)
4

block-interchanges. In other words, we can find directly from sp�1 a

sequence of f reversals and c block-interchanges to transform p into s, with total weight fþ 2c that

equals to
jEj � nc(rp�1)

2
, because nc(rs�1)¼ nc(rp�1)þ 2/ by Lemma 4.4 and hence /þ 2w¼/þ

jEj � nc(rs�1)
2

¼/þ jEj � nc(rp�1)� 2/
2

¼ jEj � nc(rp�1)
2

. Furthermore, by Lemma 4.5, this sequence of f reversals

and c block-interchanges is optimal.

Take p¼ (�5, 3, 2, 4, �1)(1, �4, �2, �3, 5) and s¼ (1, 2, 3, 4, 5)(�5, �4, �3, �2, �1) for an example.

sp�1¼ (1)(�5)(2, 4, 3, �4)(�1, 5, �2, �3) and clearly nc(sp
�1)¼ 4. By the discussion above, we

immediately understand that there is a minimum weighted sequence of reversals and block-interchanges,

whose total weight is
jEj � nc(rp�1)

2
¼ 10� 4

2
¼ 3, to transform p into s. The optimal scenario is as follows.

First, by Lemma 4.4, we can find a reversal g1¼ (3, �4)(�1, 5) of p from sp�1¼ (2, 4, 3)(3, �4)(�1, �2,

�3)(�1, 5). After applying g1 to p, we obtain a new p¼ (1, 3, 2, 4, 5)(�5, �4, �2, �3, �1) with

sp�1¼ (2, 4, 3)(�1, �2, �3). Then by Lemma 4.3, we can find a block-interchange b1b
0
1 from sp�1 that

now is (2, 4, 3)(�1, �2, �3)¼ (2, 3)(2, 4)(�2, �3)(�1, �3) by letting b1¼ (2, 3)(2, 4) and b01¼
(�2, �3)(�1, �3) such that b1b

0
1p¼ (1, 2, 3, 4, 5)(�5, �4, �3, �2, �1)¼ r. In summary, we use a re-

versal and a block-interchange to complete the above transformation. Based on the idea above, we have

designed Algorithm 1 (SoRT; short for Sorting by Reversals and generalized Transpositions), which can be

easily implemented using any program languages, to compute the weighted genome rearrangement dis-

tance, denoted by o(p,s), between two given chromosomes p and s, and also generate an optimal scenario

of the required rearrangement events.

Algorithm 1. SoRT

Input: Two chromosomes p¼ p1p2 and s¼ s1s2.

Output: Weighted rearrangement distance o(p, s) and an optimal scenario F of operations.

1: Compute sp�1 and pG;

2: Let x(p, r)¼ jEj � nc(rp�1)
2

and f¼ 0;

3: while there are two elements a and b in a cycle a of sp�1 such that (a, b)6 jp do

3.1: Let f¼fþ 1;

3.2: Find two adjacent elements a and b in a such that (a, b)6 jp;

3.3: Let c/¼ (pC(b), pC(a))(a, b);

3.4: Compute new p¼ gfp and new pG¼ gfpG;

3.5: Obtain new sp�1 by removing b from a and pG(a) from the mate cycle of a;

end while

4: Let w¼ x(p, r)�/
2

;

5: for i¼ 1 to c do

5.1: Arbitrarily choose two adjacent elements a and b in a cycle of sp�1;

5.2: Find two adjacent elements c and d in sp�1(a, b) such that (c, d)6 j(a, b)p;

5.3: Let bi¼ (c, d)(a, b) and b0i¼ (pC(b), pC(a))(pC(d), pC(c));

5.4: Compute new p¼ bib
0
ip and new pC¼ bib

0
ipC;

5.5: Obtain new sp�1 by removing b, d, pG(c), pG(a) from the cycles in original sp�1;

end for

6: Output �¼fc1, c2, . . . , c/, b1b
0
1, b2b

0
2, . . . , bwb0wg;
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Theorem 4.1. Given two genomes p and s, the SoRT(1,2) problem can be solved in O(dn) time, where

d is the number of reversals and block-interchanges needed to transform p into s, and its weighted

rearrangement distance is
jEj � nc(rp�1)

2
that can be calculated in O(n) time.

Proof. As we discussed previously, Algorithm 1 (SoRT) transforms p into s using a minimum weighted

sequence of f reversals and c block-interchanges, whose total weight is
jEj � nc(rp�1)

2
that clearly can be cal-

culated inO(n) time. Hence, d¼fþc. We analyze the time-complexity of Algorithm 1 (SoRT) as follows.

Clearly, steps 1–2 can be done in O(n) time. For each iteration of step 3, its condition can be checked in

worst-case O(n) time, because we only need to check every adjacent numbers a and b in each cycle of sp�1

and see whether (a, b)6 jp, which can be verified in constant time according to Corollary 2.1. Then the execution

time of step 3 is dominated by step 3.4 since the others need only constant time. Actually, each command of

step 3.4 executes a join operation and a split operation, each of which can be done in constant time. Since

step 3 is executed f times and hence its total cost is O(/n). Step 4 is executed in constant time. As to step

5, it runs with c iterations and in each iteration, all substeps require only constant time, except for steps 5.2.

Actually, step 5.2 can still be done in O(n) time in worst case. That is, the cost of step 5 is O(wn). The

output of step 6 takes O(d) time. Consequently, the time-complexity of Algorithm 1 (SoRT) is O(dn). &

Although the algorithm we presented above takes the circular chromosomes as the instances, it still

works for the linear chromosomes, because, as described in the following theorem, it can be shown that the

problem of sorting by reversals and block-interchanges is equivalent for circular and linear chromosomes,

using a proof similar to that in Hartman and Sharan (2005). Basically, this proof is based on a property, that

is, a reversal or block-interchange operating on a gene, say u, on a circular chromosome has an equivalent

one that does not operate on u. This property for reversals can be verified by considering an example as

shown in Figure 2. The effect of this reversal g is the interchange between blocks A1 in p1 and A2 in p2,

which equals to interchange p1nA1 and p2nA2 with each other. Similarly, as exemplified in Figure 3, the

block-interchange b operating on a gene x on a circular chromosome p has also an equivalent block-

interchange without operating on x.

Theorem 4.2. The problem of sorting linear chromosomes by reversals and block-interchanges is equiv-

alent to that of sorting circular chromosomes by reversals and block-interchanges.

5. ALGORITHMS FOR SORTING BY WEIGHTED REVERSALS,
BLOCK-INTERCHANGES, TRANSLOCATIONS

As mentioned early, translocations and fusions are not distinguishable for circular chromosomes

(Alekseyev and Pevzner, 2008; Alekseyev, 2008), and hence, the problem of sorting a circular, multi-

chromosomal genome P into another circular, multi-chromosomal genome S by reversals, block-

interchanges, and translocations (including fusions and fissions) is equivalent to that of sorting by reversals,

block-interchanges, fusions, and fissions. Suppose that block-interchanges are weighted 2 and the others are

all weighted 1. Then according to our previous work in Lu et al. (2006), it is not hard to show that in this

case there is an optimal scenario of events to transform P into S in the so-called canonical order, in which

all fusions come before all reversals=block-interchanges, which then come before all fissions. In addition, it

can be shown that we can derive a minimum series of 2-cycles from SP�1, acting on P as fusions, to

transform P into P0, and then derive a minimum series of 2-cycle from P0S�1, acting on S as fusions, to

transform S into S0 (conversely, these fusions become fissions for transforming S0 into S), and finally

derive a minimum weighted series of reversals and block-interchanges from S0P0�1 to transform P0 into S0

using Algorithm 1 (SoRT) we presented in the previous section. All of the above procedures can actually be

done in O(dn) time, where d is the number of fusions, reversals, block-interchanges and fissions needed to

transform P into S. Therefore, we have the following theorem immediately.

Theorem 5.1. Given two circular, multi-chromosomal genomes P and S, the problem of sorting P
into S by using a minimum weighted sequence of reversals, block-interchanges and fusions (or, equiva-

lently, translocations) and fissions can be solved in O(dn) time, where block-interchanges are weighted 2

and the others are weighted 1.

696 HUANG AND LU



For linear chromosomes, fusions and fissions can be considered as special cases of translocation. In the

following, therefore, we shall consider the SoRT2(1,2,1) problem, which aims to sort a linear, multi-

chromosomal genome P into another S by reversals, block-interchanges and translocations (including

fusions and fissions) with a weight proportion 1:2:1, and present an efficient and easily implemented

algorithm to solve this problem.

Let P¼fp1, p2, . . . , pMg and R¼fr1, r2, . . . , rNg be two linear, multi-chromosomal genomes defined

on the same set E of genes, where M and N denote the numbers of chromosomes in P and S, respectively,

and, without loss of generality, we assume that M�N. Let mi and nj be the number of genes in pi and sj,

respectively, where 1� i�M and 1� j�N. Recall that in permutation group formalism, we represent a

chromosome, say pi, by the product pi
1p

i
2 of its two strands, where pi

1¼ (pi
1(1), pi

1(2), . . . , pi
1(mi)) and

pi
2¼ (pi

2(1), pi
2(2), . . . , pi

2(mi)). By following the convention, we call pi
1(1) and pi

2(1) as tails of pi. Let

C¼fck¼ nþ kþ 1 : 0� k� 2M� 1g be a set of 2M distinct positive integers, called caps, which are dif-

ferent from genes in E. Let bEE ¼E [ f – ck : 0� k� 2M� 1g and bCC¼ (1, � 1)(2, � 2) . . . (nþ 2M, � n

� 2M). In fact, these caps are introduced to serve as chromosome delimiters when we use permutation

group to model translocations of multiple linear chromosomes later. For this purpose, we first extend genome

S by adding M�N null chromosomes, resulting in R¼fr1, r2, . . . , rMg that contains the same number of

chromosomes as P does. Then we obtain a capping genome bPP¼fp̂p1, p̂p2, . . . , p̂pMg from P by adding caps

to the ends of each chromosome pi, where 1� i�M, such that p̂pi
1¼ (p̂pi

1(1), p̂pi
1(2), . . . , p̂pi

1(miþ
2))¼ (c2(i� 1), pi

1(1), . . . , pi
1(mi), c2(i� 1)þ 1) and p̂pi

2¼ (p̂pi
2(1), p̂pi

2(2), . . . , p̂pi
2(miþ 2))¼ (bCC(c2(i� 1)þ 1), pi

2(1),

. . . , pi
2(mi), bCC(c2(i� 1))). Using the same way to cap S, we have bRR¼fr̂r1, r̂r2, . . . , r̂rMg with r̂ri

1¼ (r̂ri
1(1),

r̂ri
1(2), . . . , r̂ri

1(niþ 2))¼ (c2(i� 1), ri
1(1), . . . , ri

1(ni), c2(i� 1)þ 1) and r̂ri
2¼ (r̂ri

2(1), r̂ri
2(2), . . . , r̂ri

2(niþ 2))¼
(bCC(c2(i� 1)þ 1), ri

2(1), . . . , ri
2(ni), bCC(c2(i� 1))). Since a single stranded DNA sequence is always written in

the 50? 30 direction in biology, we call above p̂pi
1(1), p̂pi

2(1), r̂ri
1(1) and r̂ri

2(1) as 50 caps and the others as 30

caps. Since the 50 caps are considered as tails in the capping genomes, bPP and bRR above are clearly co-

tailed, which means to have the same set of tails, even though their original P and S may not be.

Given a signed number x 2 bEE, we use char(x, bPP) to define its character in a capping chromosome, say

p̂pi, in bPP as follows:

char(x, bPP)¼

C5, if x¼ p̂pi
1(1) or x¼ p̂pi

2(1)

(i.e., x serves as a 50 cap of pi):
C3, if (x¼ p̂pi

1(miþ 2) or x¼ p̂pi
2(miþ 2)) and p̂pi is not null

(i.e., x serves as a 30 cap of non-null pi):
N3, if (x¼ p̂pi

1(miþ 2) or x¼ p̂pi
2(miþ 2)) and p̂pi is null

(i.e., x serves as a 30 cap of null pi):
T, if x¼ p̂pi

1(2) or x¼ p̂pi
2(2)

(i.e., x serves as a tail of pi):
O, otherwise:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

According to Lemma 3.5, a translocation ŝs acting on the capping bPP of the linear genome P can be

mimicked by using four 2-cycles in permutation group formalism, and the 2-cycles of ŝs functioning as join

operators must not be a (C5, C5) character pair and the 2-cycles functioning as split operators must be. In

addition, if both of the character pairs for the 2-cycles of join operators are in {(C3, C3), (C3, N3), (T, T),

(T, N3), (N3, N3)}, then the effect of the translocation ŝs on bPP equals to the exchange of its caps, conse-

quently leaving P unaffected. Particularly, if they are both (T, C3) (respectively, (O, N3)), then the

translocation on bPP corresponds to a fusion (respectively, fission) on P. Intriguingly, we can use an internal

translocation acting on bPP to mimic a translocation=fusion=fission on P, where a translocation is called

internal if it is neither a fusion nor a fission (Hannenhalli and Pevzner, 1995). In addition, we can use an

internal reversal=block-interchange on bPP to mimic a reversal=block-interchange on P, where a reversal=
block-interchange is called internal if it does not involve the ends of the capped chromosome (Hannenhalli

and Pevzner, 1995). For simplicity, therefore, the word ‘‘genome’’ mentioned in the rest of this section

refers to a linear genome and ‘‘translocation=reversal=block-interchange’’ acting on a capping genome

refers to an internal translocation=reversal=block-interchange.
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Based on the properties described above, we can design an efficient algorithm as detailed below in Algorithm 2

(SoRT2) to solve the problem of sorting capping, linear, multi-chromosomal genomes by reversals, block-

interchanges, and translocations whose weights are 1, 2, and 1, respectively. For simplicity, we let CEpair¼
{(C3, C3), (C3, N3), (T, T), (T, N3), (N3, N3)}, TLpair¼ {(O, O), (O, C3), (O, T), (O, N3), (T, C3)} and, for a

signed number x, define 5cap(x) to be the signed number in the 50 cap of the chromosome strand containing x.

Algorithm 2. SoRT2

Input: Two linear genomes P¼fp1, p2, . . . , pMg and R¼fr1, r2, . . . , rNg, where M�N.

Output: Weighted rearrangement distance o(P, S) and an optimal scenario F of operations.

1: Extend S by adding M�N null chromosomes;

Obtain bPP¼fp̂p1, p̂p2, . . . , p̂pMg and bRR¼fr̂r1, r̂r2, . . . , r̂rMg by capping P and S;

2: Compute bRR bPP �1
and bPPbCC;

3: Let nv¼ ns¼ nc¼ nb¼ 0;

4: /* Preprocessing step for cap exchange */

while there are a and b in a cycle of bRR bPP �1
(i.e., (a, b)jbRR bPP �1

) such that

(char(a, bPP), char(b, bPP)) 2 CEpair do

4.1: Let nv¼ nvþ 1;

4.2: Find a and b in a cycle of bRR bPP �1
with (char(a, bPP), char(b, bPP)) 2 CEpair;

4.3: Let vnv
¼ (5cap(a), 5cap(b))(a, b)( bPPbCC(5cap(b)), bPPbCC(5cap(a)))( bPPbCC(b), bPPbCC(a));

4.4: Compute new bPP¼ vnv
bPP, new bPPbCC¼ vnv

bPPbCC and new bRR bPP �1¼ bRR bPP �1v�1
nv

;

end while

5: /* To derive translocations (including fusions and fissions) */

while there are a and b in a cycle of bRR bPP �1
such that (a, b)6 j bPP, (a, bCC(b))6 j bPP and

(char(a, bPP), char(b, bPP)) 2 TLpair do

=* Note that (a, b)6 j bPP and (a, bCC(b))6 j bPP mean that a and b are in the different

chromosomes in bPP. *=
5.1: Let ns¼ nsþ 1;

5.2: Find two adjacent elements a and b in a cycle of bRR bPP �1
such that (a, b)6 j bPP,

(a, bCC(b))6 j bPP and (char(a, bPP), char(b, bPP)) 2 TLpair;

5.3: Let sns ¼ (5cap(a), 5cap(b))(a, b)( bPPbCC(5cap(b)), bPPbCC(5cap(a)))( bPPbCC(b), bPPbCC(a));

5.4: Compute new bPP¼ sns
bPP, new bPPbCC¼ sns

bPPbCC and new bRR bPP �1¼ bRR bPP �1s�1
ns

;

end while

6: /* To derive reversals */

while there are a and b in a cycle of bRR bPP �1
such that (a, bCC(b))j bPP do

=* Note that (a, bCC(b))j bPP means that a and b are in the same chromosome but

different chromosome strands in bPP. *=
6.1: Let nc¼ ncþ 1;

6.2: Find two adjacent elements a and b in a cycle of bRR bPP �1
such that (a, bCC(b))j bPP;

6.3: Let cnc
¼ ( bPPbCC(b), bPPbCC(a))(a, b);

6.4: Compute new bPP¼ cnc
bPP, new bPPbCC¼ cnc

bPPbCC and new bRR bPP �1
¼ bRR bPP �1

c�1
nc

;

end while

7: /* To derive block-interchanges */
while bRR bPP �1 6¼ 1 do

7.1: Let nb¼ nbþ 1;

7.2: Arbitrarily choose two adjacent elements a and b in a cycle of bRR bPP �1
;

7.3: Find two adjacent elements c and d in a cycle of bRR bPP �1
(a, b) such that (c, d)6 j(a, b) bPP;

7.4: Let bnb
¼ (c, d)(a, b)( bPPbCC(b), bPPbCC(a))( bPPbCC(d), bPPbCC(c));

7.5: Compute new bPP¼ bnb
bPP, new bPPbCC¼ bnb

bPPbCC and new bRR bPP �1
¼ bRR bPP �1

b�1
nb

;

end while

8: Output x(P, R)¼ nsþ ncþ 2 · nb and �¼fs1, . . . , sns , c1, . . . , cnc
, b1, . . . , bnb

g;

Now, we demonstrate Algorithm 2 (SoRT2) by letting P¼ (�5, 3)(�3, 5)(2, 4, �1)(1, �4, �2) and

S¼ (1, 2, 3, 4, 5)(�5, �4, �3, �2, �1). Initially, we first add a null chromosome into S and then derive
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from P and S the capping genomes bPP¼ (6, �5, 3, 7)(�7, �3, 5, �6)(8, 2, 4, �1, 9) (�9, 1, �4, �2, �8)

and bRR¼ (6, 1, 2, 3, 4, 5, 7)(�7, �5, �4, �3, �2, �1, �6)(8, 9)(�9, �8), respectively. Then we calculatebRR bPP �1¼ (1, �8, �1, 5, �2, �3, �5)(�6, 7, 4, 3, �4, 2, 9), in which we can find� 6 and 7 in a cycle with

(char(� 6, bPP), char(7, bPP))¼ (C3, C3). Based on the step 4 in Algorithm 2 (SoRT2), there is an operation

v1¼ (�7, 6)(�6, 7)(�7, 6)(�3, �5) performing on bPP as a cap exchange. After applying v1 to bPP, we can

obtain a new capping genome bPP¼ (� 7, � 5, 3, � 6)(6, � 3, 5, 7)(8, 2, 4, � 1, 9)(� 9, 1, � 4, � 2, � 8). In

new bRR bPP �1
that is now (1, �8, �1, 5, �2, �3)(�6, 4, 3, �4, 2, 9), we can still find another cap exchange

operation v2¼ (8, � 7)(9, � 6)(6, � 9)(� 3, 1) that transforms bPP into (�7, �5, 3, 9)(�9, �3, 5, 7)(8, 2, 4,

�1, �6)(6, 1, �4, �2, �8). Then we have new bRR bPP �1
¼ (� 8, � 1, 5, � 2, � 3)(4, 3, � 4, 2, 9)(6, � 9)

(8, � 7), in which there are� 3 and� 8 in a cycle with (char(� 3, bPP), char(� 8, bPP))¼ (T, C3) that clearly

are in the different chromosomes in bPP. Then based on the step 5, we can find a translocation t1¼ (�9, 6)

(�3,�8)(8,�7)(2, 9) that is a fusion actually and transforms bPP into (�7,�5, 3, 2, 4,�1,�6)(6, 1,�4,�2,

�3, 5, 7) (8, 9)(�9, �8), indicating that there is only a chromosome (�5, 3, 2, 4, �1)(1, �4, �2, �3, 5) in

the current P whose gene content clearly equals to that of S. As was demonstrated in the previous

section, this single chromosomal genome P can be further transformed into S by using a reversal, followed

by a block-interchange. In fact, these two intra-chromosomal operations can be derived as follows. Now,bRR bPP �1¼ (2, 4, 3, � 4)(� 1, 5, � 2, � 3), in which� 1 and 5 are in the same cycle but in the different

chromosome strand (i.e, (� 1, bCC(5))j bPP), where bCC(5)¼ � 5. Therefore, based on the step 6, we have

g1¼ (3, �4)(�1, 5) that transforms bPP into (�7, �5, �4, �2, �3, �1, �6)(6, 1, 3, 2, 4, 5, 7) (8, 9)(�9, �8),

which leads to new bRR bPP �1¼ (2, 4, 3)(�1, �2, �3). According to the step 7, we can find a block-inter-

change b1¼ (2, 3)(2, 4)(�2, �3)(�1, �3) that transforms bPP into (�7, �5, �4, �3, �2, �1, �6)(6, 1, 2, 3,

4, 5, 7) that is equal to bRR.

Basically, Algorithm 2 (SoRT2) is a greedy method, in which step 4 can be considered just as a pre-

processing procedure that aims to exchange caps between chromosomes, and steps 5, 6 and 7 are to derive

inter-chromosomal translocations, intra-chromosomal reversals and intra-chromosomal block-interchanges,

respectively. As was demonstrated in the above example, we can express bRR bPP �1
as a product of 2-cycles that

functions as a sequence of translocations, reversals and block-interchanges for optimally transforming P
into S. In total, Algorithm 2 (SoRT2) derives nv cap exchange operations v1, v2, . . . , vnv

and nsþ ncþ nb

rearrangement operations consisting of ns translocations s1, s2 . . . , sns , nc reversals c1, c2, . . . , cnc
, and nb

block-interchanges b1, b2, . . . , bnb
. To prove the correctness of Algorithm 2 (SoRT2), we first show that the

output F of Algorithm 2 (SoRT2) is a feasible solution to the problem and then continue to show that this

feasible solution is optimal. For simplicity, we let b��¼f/1, /2, . . . , /Dg¼fv1, . . . , vnv
, s1, . . . , sns ,

c1, . . . , cnc
, b1, . . . , bnb

g and let bPP0¼ bPP and bPPi¼/i
bPPi� 1, where D¼ nvþ nsþ ncþ nb and 1� i�D.

Since an internal reversal=block-interchange=translocation does not change the set of tails of a capping

genome, we have the following observation immediately.

Observation 5.1. Genomes bPP0, bPP1, . . . , bPPD are all co-tailed.

The above observation indicates the fact that for a signed number x 2 bEE, if x is characterized as a 50

(respectively, 30) cap in bPP0, then it is also characterized as a 50 (respectively, 30) cap in bPPi, suggesting that

once a 50=30 cap, always a 50=30 cap.

Observation 5.2. Let x be a 50 cap of a chromosome in bPP0 (i.e., char(x, bPP0)¼C5). Then x is fixed in

bRR bPP �1

0 .

The following five lemmas are essential for designing our algorithm, and their proofs can be found in

Appendix B.

Lemma 5.1. For 0� i� nvþ ns, there are no two elements a and b with char(a, bPPi)¼C5 and

char(b, bPPi) 6¼ C5 such that a and b are both in the same cycle of bRR bPP �1

i (i.e., (a, b)jbRR bPP �1

i ).

Lemma 5.2. Given a capping genome bPP and a signed number x 2 bEE, if char(x, bPP) is C3 (respec-

tively, T), then char( bPPbCC(x), bPP) is T (respectively, C3) and if char(x, bPP) is O (respectively, N3 and C5),

then char( bPPbCC(x), bPP) is O (respectively, N3 and C5).
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According to Lemma 5.2, it can be observed that if we can derive from bRR bPP �1

i four 2-cycles, where

nv� i� nvþ ns and each of these four 2-cycles divides bRR bPP �1

i , that act on bPPi as a cap exchange, then there

must be a 2-cycle (a, b) among these four 2-cycles such that char(a, bPPi) 2 fC3, N3g and char(b, bPPi) 2
fC3, N3g. This indicates that there is at least a cycle in bRR bPP �1

i that contains the two elements a and b with

char(a, bPPi) 2 fC3, N3g and char(b, bPPi) 2 fC3, N3g. Conversely, if there is no cycle in bRR bPP �1

i that

contains two elements a and b with char(a, bPPi) 2 fC3, N3g and char(b, bPPi) 2 fC3, N3g, then we cannot

derive a cap exchange from bRR bPP �1

i .

Lemma 5.3. For nv� i� nvþ ns, there are no two elements a and b in the same cycle of bRR bPP �1

i such

that (char(a, bPPi), char(b, bPPi)) 2 CEpair.

Lemma 5.4. m¼ nvþ ns and let a and b be any two non-C5 elements of bPPm that are both in a cycle of

bRR bPP �1

m . Then a and b are on the same chromosome in bPPm.

Lemma 5.5. Let m¼ nvþ ns. For each chromosome p̂pi in bPPm, there is a corresponding chromosome r̂rj

in bRR such that the gene content of p̂pi equals to that of r̂rj, where 1� i, j�M.

Corollary 5.1. Let m¼ nvþ ns. For each uncapping chromosome pi in bPPm, there is a corresponding,

uncapping chromosome sj in bRR such that the gene content of pi equals to that of sj, where 1� i, j�M. In

addition, all the C5 elements of bPPm are fixed in bRR bPP �1

m .

Proof. As was shown in Lemma 5.5, for each chromosome p̂pi in bPPm, there is a corresponding chro-

mosome r̂rj in bRR such that they have the same gene content, where 1� i, j�M. Actually, their uncapping

chromosomes pi and sj still contain the same set of genes, because p̂pi and r̂rj are co-tailed genomes. In

addition, it can be verified that both of the C5 elements in p̂pi are fixed in bRR bPP �1

m . As a result, the C5

elements of bPPm are all fixed in bRR bPP �1

m . &

Based on Corollary 5.1, each uncapping chromosome pi in bPPm has a corresponding, uncapping chro-

mosome sj in bRR such that pi and of sj have the same set of genes, where 1� i, j�M. As was already

demonstrated in Algorithm 1 (SoRT), pi can be transformed into sj using a series of reversals and block-

interchanges, which serve as internal reversals and block-interchanges accordingly for transforming p̂pi into

r̂rj, as implemented in the steps 6 and 7 of Algorithm 2 (SoRT2), respectively. Therefore, the output F of

Algorithm 2 (SoRT2) is a feasible solution to the problem of sorting P by reversals, block-interchanges and

translocations (including fusions and fissions). In the following, we will show that F is also an optimal

solution of the problem.

Lemma 5.6. Given two linear genomes P and S with multiple chromosomes, Algorithm 2 (SoRT2)

transforms P into S by using a minimum weighted sequence of reversals, block-interchanges and trans-

locations (including fusions and fissions).

Proof. As demonstrated above, the output �¼f/mþ 1, /mþ 2, . . . , /Dg of Algorithm 2 (SoRT2) is a

feasible solution of the problem, whose number of rearrangement operations is nf ¼ nsþ ncþ nb and whose

weight is xf ¼ nsþ ncþ 2nb. Let �opt ¼fq1, q2, . . . , qno
g be an optimal solution required to transform P

into S and its weight be denoted by oo. Clearly, we have oo�of. As mentioned before, each ri, where

1� i� no, can be modeled by applying a corresponding permutation q0i of two or four 2-cycles to the

affected genome. Let bHH be the capping genome obtained from the capping bRR of S by performing the se-

quence of operations q0no
, q0no � 1, . . . , q01 (i.e., bHH¼ q01q

0
2 . . . q0no

bRR). Let bHH¼fbhh1
, bhh2

, . . . , bhhM
g and Y be the

uncapped genome of bHH. It is clear that Y¼P and bHH and bPPnv (obtained from bPP0 by nv cap exchanges) are

co-tailed, indicating that we can transform bPPnv into bHH using a series of cap exchanges derived frombHH bPP �1

nv
, in which all the numbers characterized as O elements in bPPnv are fixed, and there is no cycle

containing both C5 and non-C5 elements simultaneously. Theoretically, we have bRR bPP �1

nv
¼ bRR bHH �1 bHH bPP �1

nv
.

By Lemma 5.1, bRR bPP �1

nv
has no cycle that contains both C5 and non-C5 elements of bPPnv at the same time.

Since the above property holds for both bRR bPP �1

nv
and bHH bPP �1

nv
, it still holds for bRR bHH �1

. To simplify the
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following discussion, we denote by X, Y and Z, respectively, the products of all cycles of comprising non-

C5 elements in bRR bPP �1

nv
, bRR bHH �1

and bHH bPP �1

nv
(i.e., ignoring the cycles consisting of C5 elements). Then it can

be verified that xf ¼kXk=2 according to the design of Algorithm 2 (SoRT2). As mentioned above,bHH¼ q01q
0
2 . . . q0no

bRR. For each 1� i� no, if q0i is a translocation (whose weight is 1), then it can be expressed

by two 2-cycles of (non-C5, non-C5) character pair and two 2-cycles of (C5, C5), while if q0i is a

reversal=block-interchange (whose weight is 1=2), then it can be expressed by two=four 2-cycles of (non-

C5, non-C5) character pair. Then the total number of the above 2-cycles of (non-C5, non-C5) is 2oo, and it

should be greater than or equal to kYk. In other words, xo�kYk=2 and hence kXk�kYk since xf�xo.

Suppose that kXk4 kYk. Then we claim that there are two elements a and b in a cycle of bRR bPP �1

nv
such that

(char(a, bPPnv), char(b, bPPnv)) 2 CEpair. (The correctness of this claim will be proved later.) However, this

result clearly contradicts to Lemma 5.3. In other words, kXk¼kYk and, therefore, F is an optimal solution.

Below, we prove the above claim by contradiction method. It should be noted that the characters of all

elements we mention in the rest of this proof are with respect to bPPnv . Suppose that there are no two

elements a and b in a cycle of bRR bPP �1

nv
such that (char(a, bPPnv), char(b, bPPnv )) 2 CEpair. This indicates that

for each cycle, say a, in X with containing at least a C3, N3 or T element, either this cycle has exactly a C3,

N3 or T element, or it has exactly a C3 element and a T element. For the latter case, we let

a¼ (a1, a2, . . . , ai, . . . , aj), where (char(ai, bPPnv ), char(aj, bPPnv)) is equal to (C3, T) or (T, C3) and the others

are all O elements. Then we can express a as a product of (a1, a2, . . . , ai)(aiþ 1, . . . , aj)(ai, aj) and (ai, aj)jX
by Lemma 2.7. Using this approach, we can express X¼X0X00, where each cycle in X0 contains at most a

C3, N3 or T element, and each cycle in X00 is a 2-cycle whose character pair is either (C3, T) or (T, C3). In

addition, we have X00jX, since it can be verified that nc(XX00 �1
)� nc(X)¼kX00k (and hence X00jX by

Corollary 2.1). Then kXk¼kX0k þ kX00k by Lemma 2.5. As mentioned above, each O element x is fixed in

Z (i.e., Z(x)¼ x) and hence X(x)¼ YZ(x)¼ Y(x). This further suggests that for each cycle in X0, say

b¼ (b1, b2, . . . , bj) where char(bi, bPPnv)¼O for 1� i� j� 1, all of its elements appear consecutively in a

cycle of Y in the order of b1, b2, . . . , bj. In other words, bjY by Lemma 2.7 and, moreover, X0jY since it can

be verified that nc(YX0 �1
)� nc(Y)¼kX0k. Let Y¼X0Y00 (i.e., Y00 ¼X0�1Y ). Then kYk¼kX0k þ kY 00k by

Lemma 2.5. Based on the above assumption that kXk4 kYk, we have kX00k4 kY 00k. For convenience, we

let kX00k¼ k and X00 ¼ (a1, b1)(a2, b2) . . . (ak, bk), where (char(ai, bPPnv), char(bi, bPPnv ))¼ (C3, T) for each

1� i� k. Let Z(ai)¼ ci. Then char(ci, bPPnv) is either C3 or N3 (i.e., char(ci, bPPnv) 6¼ T) and hence ci 6¼ bi,

which is due to the fact that Y¼P and bHH and bPPnv are co-tailed. Since X00 ¼ Y00Z, we have

bi¼X00(ai)¼ Y00Z(ai)¼ Y00(ci), indicating that ci and bi are consecutive in a cycle in Y00. This further implies

that kY 00k�k. As a result, kX00k�kY 00k, which contradicts to that kX00k4 kY 00k. In other words, there are

two elements a and b in a cycle of bRR bPP �1

nv
such that (char(a, bPPnv), char(b, bPPnv )) 2 CEpair. &

Theorem 5.2. Given two linear, multi-chromosomal genomes P and S, the SoRT2(1, 2, 1) problem can

be solved in O(dn) time, where d is the number of reversals, block-interchanges and translocations

(including fusions and fissions) needed to transform P into S.

Proof. According to Lemma 5.6, Algorithm 2 (SoRT2) can transform P into S using a minimum

weighted sequence of reversals, block-interchanges and translocations (including fusions and fissions).

Below, we analyze its time-complexity. It is clear that steps 1–2 can be done in O(n) time and step 3 in

constant time. Suppose that M�N. Then there are exactly 2M C3 and N3 elements. As mentioned in the

front of Lemma 5.3, there must be a 2-cycle in a cap exchange operation whose character pair is either (C3,

C3), (C3, N3) or (N3, N3). This means that the composition of this cycle, its mate cycle and two additional

(C5, C5) cycles comprises an operation of cap exchange, suggesting that the number of iterations in step 4

is at most M. Recall that once an element is a 30 cap, it is always a 30 cap in the whole process. Hence, we

can first identify all the C3=N3 elements in the initial bRR bPP �1
by costing O(2nþ 2M) time, where M� n.

Then by constant time, we can determine if we need to enter the iteration of step 4 to perform the cap

exchange that actually requires only constant time. As a result, the total cost of step 4 is O(n). For each

iteration of steps 5 and 6, the most time-consuming operation is to check and find if there is any two

adjacent elements in each cycle of bRR bPP �1
that satisfy the required conditions, which totally can be done in

O(n) time. As to step 7, its execution time is dominated by step 7.3 that can be finished in O(n) time in

worst case. Step 8 needs only constant time. Consequently, based on the above discussion, if the number of

needed reversals, block-interchanges and translocations in Algorithm 2 (SoRT2) is d, then the total time

complexity of Algorithm 2 (SoRT2) is O(dn). &
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Corollary 5.2. Given two linear, multi-chromosomal genomes P and S, their weighted rearrangement

distance o(P,S) can be calculated in O(n) time.

Proof. According to Algorithm 2 (SoRT2), it can be realized that x(P, R)¼ kbRRbPP �1

k� 2nv

2
, where nv is

the number of cap exchanges needed in Algorithm 2 (SoRT2). Clearly, kbRR bPP �1
k can be computed in O(n)

time by Lemma 2.1 and nw can also be calculated inO(n) time as shown in Theorem 5.2. Therefore, o(P, S)

can be calculated in O(n) time. &

6. CONCLUSION

In this article, we demonstrated that the permutation group formalism can be utilized to model genome

rearrangements, such as reversals, (generalized) transpositions, and translocations (including fusions

and fissions), and design novel algorithms, which can be easily implemented using simple data structure of

1-dimensional arrays, for efficiently sorting linear=circular, multi-chromosomal genomes. For future work,

it would be interesting to discuss relative advantages and disadvantages of all the different formalisms (e.g.,

the permutation group and breakpoint=adjacent graphs) for solving the genome rearrangement problems

with regard to both the theoretical and practical advances in the design of efficient algorithms.

7. APPENDIX A

Lemma 2.1. For any permutation a of E, kak¼ jEj � nc(a).

Proof. We refer the reader to (Lin et al., 2005) for the detailed proof of this lemma. &

Lemma 2.2. Let a and b be any two permutations of E. Then ka � bk¼kbk.

Proof. As mentioned before, a � b has the same cycle structure as b, meaning that nc(a � b)¼ nc(b).

By Lemma 2.1, ka � bk¼kbk. &

Lemma 2.3. Let a and b be any two permutations of E. Then kabk¼kbak.

Proof. By Lemma 2.2, kabk¼kb � (ab)k¼kbabb�1k¼kbak. &

Lemma 2.4. Let a and b be any two permutations of E. Then kabk�kakþkbk.

Proof. Let kak¼ i and kbk¼ j. Then we can express a as a product of i 2-cycles, say a¼ a1a2 . . . ai and

b as a product of j 2-cycles, say b¼ b1b2 . . . bj. Therefore, ab¼ a1a2 . . . aib1b2 . . . bj and, consequently,

kabk�iþ j¼kakþkbk. &

Lemma 2.5. Let a, b and g be any three permutations of E and a¼ bg. If bja or gja, then

kak¼kbkþkck.

Proof. Suppose that bja. Then kab�1k¼kak�kbk by definition. Moreover, kab�1k¼kb�1ak by

Lemma 2.3 and kb�1ak¼kck since a¼ bg. Therefore, kak¼kbkþkck. Suppose that gja. Then

kac�1k¼kak�kck by definition and kac�1k¼kbk since a¼ bg. Therefore, kak¼kbkþkck. &

Lemma 2.6. Let a,b and g be any three permutations of E. If ajb and bjg, then ajg.

Proof. Suppose that ajb and bjg. Then kba�1k¼kbk�kak and kcb�1k¼kck�kbk, which means

that kba�1kþkcb�1k¼kck�kak. Note that ga�1¼ gb�1ba�1. By Lemma 2.4, we have jca�1k�
kcb�1kþkba�1k, implying that kca�1k�kck�kak. Since g¼ ga�1a, we have kck¼kca�1ak. By Lemma

2.4 again, kck�kca�1kþkak, meaning that kca�1k�kck�kak. Consequently, kca�1k¼kck �kak and,

therefore, ajg. &
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8. APPENDIX B

Lemma 5.1. For 0�i�nvþ ns, there are no two elements a and b with char(a, bPPi)¼C5 and

char(b, bPPi) 6¼ C5 such that a and b are both in the same cycle of bRR bPP �1

i (i.e., (a, b)jbRR bPP �1

i ).

Proof. We prove this lemma by induction on i. Recall that once a signed number is a C5 element in bPP0,

it is always a C5 element in bPPj, where 1� j� nvþ ns. Basically, the lemma is true when i¼ 0, since each

C5 element is fixed in bRR bPP �1

0 according to Observation 5.2. Suppose that this lemma holds for i¼ k,

where 0� k5 nvþ ns. Then each cycle in bRR bPP �1
i either consists only of C5 or non-C5 elements. Note

that bPPiþ 1¼/iþ 1
bPPi and, therefore, bRR bPP �1

iþ 1¼ bRR bPP �1
i /�1

iþ 1. Since /iþ 1 acts on bPPi as a cap exchange or

translocation, the (C5, C5)-cycle in /�1
iþ 1 acting on bRR bPP �1

i either divides a cycle with only C5 elements into

two smaller cycles, or joins two cycles, each with C5 elements only, into a bigger one. As a result, there is

no cycle in bRR bPP �1

iþ 1 that contains a C5 element and a non-C5 element simultaneously and, therefore, the

lemma still holds when i¼ kþ 1. &

Lemma 5.2. Given a capping genome bPP and a signed number x 2 bEE, if char(x, bPP) is C3 (respectively,

T), then char( bPPbCC(x), bPP) is T (respectively, C3) and if char(x, bPP) is O (respectively, N3 and C5), then

char( bPPbCC(x), bPP) is O (respectively, N3 and C5).

Proof. Suppose that char(x, bPP)¼C3. Then char(bCC(x), bPP)¼C5, since bCC(x) is the complement of x inbPP, and clearly char( bPPbCC(x), bPP)¼T. Conversely, suppose that char(x, bPP)¼T. Then char(bCC(x), bPP)¼O

and char( bPPbCC(x), bPP)¼C3. Suppose that char(x, bPP)¼O. Then either char(bCC(x), bPP)¼O or char(bCC(x),bPP)¼T. Whatever the case, however, we have char( bPPbCC(x), bPP)¼O. Suppose that char(x, bPP)¼N3. Then

char(bCC(x), bPP)¼C5 and char( bPPbCC(x), bPP)¼N3. Suppose that char(x, bPP)¼C5. Then either char(bCC(x),bPP)¼C3 or char(bCC(x), bPP)¼N3. Whatever the case, we have char( bPPbCC(x), bPP)¼C5. &

Lemma 5.3. For nv�i�nvþ ns, there are no two elements a and b in the same cycle of bRR bPP �1

i such

that (char(a, bPPi), char(b, bPPi)) 2 CEpair.

Proof. We prove this lemma by induction on i. Suppose that i¼ nv. Then Algorithm 2 (SoRT2) has just

finished its step 4 and hence there are no a and b in a cycle of bRR bPP �1

i such that (char(a, bPPi), char(b, bPPi))

2 CEpair. Thus, the lemma is true when i¼ nv. Suppose that the lemma holds when i¼ k, where

nv�k 5 nvþ ns, and that we can find a translocation /iþ 1¼ (5cap(x), 5cap(y))(x, y)( bPPi
bCC(5cap(y)), bPPi

bCC
(5cap(x)))( bPPi

bCC(y), bPPi
bCC(x)) by choosing x and y from a non-fixed cycle a of bRR bPP �1

i with satisfying

(char(x, bPPi), char(y, bPPi)) 2 TLpair. Then a and its mate cycle contain no C5 element according to

Lemmas 5.1 and 5.2 and also contain no two elements a and b with char(a, bPPi) 2 fC3, N3g and

char(b, bPPi) 2 fC3, N3g by the induction hypothesis. Moreover, (5cap(x), 5cap(y)) is a (C5, C5) cycle and

so is ( bPPi
bCC(5cap(y)), bPPi

bCC(5cap(x))) by Lemma 5.2. Since bPPiþ 1¼/iþ 1
bPPi, we have bRR bPP �1

iþ 1¼bRR bPP �1

i /�1
iþ 1, where the 2-cycles (x, y)�1 and ( bPPi

bCC(y), bPPi
bCC(x))�1 in /�1

iþ 1 act on a and its mate cycle in

bRR bPP �1

i respectively by splitting them into four smaller cycles, and the other two 2-cycles in /�1
iþ 1 act on

some cycles of bRR bPP �1

i that consist only of C5 elements. Note that an element z is a 30 cap in bPPi if and only

if z is a 30 cap in bPPiþ 1 (since bPPiþ 1 and bPPi are co-tailed). Based on this property, as well as the discussion

above, we cannot find a cycle in bRR bPPiþ 1 that contains two elements a and b with char(a, bPPiþ 1) 2 fC3, N3g
and char(b, bPPiþ 1) 2 fC3, N3g. Therefore, the lemma still holds when i¼ kþ 1. &

Lemma 5.4. Let m¼ nvþ ns and let a and b be any two non-C5 elements of bPPm that are both in a cycle

of bRR bPP �1

m . Then a and b are on the same chromosome in bPPm.

Proof. By Lemma 5.3, we have (char(a, bPPm), char(b, bPPm)) 62 CEpair and hence (char(a, bPPm), char

(b, bPPm)) 2 TLpair. Recall that Algorithm 2 (SoRT2) produces bPPm when it has finished its step 5. It indicates

that there are no two non-C5 elements x and y in bPPm that are both in a cycle of bRR bPP �1

m such that (x, y)6 j bPPm,
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(x, bCC(y))6 j bPPm and (char(x, bPPm), char(y, bPPm)) 2 TLpair. This suggests that (a, b)j bPPm or (a, bCC(b))j bPPm. The

former implies that a and b are on the same chromosome strand in bPPm, and the latter implies that a and b

are on the same chromosome but different strands. Whatever the case, they are on the same chromosome

in bPPm. &

Lemma 5.5. Let m¼ nvþ ns. For each chromosome p̂pi in bPPm, there is a corresponding chromosome r̂rj

in bRR such that the gene content of p̂pi equals to that of r̂rj, where 1� i, j�M.

Proof. For convenience, we use GC(p̂pi) and GC(r̂rj) to denote the gene contents of chromosomes p̂pi and

r̂rj, respectively. First, we claim that if GC(p̂pi) \ GC(r̂rj) 6¼ ;, then GC(r̂rj) � GC(p̂pi). Suppose that

GC(p̂pi) \ GC(r̂rj) 6¼ ; and GC(r̂rj) n GC(p̂pi) 6¼ ;. Then there are at least two elements a and b in GC(r̂rj)

such that a 2 GC(p̂pi) \ GC(r̂rj), b 2 GC(r̂rj) n GC(p̂pi) and r̂rj(a)¼ b.

Case 1. Suppose that char(b, bPPm) 6¼ C5. Then let p̂pi(a)¼ c. Note that if p̂pi contains a single gene, then

c¼ a; otherwise, c 6¼ a. Whatever the case may be, c 2 GC(p̂pi). Since bPP �1

m (c)¼ a and bRR(a)¼ b, we havebRR bPP �1

m (c)¼ b, implying that c and b are adjacent in a cycle of bRR bPP �1

m . Since char(b, bPPm) 6¼ C5,

char(c, bPPm) 6¼ C5 according to Lemma 5.1. Further by Lemma 5.4, b and c are on the same chromosome inbPPm. That is, b 2 GC(p̂pi), a contradiction to the assumption that b 2 GC(r̂rj) n GC(p̂pi).

Case 2. Suppose that char(b, bPPm)¼C5. Then char(bCC(b), bPPm)¼C3. Let p̂pi(a)¼ c. As discussed in

case 1, c is adjacent to b in a cycle of bRR bPP �1

m . Since char(b, bPPm)¼C5, char(c, bPPm)¼C5 by Lemma 5.1.

This implies that char(a, bPPm)¼C3 and hence char(bCC(a), bPPm)¼C5. Since bRR and bPPm are co-tailed, each of

the two strands r̂rj
1 and r̂rj

2 in r̂rj contains exactly one number that is characterized as a C5 element with

respect to bPPm. Clearly, this C5 element in the strand of r̂rj with containing bCC(b), say r̂rj
2, is bCC(a). Based on

the result derived in case 1, all the elements following bCC(a) in the r̂rj
2 strand in the 50? 30 direction are all

non-C5 elements with respect to bPPm and hence they must belong to GC(p̂pi), suggesting that bCC(b), as well as

b, belongs to GC(p̂pi), a contradiction.

Next, recall that bPPm and bRR are co-tailed genomes over the same set bEE of genes. The co-tailed property

further implies that bPPm and bRR have the same number of chromosomes. As was shown in the above claim,

for each chromosome r̂rj in bRR, there is a corresponding chromosome p̂pi in bPPm such that GC(r̂rj) � GC(p̂pi). If

GC(r̂rj) � GC(p̂pi), then it is clear that the number of chromosomes in bPPm is not equal to that in bRR, a

contradiction. Therefore, GC(p̂pi)¼GC(r̂rj) and the lemma holds. &
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