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Single Screw Extrusion

Student : Horng-Der Kuo Advisor : Professor Jiann-Shing Wu
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Abstract

Most scholar and-experts-formerly put forward the practical experi
-ment of different fluid model or'mixing elements as the main research ,
when mentioning the research of distributive mixing element but not
many of them worked out their essays about mixing element in
simulation.

The goal of my essay is to use finite element method to simulation
high molecular polymer flow in the distributive mixing elements. With
changing different configuration of pins, the distances between two pin
along the circumferential direction and the two row of pins aong the
screw axial distances make quantitative analyses. Moreover, the
interfacial area ratio and energy consumption are employed to indicate

the mixing effect.
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Pressure

Dead

Barrel

Mixer Operator Disp. | ghear | Mixer cost |SPlitting reorienting
drop spots | wiped mixing
friendly strain

Pins High Yes Partial Good No Low Low Fair
Dulmage Low No Partia Good No High Fair Good
Saxton Low No Yes Good No High Fair Good
CRD Low No Yes Good Yes High Fair Good
CTM High Yes No Bad Some High High Good
TMR High Yes Yes Fair Some High Medium Good
Axon Low No Yes Good No High Low Low
Double wave Low No Yes Good Some High High Low
Pulsar Low No Yes Good No Fair Fair Low
Stratablend Low Yes Yes Good No Fair Fair Low
Ref . C. Rauwendaal “Pol ymer Extrusion”
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Dy cm 6. 3
ls cm 6. 3
H cm 0.45
W cm 5. 67
0p ° 17. 66
Th 200

|~ cm 6.3

Z ..Cm 61. 8

rpm 80
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1 0 LDPE

aw model

A
ps Kgmd 915
Pm Kgm 770
Ks W/m-K 0.335
Km W/m-K 0.182
Cs JKg-K 2272
Tm 110
c lps 0.0015
B
Kox108 Pa- g 1.96
ax10®> 1K 2.33
7o s 1.00
n dimensionless 0.5
truncated power
o \n-1
p= 1€ > 70)
0
er_a(T_TO) (7 <70)
Mo = Myy on_1

Ref C.D.Han,K.Y.Leeand N. C. Wheeler, Polym. Eng. Sci., Vol. 31, No. 11,
p. 836 (1991).
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