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Chapter 4 
 
Exploring Effective Coefficients in  
DCT-Domain Perceptual Watermarking 
 
4.1 Introduction 
Several works studying the watermark data payload issue have been published using the 

theoretical analysis approach [3][46][47]. Clearly, there are tradeoffs between the achievable 

watermarking rate, allowable distortion for information hiding, and robustness against attacks 

[3]. It has been reported that the transform–domain watermarking techniques can offer a 

higher capacity under specific attacks (such as compression) [46][48]. For our targeting 

applications, we are especially interested in the watermark payload and robustness under the 

combined criteria of reliable detection and visual fidelity. The perceptual watermark payload 

in different transform domains has been analyzed in [49]. In [47], the capacity constrained by 

reliable statistical detection is calculated. In [50], the minimum number of coefficients in 

discrete wavelet domain with spread spectrum watermark embedding is theoretically analyzed 

using the human visual model and a probabilistic detection model.  

The previous research work estimates the theoretical watermark capacity bound of,  for 

example, transform-domain watermarking, but the exact locations of the coefficients for 

watermark embedding are not identified. In this paper, we develop a procedure that identifies 

these effective coefficients for natural images. The goal is to achieve both high detection 

reliability and watermark invisibility. Since the achievable rate (data payload) in the case of 
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blind detection is upper-bounded by that of non-blind detection [3], we employ non-blind 

detection and assume the attack source is known to explore the best achievable performance 

under the above assumptions. To a certain extent, we are exploring the “performance limit” of 

DCT-domain watermarking for a given specific attack. In general, this method can be 

extended to other watermarking schemes and/or with multiple attacks. In practice, the 

non-blind detection watermarks can be used in the applications such as transaction-tracking 

[1].  

Since digital images are often compressed for efficient storage and transmission, in this 

study, JPEG and JPEG2000 compression schemes are adopted as the attacking sources.  In 

general, other attacks can be used in the design (training) phase, because in our approach, the 

watermarking algorithm and the attacking process are unrelated.  

A two–stage procedure is developed for choosing appropriate coefficients. In the first 

stage, deterministic analysis is exercised to pick up the proper coefficients so that the attacked 

coefficients can still hold the retrievable mark and in the meanwhile the distortion due to 

watermark embedding is lower than the visual threshold. In the second stage we calculate the 

statistical properties of watermarked images and discard the coefficients that reduce detection 

reliability (or equivalently, increase error probability). In Section 4.2, the robust and 

imperceptible coefficient selection process (stage 1) is developed. Section 4.3 describes the 

human visual masking model used in our experiment. Section 4.4 contains the description of 

the detection reliability improvement process (stage 2). Section 4.5 and 4.6 cover the details 

of the watermark embedding and detection procedures. Simulation results summarized in 

Section 4.7 will show the performance of our scheme. At the end, Section 4.8 concludes this 

presentation. 
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4.2 Robust and Imperceptible Coefficient Selection 
Our goal is to achieve the maximum detection robustness while the watermark imperceptible 

property can still be maintained. Several factors affect the watermark detection ability. In the 

case of DCT-domain watermarking, intuitively one may want to use more coefficients. 

However, some coefficients with low energy, for example, may be inappropriate for carrying 

watermarks. Similar to the signal design problem in digital transmission over noisy channels, 

signals (now DCT coefficients) have to be carefully selected to achieve the robustness goal. 

Increasing the magnitude of watermark generally increases the watermark robustness. But on 

the other hand, large-magnitude changes on coefficients may be perceptually visible. Also 

different types (and amount) of attacks produce different-levels of damages on the watermarks. 

The coefficients that can tolerate a specific type of attack can be identified with the aid of 

damage analysis due to potential attacks [68]. For example, if JPEG compression is used for 

image distribution and thus may be viewed as an attack to the embedded watermark. In this 

case, we can include JPEG compression in the design phase in choosing the most robust 

watermark parameters. 
We first assume both the attacks and the watermark embedding method are known. In our 

first experiment, JPEG compression is used as the attacking means. And as said earlier, we 

adopt the DCT-domain watermarking embedding technique. The robustness of watermark 

(correctness of decoded watermark bits) can be increased by either selecting proper 

coefficients and/or adjusting watermark embedding parameters based on the input images. 

We use the DCT-domain additive watermark embedding, ][][][][' iwiixix ⋅α+= , where ][iα  

is the watermark strength for the DCT coefficient x[i], and its value is decided by the visual 

threshold (details to be described in Section 4.3). A DCT coefficient x[i] is positively 

watermarked if the watermark bit w[i] is +1, and it is negatively watermarked if w[i] is –1.  
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There are two stages in our proposed scheme. In the first robustness and imperceptibility 

coefficient selection stage (Robustness stage in short), the attack effect on the watermarked 

coefficients are checked for robustness. In the JPEG attack case, a DCT coefficient is declared 

robust and is selected if both its positive and negative watermark embedding can survive the 

attack. On the other hand, because the human eyes are rather sensitive to low-frequency 

coefficient variations, we do not embed the watermark on the DC coefficients. The robustness 

and imperceptibility of all the AC coefficients are examined. 

The embedded watermark strength ][iα of the ith AC coefficient x[i] is set to be the 

visual masking threshold hvs[i] of this coefficient. Let the quantization step size of JPEG 

compression with quality factor q be q∆ . The JPEG compression is applied to both the 

positively and negatively watermarked values of the same DCT coefficient. As a result, the 

distortion between the unwatermarked AC coefficient x[i] and its quantized positively 

watermarked coefficient x’[i] is ][ieposw ; that is, 
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and the distortion between the original AC coefficient x[i] and its quantized negatively 

watermarked coefficient x’[i] is ][ienegw ; that is,  
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A DCT coefficient is retained in the candidate set if the sign of ][ieposw  is +1 and the sign of 

][ienegw  is –1. 
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 The sets of robust coefficients under JPEG compression corresponding to different 

quality factors are separately produced. Since q∆  decreases as the quality number of the 

JPEG compression increases, a coefficient that survives the JPEG compression with a low 

quality factor (e.g., 50) usually also survives the JPEG compression with a higher quality 

factor (e.g., 80). Therefore, the number of the coefficients passing a low-quality-factor JPEG 

attack is smaller than that passing a higher quality-factor attack. These selected coefficients 

will be further screened in Section 4.4. 

The preceding approach can be extended to cover the other types of attacks. An original 

image is embedded with the watermark in the DCT-domain. For an attack in either the spatial 

or other transform domains, the watermarked image is converted back to the spatial domain 

and the attack is then applied. We decode the watermark bits in the DCT-domain. If the 

watermark bit associated with a certain DCT coefficient is correctly decoded, this coefficient 

is declared to be robust.  

However, there is a major difference when the attack is not applied to individual 

coefficients in the DCT-domain. In the case of JPEG, where each DCT coefficient is 

separately quantized, the watermark robustness of a DCT coefficient is easily examined as we 

did in (1) and (2). In general, the amount of distortion on a single DCT-coefficient due to an 

attack depends on the entire watermark pattern. That is, the attack distortion on a certain DCT 

coefficient depends on not only the watermark bit added to that coefficient but also its 

neighboring watermark bits. If the watermark pattern changes, the same attack may produce 

different distortion on a particular coefficient. Therefore, to make sure a coefficient can 

survive for any embedded watermark pattern, we should examine all possible watermark 

patterns. Clearly, this is not possible when the watermark bits are large (say, more than 20 or 

30 bits). Looking for “best” test patterns can be a research topic. Heuristically, we first 

examine the all-positive and all-negative patterns. Then, we test the alternate polarity pattern 

in which the odd-index watermark bits (in zigzag scan order) are +1 and the even-index ones 
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are -1. Reversing the polarity of the previous pattern produces another alternate polarity 

pattern. Additional patterns included in the robustness checking process will improve the 

accuracy of picking up robust coefficients at the cost of computational complexity. Our 

experiments indicate that even with only 4 patterns, we can identify robust coefficients with 

rather high probability. 

If the target is to design a watermark that survives a specific attack, then the preceding 

procedure is sufficient and no further refinement is needed. However, in the probabilistic 

sense (and so that it may be practically useful), we hope the embedded watermark can survive 

“similar” attacks (with the same probabilistic model) with high reliability. Also, we like to 

reduce the false alarm probability in which a watermark is detected although none is really 

embedded. Therefore, a second stage of increasing reliability is added. 

 

4.3 Visual Masking Effect in DCT Domain 
For the purpose of imperceptible watermark design, we are particularly interested in the 

masking properties of the human visual system (HVS) [69]. Masking effect means that the 

visibility of one signal (image) is changed due to the existence of the other (image) signal. 

Several visual masking effects have been identified such as spatial masking, luminance 

masking, and contrast masking.  

The inclusion of human perceptual characteristics into the watermarking design process 

helps maintaining the watermark imperceptibility. Another advantage of this approach is that 

if the watermarked image spectra is similar in shape to the spectrum of the original image, 

then the attackers cannot easily identify the embedded watermark by using some prior 

knowledge on the image’s statistics [36][44][45].  

In the following procedure, we use the visual masking model in the DCT domain since 

our watermark embedding process is conducted in this domain. The visual masking thresholds 
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are calculated only for AC coefficients because the DC coefficients are not marked. The 

popular Watson’s DCT-based visual model is employed in calculating the contrast masking 

threshold mnke  of the AC coefficient x[i] at the 2-D frequency index (m,n) of block k. The 

visual threshold hvs[i] is thus set to mnke  and it is used to adjust the watermark embedding 

strength ][iα as described in Section 4.2. The contrast masking effect often has the strongest 

impact on the subjective visual quality.  

In our experiment, the parameter values used in contrast masking threshold calculation are 

the same as those used in the Checkmark package [70]. This set of setting is decided through 

subjective tests and is widely adopted in image research. More details can be found in [70] 

and [71]. Here, we only briefly describe its computational steps as below. 

1. Set xW  to ))344/(()/180( vdv ××π , yW  to ))342/(()/180( vdu ××π , where v  is the vertical 

screen image size, u is the horizontal screen image size, and vd  is the viewing distance. 

In our experiments, v is 8.8, u is 9.4, and vd  is 72. 
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8. Calculate the luminance masking threshold at frequency index (m,n) for block k :  

tak
mnmnk c

ctt )(
00

00= , where 812800 ×=c , and kc00 is the DC coefficient of block k.  

9. Calculate the contrast masking threshold: ],max[ 1 mnmn w
mnk

w
mnkmnkmnk tcte −⋅= , where 

mnw  is chosen experimentally. We set 000 =w  and 7.0=mnw  for )0,0(),( ≠nm . Note 

that mnkc  is the (m,n) AC coefficient of block k. 

  

4.4 Detection Reliability Improvement 
A watermarking system can be viewed as a communication system with, possibly, side 

information [72]. If the watermark detector is known and the type of attacks is also known in 

advance, the coefficients that have higher detection error probability can be pre-estimated and 

dropped to improve the overall detection reliability. There are two types of error probability. 

The false positive probability that an unmarked image is wrongly declared watermarked by 

the detector is FPP . On the other hand, the probability of undetected watermark is false 

negative error probability, FNP . The average error probability is 2/)( FNFPerror PPP +=  if we 

assume an image is equally likely marked or unmarked. Let 0H  denote the state that an 

image is marked and 1H  denote the watermarked state. 

In the second stage, DCT coefficients are further screened to enhance the detection 

reliability. For this purpose, we like to know how the detection error probability of a 

particular coefficient is affected by a specific attack distortion model (JPEG compression, 

say). We first collect statistics from the real image data by running the (JPEG) attack on the 

watermarked images. Then, the error probability is estimated based on a statistical model of 

the distorted watermarked coefficients. In [73][74], a theoretical model for additive 

watermarks under JPEG quantization effect is proposed based on the dither quantization 

theory [75]. The pseudo-noise watermark and the original image are assumed to be 

statistically independent. It was shown that the JPEG quantization distortion on individual 
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coefficient cannot be approximated by an AWGN channel model and such distortion should 

be signal dependent. In particular, the distributions of the fine and coarse quantization errors 

are different. Therefore, we take the approach based on the central limit theorem [73] instead 

of applying the normal distribution model to the individual coefficient. That is, the mean 

value of the normalized correlation sum can be approximated by the normal distribution. This 

model can be also extended to other attacking sources. 

The candidate coefficients that have passed the robustness and imperceptibility stage 

(stage 1) in Section 4.2 are further examined against the reliability test at the reliability 

improvement stage (stage 2). We propose an iterative procedure to discard the “poor” 

coefficients. Only one coefficient is discarded in each iteration. This process continues until 

the overall error probability cannot be further reduced. At the beginning of one iteration, if 

there are N coefficients, N candidate sets are formed by deleting one coefficient alternatively 

in this N-coefficient set. Consequently, there are N-1 coefficients in each candidate set. Then, 

the statistics of each candidate set based on the Bayes’ decision rule for watermark detection 

is calculated separately. The set with the lowest error probability is retained if the overall 

error probability decreases monotonically. Clearly, our proposal is one special type of 

searching algorithms. There are other searching algorithms that may be employed in this stage. 

The procedure of our algorithm is described below. 

The detection error probability is calculated based on the watermark detection rule. Here, 

the watermark detection rule is designed to minimize the average cost using the Bayes’ rule. 

The binary hypotheses of watermark detection for a received image are: 

][][][])[][][(][:H

][][])[][(][:H

11

00

HH1

HH0

ieidixieidixiy

ieixieixiy

+=−++=

=−+=
 , 
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where y[i] is the difference between the received coefficient and the unwatermarked 

coefficient x[i], d[i] is the embedded watermark, ][
0H ie  is the distortion due to attack on the 

original coefficient, and ][
1H ie  is the attack distortion on the watermarked coefficient.  

Let c[i] be the normalized correlation value between y[i] and d[i] and C be the mean 

value of the normalized correlation sum. Let 10c  be the cost of the false positive decision, 

01c  be the cost of the false negative decision, 00c  be the cost of detecting watermark 

correctly, and 11c  be the cost of detecting the absence of watermark correctly. Then, the 

Bayes’ decision rule for minimum cost implies that H1 is chosen if [76] 
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As described earlier that w[i] is the watermark signature with antipodal signaling {-1,1}, and 

][iα  is the adjustable watermark embedding strength of x[i] (described in Section 4.2). In 

(4.4), M is the number of the watermarked coefficients, and 2
dσ  is the variance of embedded 

watermark signals. Since 2
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is not bounded to [-1, 1]. When M is sufficiently large, the probability distribution of C can be 

approximated by the Gaussian distribution according to the central limit theorem. 

The variance of C is 
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Equivalently, 
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Finally, the maximum-likelihood (ML) detector is obtained with K=1 in (4.3) assuming 

that (i) 11010010 cccc −=−  (symmetric cost function), and (ii) )()( 10 HPHP = . Then, (4.7) can be 

simplified and expressed as 0)21 >−− xCxC )(( , where 1x  and 2x  are two constants determined 

by }H|E{ 0c , }H|E{ 1c , }H|Var{ 0c , and }H|Var{ 1c . The detection threshold cx  is either 1x  or 

2x as its value should locate between }H|E{ 0c  and }H|E{ 1c . As a result, the image is declared 

watermarked if cxC > . Consequently,  
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To estimate FPP  and FNP  in (4.8) and (4.9), the statistics }H|E{ 0c , }H|E{ 1c , }H|Var{ 0c , and 

}H|Var{ 1c  are derived from the image data. We assume a coefficient is equal likely being 

positively or negatively watermarked.  Then, }H|E{ 0c , }H|E{ 1c , }H|Var{ 0c , and }H|Var{ 1c  are 

calculated by the following equations: 
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In each iteration, the average error probability of (4.8) and (4.9) is computed for every 

candidate set. The minimum error set is singled out and therefore one coefficient is removed. 

This iterative process repeats until the average error does not decrease any further. Note that 

the coefficients sets associated with different JPEG compression quality numbers are different 

as discussed in Section 4.2. And thus, M is the number of total selected coefficients for the 

entire image associated with a JPEG quality factor.  

A slight variation of the above scheme is formed for selecting a pre-determined number of 

coefficients. The iteration procedure is similar as before; that is, “drop the least reliable 

coefficient”. However, the stopping rule is changed to “stop when the number of coefficients 

reaches the pre-determined number”. We can also use the same framework for picking up the 

largest set of coefficients that meet a pre-selected error probability. 

 

4.5 Watermark Embedding Scheme 
The watermark embedding process is described as follows. First, an original image is 

transformed by 88×  non-overlapped 2-D DCT and the contrast masking thresholds of all AC 

coefficients are calculated.  Then the locations of robust coefficients are determined by the 

Robustness and the Reliability stages as described before. After the robust coefficients have 

all been selected, watermarks are embedded on the selected DCT coefficients. If we group the 

DCT coefficients with the same 2-D frequency index together to form a sub-channel, there are 

in total 63 sub-channels.  Typically, the AC coefficients belonging to a sub-channel can be 

modeled as a generalized Gaussian distribution source [77]. The watermark bits are inserted 

to the coefficients belonging to the same sub-channel in the raster-scan order, and then from 

the lower frequency sub-channels to the higher frequency. In fact, the order of embedding is 
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not important in our scheme because the watermark detection is judged based on the entire 

sequence and is irrelevant to the coefficient order. The watermarked coefficient is generated 

by ][][][][' iwiixix ⋅+= α . The watermark strength ][iα of this watermark bit is determined by 

visual threshold as shown in Section 4.3. At the end, the watermarked 88×  blocks of 

coefficients are converted back to the spatial domain by 2-D IDCT. 

 

4.6 Watermark Detection Scheme 
Figure 4.1 shows the block diagram of our watermark detection scheme. The selected 

coefficients of the original image are identified or pre-recorded. Since the locations of 

watermarked coefficients are image-dependent, if they are not pre-recorded they have to be 

found with the aid of the original image during watermark detection. The Robustness and the 

Reliability stages are the same as those at watermark embedding. So are the visual masking 

thresholds. Finally, watermark sequences are extracted from the received image and they are 

correlated with the original watermark for binary hypothesis testing and decision. 

 

Robust and
Imperceptible

Coefficient
Selection

Detection
Reliability

Improvement

Watermark
Detection

&
Decoding

Visual
Masking

Threshold
Computation

8x8
DCT

Original
Image

Watermark

8x8
DCT

Received
Image

Detection
Hypothesis
Decoded

Bits

 

Fig. 4.1. Watermark detection scheme. 
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For a watermark sequence, the hypothesis decision is made based on the Bayes’ decision 

rule. The mean value of the normalized correlation sum C is computed by  
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where ][iy is the difference between the DCT coefficients of the received image and the 

original image, ][iα is the watermark strength of coefficient ][ix , and ][iw  is the watermark 

signature. Then, C is compared against the threshold cx derived from (4.7). The presence of 

the watermark is declared if H1 is favored. 

 

4.7 Simulation Results 
We test the proposed watermarking scheme on two 256256 ×  images, Lena and Baboon. 

Due to the limited space, the experimental results listed below are mainly coming from the 

image Lena. Sets of robust coefficients are generated corresponding to JPEG compression 

quality factors ranging from 50 to 80 with a step of 10. Smaller quality numbers imply higher 

distortion. Two examples of the difference images between the original images and the 

watermarked images are shown in Figs. 4.2 (a)-(d). They are magnified by a factor of 15 so 

that we can see the differences visually. For the JPEG quality factor 50 in the design phase, 

the PSNR values between the original and the watermarked images are 46.1 dB and 42.9 dB 

for Lena and Baboon, respectively. And, they are 45.4 dB and 39.2 dB for JPEG quality 

factor 80 in the design phase. The watermark mainly spreads over the visually significant 

areas as we expect. Because the human visual model is used to control the watermark strength, 

subjectively we cannot see the distortion caused by watermarking. The Baboon image offers 

higher watermark capacity than Lena due to its highly textured content. 

Some statistics of the selected coefficients corresponding to different JPEG compression 

quality factors after two processing stages are shown in Table 4.1 for image Lena. The 

number of dropped coefficients and the error detection probability for higher JPEG 
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compression quality factors are usually larger than those for lower JPEG compression quality 

factors. This is partially due to the fact that there are more candidate coefficients surviving 

JPEG compression with higher quality factors in the design phase. The estimated error 

probability of the selected robust coefficients is very small because only one binary decision 

is made on the entire image (and watermark) and the attacking source is assumed to be known 

in the design phase. If the number of coefficients is pre-selected to be, say, 200 and 1000, then 

the Reliability process stops only when the desired number is reached.  

The estimated statistics for the selected coefficients after detection reliability 

improvement stage is shown in Table 4.2 for image Lena. They are calculated as follows. For 

a set of selected coefficients corresponding to a certain JPEG compression quality factor (e.g., 

50) in the design phase, these statistics are estimated based on the unmarked and the 

watermarked images after JPEG compression at the same quality factor (e.g., 50). The 

experiment results show that the mean of the embedded watermark strength }H|E{ 1d , the 

variance of the embedded watermark strength }H|Var{ 1d  and the variances of normalized 

correlation sum }H|Var{ 0c  and }H|Var{ 1c  are larger for lower JPEG compression quality 

factors. This is due to the fact that the attack produced by a lower JPEG compression quality 

factor generates higher quantization distortion. Typically, the estimated }H|E{ 1d  is around 0 

in the design phase. The reason is that the number of the selected coefficients is large enough 

such that the numbers of the positive and the negative watermarks are about equal. We also 

notice that }H|Var{ 0c  is not equal to }H|Var{ 1c  for real images. The calculated  }H|E{ 0c  is 

not identical to zero but it is usually very close to zero. The value of }H|E{ 1c  is distortion 

(attack) dependent and it is approximately 1.1 in JPEG case. Finally, the detection threshold 

cx computed from (4.7) is roughly near the average value of }H|E{ 0c  and }H|E{ 1c  as we 

expect. 

StirMark 3.1[78] is used to test the robustness of our watermark. As shown in Figs. 4.3 (a) 

and (b) for images Lena and Baboon, respectively, our scheme can survive JPEG compression 
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at different quality factors. The data shown in Fig. 4.3 are each averaged over 5000 

watermarked images with different pseudo random watermark sequences. Since the 

quantization step size decreases as the JPEG compression quality factor increases, a selected 

coefficient survives JPEG compression at higher quality factors may not survive JPEG 

compression at lower quality factors. This can be seen from Fig. 4.4(a). For example, in one 

experiment, among the selected coefficients in the design phase for JPEG quality 60 for image 

Lena, 75 percentage of coefficients can survive JPEG compression attack with quality 50, and 

81 percentage of coefficients can survive JPEG compression attack with quality 70. On the 

other hand, coefficients designed for lower JPEG quality has a better surviving probability 

under higher quality attacks as one may expect.  

Although our scheme is originally designed to be only JPEG-robust, we test its robustness 

against several other signal processing attacks including color reduction, Gaussian filtering, 

frequency-mode Laplacian removal (FMLR) and JPEG2000. The mean values of the 

correlation sum are shown in Fig. 4.5 and the data are obtained by averaging over 300 

different pseudo random watermark sequences. The percentages of correctly detected images 

are shown in Fig. 4.6. The same detection thresholds designed for JPEG compression attacks 

are used in these experiments. As shown in Fig. 4.5, for the combined attacks of JPEG with 

either FMLR attacks or Gaussian filtering, the mean values of the correlation sum are often 

larger. Although the embedded watermark can survive most attacks, the combined attack of 

JPEG with 44×  median filtering fails our scheme. The reason may be due to the strong 

lowpass filtering characteristics of the median filtering and a large percentage of our 

JPEG-robust watermark are embedded in the middle frequency band. In fact, the attacked 

images are so strongly lowpass filtered that the image quality degradation is visible. Finally, 

the simulation also shows that our watermark survives the JPEG2000 attack at bit rates 0.125 

and 0.0625 bpp, and there is no detection failure in all cases. 
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To verify the designed false negative and positive error probabilities in the experiments, 

the mean, variance, minimum and maximum values of the normalized correlation sum C are 

calculated for both the watermarked and unwatermarked image Lena. Again, 5000 

watermarked Lena are generated with 5000 different pseudo random watermark sequences 

and the data shown in Figs. 4.3(a) and 4.7 are each averaged over these test data. To test the 

false positive (false alarm) case, 5000 different pseudo random watermark sequences are 

correlated with the unwatermarked but JPEG compressed image, and the results are averaged 

and shown in Figs. 4.8 and 4.9.  

As shown in Fig. 4.7, for watermarked images, the variances of C are all smaller than 

0.0002 after JPEG compression attacks with different quality factors. The estimated (designed) 

and measured (simulated) average }H|E{ 1c  are shown in Table 4.2 and their differences are 

shown in Table 4.3. The differences are very small and the measured C values are fairly stable 

through out different sets of test watermarks. Our simulation matches the design target quite 

well. Similar false alarm analysis is conducted for the unwatermarked image cases. As shown 

in Fig. 4.8(b), the variances of C in the design phase are smaller than 0.0005 after JPEG 

compression at different quality factors in the attack phase. The absolute differences between 

the estimated and measured }H|E{ 0c  in Table 4.2 and Fig. 4.8(a) are shown in Table 4.3. 

Again, as we expect, the measured values of C are close to the designed values and no failure 

cases occur in 5000 runs. 

Regarding the computation complexity, the two stages in our algorithm behave quite 

differently. The second reliability improvement stage is the most time consuming. Given N 

candidate coefficients, at the beginning of the iteration process, there are N different sets of 

coefficients formed and their statistics have to be all estimated. Therefore, if there are N 

selected coefficients after the first robustness stage, and there are totally K coefficients 

dropped in the second reliability improvement stage, then the total number (times in 

calculation) of processed transform coefficients, R, is  
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)1()()3()2()2()1()1( −−⋅−++−⋅−+−⋅−+−⋅= KNKNNNNNNNR K . 

If NK << , the above expression indicates that R is something around )(O 2KN . The 

computation complexity can be very large, particularly, for an image with deep texture (and 

thus many coefficients are “robust”). As the statistics shown in Table 4.4, the value of KN2 at 

quality 80 is about 6.6 times of that at quality 60 for image Lena and its associated 

computational complexity R is about 4.1 times of that at quality 60. So, the true computational 

complexity is somewhat smaller than )(O 2KN .  

In the examples of pre-fixed target number of coefficients, Figs. 4.10 and 4.11 give the 

detection performance corresponding to 200, 1000 and 4019 selected coefficients for JPEG 

quality factor 50 in the design phase. Due to the space limit, the figures of correctly detected 

images are not shown. However, our simulation results show that there is neither missing nor 

false alarm cases for images with 5000 different pseudo random watermark sequences. The 

trade-off between the capacity and reliability is shown clearly here. For example, the error 

variance for 4019 coefficients is around 410−  (Fig. 4.11(a)), the variance is increased to for 

200 coefficients. 

For comparison purpose, a middle-frequency DCT watermarking scheme [15] is also 

simulated. For a fair comparison with our proposed scheme, the watermark strength is chosen 

to be the visual masking threshold described in Section 4.3. The detection thresholds designed 

for JPEG attacks are still in use where the quality factor 50 is assumed. The range of middle 

frequency coefficients in [15] covers the frequency indices from 14 to 33 in a zigzag-scan 

manner. In our simulations, we narrow down the frequency range to 15 to 20 for stronger 

JPEG-robust coefficients. For a 256256 ×  image divided into 88×  blocks, we randomly 

select the watermarking coefficients from the 61024 ×  middle-frequency coefficients. A 

chosen coefficient is denoted by ][, mx ji , where i and j are the horizontal and the vertical 

block coordinates, respectively, 63,0 ≤≤ ji , and m is the frequency index and 2015 ≤≤ m . 
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We pick up one coefficient by randomly choosing the value of i, j and m independently is 

their specified ranges. Three experiments with 200, 1000 and 4019 DCT coefficients are 

chosen to match our designated coefficient capacity for the JPEG quality factor 50 in the 

design phase.  

To calculate the false negative and positive error probabilities, the mean of the normalized 

correlation sum C and the percentage of the correctly detected images are computed for both 

the watermarked and unwatermarked image Lena. Again, for calculating the missing (false 

negative) probability, 5000 watermarked Lena are generated with 5000 different pseudo 

random watermark sequences and the results shown in Figs. 4.12 and 4.14(a) are each 

averaged over these test data. To test the false positive (false alarm) case, 5000 different 

pseudo random watermark sequences are correlated with the unwatermarked but JPEG 

compressed image, and the results are averaged and shown in Figs. 4.13 and 4.14(b).  Fig. 

4.12(a) indicates that the mean values of all the normalized correlation sums are greater than 

0.9 for totally 4019 watermarked coefficients, and therefore, there is no failure case in Fig. 

4.12(b). However, there are failure cases for fewer watermarked coefficients (e.g., 200). Also, 

the variance of the normalized correlation sum for the middle-frequency watermarking 

scheme (Fig. 4.14(a)) is about 40 times larger than that of our proposed scheme (Fig. 4.11(a)). 

Therefore, the error probability of the middle-frequency watermarking scheme is much higher. 

In the unwatermarked image case, Fig. 4.13(b), the false alarm cases appear for the sets with 

200 marked coefficients. One may recall that neither false positive nor false negative cases 

occur in 5000 runs of our proposed scheme. Also, the variance of the normalized correlation 

sum for the middle-frequency watermarking scheme (Fig. 4.14(b)) is about 10 times larger 

than that of our scheme (Fig. 4.11(b)). It is clear that our scheme has much higher detection 

reliability.  

As another example of attack, the JPEG2000 compression (two quality values) [79] is 

used in the design phase for picking up the DCT watermarking coefficients. The four 
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watermark patterns described in Section 4.2 are used in the training process. The training 

results for image Lena are shown in Tables 4.1 and 4.2. We again generate 5000 watermarked 

Lena embedded with 5000 pseudo random watermark sequences and the detection 

performance is shown in Fig. 4.15. Also, to test the false alarm case, 5000 different pseudo 

random watermark sequences are correlated with the unwatermarked but JPEG2000 

compressed image, and the results are averaged and shown in Fig. 4.16. In both watermarked 

and unwatermarked cases, the variances are very small – an indication of very small missing 

and false alarm probability. Indeed in deciding the existence of correct watermark, there is 

neither a missing nor false alarm case. Note that the percentage of correctly decoded 

coefficients shown in Fig. 4.15(b) is around 80% because only 4 watermark patterns are used 

in the design phase. Comparing Figs. 4.6(a) and 4.15(b), we found that the JPEG-robust 

coefficients can usually survive the JPEG2000 compressions while the JPEG2000-robust 

coefficients are more sensitive to the JPEG attacks. Including more watermark patterns in the 

training process may help selecting the more robust coefficients. 

 

4.8 Summary 
In this chapter, a selection procedure is designed to identify the most effective DCT 

coefficients for watermarking purpose. The target is to explore the watermarking performance 

limit (capacity and detection reliability) of a give picture under a specified attack. There are 

essentially two steps in the design phase. Candidate coefficients and watermark signal 

(strength) are first chosen to achieve both robustness against the attack and perceptual 

invisibility. Then, we examine the error probability of using these candidate coefficients. The 

weak ones that lower the detection probability are discarded. Finally, we obtain a set of robust 

coefficients, which are both picture and attack dependent. Our simulations show that the 

proposed watermarking scheme performs very well in achieving high detection  probability 
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while maintaining the transparency of the embedded watermark. The methodology presented 

here for finding the most effective coefficients can be extended to the other types of attacks 

and/or watermarking techniques.  

 

Table 4.1. The statistics of the selected coefficients at different JPEG and JPEG 2000 

compression settings after the Robustness stage (stage 1) and the Reliability stage (stage 2) 

for image Lena. 

JPEG Quality Factor/ 
JPEG2000 Rate in 

Design Phase 

No. of Selected 
Coefficients after 
Stage 1 

No. of Selected 
Coefficients 
after Stage 2 

Estimated errorP  
after Stage 1 

Estimated errorP  
after Stage 2 

JPEG 50 4738 200 4.772122e-143 8.703533e-017
JPEG 50 4738 1000 4.772122e-143 4.092384e-076
JPEG 50 4738 4019 4.772122e-143 0.000000e+000
JPEG 60 6007 5082 5.394741e-188 0.000000e+000
JPEG 70 8041 6587 1.364150e-246 0.000000e+000
JPEG 80 11473 9439 2.307777e-263 0.000000e+000

JPEG2000 0.0625bpp 7120 5388 0.000000e+000 0.000000e+000
JPEG2000 0.125bpp 17656 13765 0.000000e+000 0.000000e+000

 

Table 4.2. The estimated statistics of the selected coefficients at different JPEG and 

JPEG2000 compression settings after the reliability improvement stage for image Lena. 

Design 
Phase 

}H|E{ 0c  }H|Var{ 0c }H|E{ 1c }H|Var{ 1c }H|E{ 1d }H|Var{ 1d  Detection 
Threshold cx

JPEG 50 0 0.000446 1.654130 0.000560 0 18.282436 0.779981 
JPEG 60 0 0.000289 1.528975 0.000412 0 16.643265 0.696441 
JPEG 70 0 0.000141 1.357382 0.000244 0 14.089002 0.554339 
JPEG 80 0 0.000085 1.296038 0.000219 0 11.564191 0.496916 

JPEG2000 
0.0625bpp 

0 0.000066 1.072749 0.000216 0 21.103317 0.381604 

JPEG2000 
0.125bpp 

0 0.000015 1.035836 0.000087 0 12.421462 0.306017 
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Table 4.3. The absolute differences between the estimated and measured average }H|E{ 1c  and 

}H|E{ 0c , and the differences in ratio for watermarked and unwatermarked Lena images. 

Watermarked 
Images ( 1H ) 

Unwatermarked 
Images ( 0H ) JPEG Quality Factor

in Design Phase Absolute 
Difference Value

Absolute 
Difference Value 

50 0.00137 0.00046 
60 0.00032 0.00024 
70 0.00022 0.00014 
80 0.00036 0.00009 

 

Table 4.4. The processing complexity of the reliability improvement stage for images Lena 

and Baboon. 

Lena Baboon JPEG  
Quality 

Factor in 
Design 
Phase 

No. of 
Selected 
Coeff. 

after Stage 
1 (N)  

No. of 
Dropped 
Coeff. in 

Stage 2 (K)

Processed 
Coeff. 

No. of 
Selected 
Coeff.  

after Stage 1 
(N) 

No. of 
Dropped 
Coeff. in 

Stage 2 (K) 

Processed 
Coeff. 

50 4738 719 3152520 7359 1911 15897324
60 6007 925 5134207 11743 2771 28710990
70 8041 1454 10641870 15912 2807 40739868
80 11473 2034 21277960 22931 4046 84614676

 

    

(a)               (b)               (c)               (d) 

Fig. 4.2. The (absolute) difference image between the original image and the watermarked 

image. The magnitude in display is amplified by a factor of 15: (a) Lena, Q=50. (b) Lena, 

Q=80. (c)Baboon, Q=50. (d) Baboon, Q=80. 
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(a) 

 

(b) 

Fig. 4.3. The mean of the normalized correlation sum C }H|E{ 1c  after the JPEG attacks (at 

four different quality factors) for watermarked images: (a) Lena and (b)Baboon. 

 

 

(a) 
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(b) 

Fig. 4.4. The percentage of correctly decoded coefficients at the detector after the JPEG 

attacks (at four different quality factors) for image Lena: (a) Watermarked and (b) 

Unwatermarked. 

 

(a) 

 

(b) 
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Fig. 4.5. The mean of the normalized correlation sum }H|E{ 1c  under various signal 

processing attacks: (a) Lena and (b) Baboon. 

 

 

(a) 

 

(b) 

Fig. 4.6. The percentage of correctly detected watermarks (images) under various signal 

processing attacks: (a)Lena and (b)Baboon. 
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Fig. 4.7. The variance of the normalized correlation sum }H|Var{ 1c  after the JPEG attacks (at 

four different quality factors) for the watermarked image Lena. 

 

 

(a) 

 

(b) 

Fig. 4.8. The mean and variance of the normalized correlation sum after the JPEG attacks (at 
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four different quality factors) for the unwatermarked image Lena: (a) Mean }H|E{ 0c  and (b) 

Variance }H|Var{ 0c . 

 

 

(a) 

 

(b) 

Fig. 4.9. The maximum and minimum values of the normalized correlation sum }H|E{ 0c  after 

the JPEG attacks (at four different quality factors) for the unwatermarked image Lena: (a) 

Maximum and (b) Minimum. 
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(a) 

 

(b) 

Fig. 4.10. The mean of the normalized correlation sum due to JPEG attacks for image Lena of 

designated capacity: (a) Watermarked and (b) Unwatermarked images. 

 

 

(a) 
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(b) 

Fig. 4.11. The variance of the normalized correlation sum due to JPEG attacks for image Lena 

of designated capacity: (a) Watermarked and (b) Unwatermarked images. 

 

 

(a) 

 

(b) 
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Fig. 4.12. The detection performance due to JPEG attacks for the middle-frequency 

watermarked image Lena: (a) The mean of the normalized correlation sum and (b) The 

percentage of correctly detected images. 

 

 

(a) 

 

(b) 

Fig. 4.13. The detection performance due to JPEG attacks for the middle-frequency 

unwatermarked image Lena: (a) The mean of the normalized correlation sum and (b) The 

percentage of correctly detected images. 
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(a) 

 

(b) 

Fig. 4.14. The variance of the normalized correlation sum due to JPEG attacks for the 

middle-frequency watermarking for image Lena: (a) Watermarked images and (b) 

Unwatermarked images. 
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(a) 

 

(b) 

 

(c)  
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Fig. 4.15. The detection performance for JPEG2000-trained image Lena under JPEG and 

JPEG2000 attacks: (a) The mean of the normalized correlation sum, (b) The percentage of 

correctly decoded coefficients, and (c) The variance of the normalized correlation sum. 

 

 

(a) 

 

(b) 

Fig. 4.16. The detection performance for unwatermarked image Lena under the JPEG2000 

and JPEG attacks: (a) The mean of the normalized correlation sum, and (b) The variance of 

the normalized correlation sum.  
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