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Chapter 5 
 
Efficient Algorithms in Determining 
JPEG-Effective Watermark Coefficients 
 
5.1 Introduction 
Many digital watermarking schemes have been proposed for copyright protection, data hiding 

and other purposes. In our previous work as described in Chapter 4, we focus on the tradeoffs 

between the achievable watermarking data payload, allowable distortion for information 

hiding, and robustness against attacks. Although many methods have been developed to 

improve the watermark data payload and robustness while maintaining reliable detection and 

visual fidelity [80]-[82], few researchers have proposed techniques to identify the exact 

coefficient locations for watermarking. Thus, we suggested a generic approach for selecting 

the most effective coefficients for watermark embedding. Using this set of coefficients 

improves the watermark robustness and reliability while it maintains the watermark visual 

transparency. To a certain extent, we try to find the performance limit of invisible 

watermarking for a given natural image under the assumptions of known attack and non-blind 

detection for DCT-domain watermarking. The non-blind detection can be used in applications 

such as transaction-tracking. The synchronization attack is not considered as a problem due to 

non-blind detection. Since digital images are often compressed for efficient storage and 

transmission, we use JPEG and JPEG2000 as the examples of attacking sources in the design 

phase.  
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Although the coefficient selection procedure performs rather well, its computational 

complexity is very high. Therefore, in this paper, we develop a fast algorithm with nearly no 

performance loss.  In this chapter, the simplified rules for JPEG compression attacking 

source is presented. Note that the methodology of the coefficient selection procedure in 

Chapter 4 and the simplified algorithm proposed in this paper both can easily be extended to 

the other types of attacks. Section 5.2 briefly describes our previous work – theory-based 

optimal coefficient selection. Section 5.3 de-scribes the newly proposed coefficient selection 

rules. Simulation results are summarized in Section 5.4 and Section 5.5 concludes this 

presentation. 

 

5.2 Our Previous Algorithm 
Two optimization stages are proposed in Chapter 4 for selecting effective coefficients. One is 

the robust and imperceptible coefficient selection stage (Stage One), and the other is the 

detection reliability improvement stage (Stage Two). Stage One conducts a deterministic 

analysis on the transform coefficients, and then the proper coefficients and the associated 

watermark strength are determined so that the coefficients after a specified attack can still 

bear the valid marks. The additive embedding ][][][][' iwiixix ⋅α+=  is adopted in the DCT 

domain, where ][iα  is the watermark strength of the ith AC coefficient x[i] and w[i] is the 

watermark bit. All AC coefficients are watermarked. For an attack in either the spatial or other 

transform domains, the watermarked image is converted back to the spatial domain and the 

attack is applied. We decode the watermark bits in the DCT-domain. Several different 

watermark patterns are tested. If all watermark bits associated with a certain DCT coefficient 

are correctly decoded, this coefficient is retained in the Stage One candidate set. We examine 

the all-positive and all-negative watermark patterns. When the attack is not applied to 

individual coefficients in the DCT-domain, we also test the alternate polarity pattern in which 
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the odd-index watermark bits (in zigzag scan order) are +1 and the even-index ones are -1. 

This is because the attack distortion on a DCT coefficient also depends on its neighboring 

watermark bits. Our experiments indicated that we can identify robust coefficients with rather 

high probability by only 4 patterns. The Watson’s visual model is adopted for contrast 

masking threshold computation and the parameter values are taken from the Checkmark 

package [70]. 

Some robust coefficients may produce higher detection error probability. Thus, Stage 

Two calculates the statistical measures on images and attacks, and it discards the weak 

coefficients. An iterative procedure is proposed and only one coefficient is discarded in each 

iteration. At the beginning of one iteration, if N coefficients remain, N candidate sets are 

formed by deleting one coefficient alternatively in this N-coefficient set. That is, there are N-1 

coefficients in each candidate set. Then, the watermark detection statistics based on signal 

dependent channel distortion model [74] and the Bayes’ decision rule for each candidate set is 

calculated for each candidate set. The error detection probability is the average of the false 

positive probability and false negative probability. Then, the set with the lowest detection 

error probability is chosen if the average error probability decreases from the previous 

iteration. The coefficient discarding process is repeated until the overall error probability 

cannot be further reduced. If there are N selected coefficients at the beginning of Stage Two, 

and K dropped coefficients in the process, the execution time of Stage Two will be )(O 2KN . 

Thus, a fast algorithm is very desirable. 

 

5.3 Efficient Robust and Reliable Coefficient 

Selection Rules 
Our goal is finding simplified rules to separate the selected coefficients and dropped 

coefficients for a given input image based on the theoretically optimized data set derived in 
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Chapter 4. We adopt a parametric linear classifier for classification [83]. For a parametric 

classifier approach, the mathematical form of the classifier is specified while a finite set of 

parameters are left to be determined. These parameters may consist of the expected vectors 

and covariance matrices. Although linear classifiers are not optimum in some cases, we 

employ it due to its simplicity.  

The general form of a linear classifier (linear discriminant function)  regardless of the 

given input distribution is 
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where h(X) is a linear function of X, X is the given input data vector which distributions are 

not limited, TvvV ][ 21 L=  is the coefficient vector, and 0v  is a threshold value. Our goal is 

to find the optimal V  and 0v  for a given distribution. For this, different design criterion 
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where iη , and iσ  are the expected value of h(X) and variance of h(X) for class iω , 

respectively, iΣ  and iM  are the covariance matrix and expected vector iM  for the given 

input X, respectively.  

For any criterion, the optimal V is achieved by maximizing or minimizing the criterion 
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The optimal 0v  is accordingly generated by solving  
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Here, we adopt the criterion [83] which measures the between-class scatter normalized 

by the within-class scatter, 
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where iP  is the priori probability for class i. After generating 
2
i

g
σ∂
∂  and s in (5.5), we get 

optimal V  and 0v  by (5.4) and (5.6) 
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and 

     ][ 22110 MPMPVv T +−= .                      (5.9) 

The well known Fisher criterion is not adopted since the optimal 0v  cannot be determined 

through the use of it. 
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Fig. 5.1. The thirty 256256×  natural images used for rule finding. 

 

The features in our problem are frequency f, amplitude x and admissible watermark 

strength α. Our target is to find a piece-wise linear classifier (discriminator) that separate the 
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selected coefficients from the dropped ones. Thirty natural images are used for rule finding as 

shown in Fig. 5.1. We have looked at the case that uses all three features (f,x,α) (3-D domain). 

To simplify calculations, we also search for a 2-D feature space with smallest average 

misclassification rate. Our experiments show that the “optimal” average misclassification rate 

in the 2-D space “f vs. α” is only 1% lower than that of the 3-D domain classifier. There are 

three 2-D domain candidates: (f,x), (f,α), and (x,α). Let fxS , αfS and αxS be the 

misclassification rate due to the selected coefficients being misclassified as dropped 

coefficients in the aforementioned three candidate spaces, respectively, fxD  and αfD , and 

αxD  be the misclassification rate due to the dropped coefficients being misclassified as 

selected coefficients.  According to our experiments, to decrease fxS , αfS  and αxS , we set 

4.01 =P  and 6.02 =P  . For further improving the classification accuracy, we divide the entire 

range of a space into three segments, and design one linear classifier for each segment 

(subspace). The segment partition is done manually based on experience. For (f,x) and (f,α) 

spaces, the separation is based on f=0~9, f=10~19 and f=20~63. For space (x,α), they are 

x=0~49, x=50~99 and x=100~∞. Our image data base contains 30 natural images. The 

training set is generated using the method described in Sect. 2. Four JPEG quality factors 

ranging from 50 to 80 are used. We adopt the definition of JPEG quantization step size 

defined in [78]. The misclassification rates in all cases (2D domains) are listed in Table 5.1. 

Because the best 2-D (f,α) space is 1% worse than the 3-D (f,x,α) classifier, the former is 

adopted for a much lower computation complexity. 
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Table 5.1. Misclassification rates in three 2-D feature spaces. 

JPEG Quality Factor in 
Design Phase 

fxS  αfS  αxS  fxD  αfD  αxD  

50 0.31 0.18 0.66 0.07 0.10 0.40 
60 0.29 0.18 0.65 0.06 0.09 0.38 
70 0.27 0.18 0.63 0.06 0.09 0.35 
80 0.27 0.16 0.57 0.05 0.08 0.30 

 

Table 5.2. The classifiers at different JPEG quality factors. 

JPEG Quality Factor in Design Phase / 
Frequency Range 

Classifier 

Q=50, f=0~9 86.71756.361)( +α−= fh X  

Q=50, f=10~19 63.16742.80)( +α−= fh X  

Q=50, f=20~63 86.2318.17)( +α−= fh X  

Q=60, f=0~9 52.145465.778)( +α−= fh X  

Q=60, f=10~19 23.10935.57)( +α−= fh X  

Q=60, f=20~63 78.1065.13)( −α−= fh X  

Q=70, f=0~9 75.73485.429)( +α−= fh X  

Q=70, f=10~19 53.9025.52)( +α−= fh X  

Q=70, f=20~63 98.1379.15)( +α−= fh X  

Q=80, f=0~9 29.300221.1885)( −α+= fh X  

Q=80, f=10~19 24.7028.47)( +α−= fh X  

Q=80, f=20~63 02.1265.16)( −α−= fh X  
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                                   (a) 

 
(b) 
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 (c) 

 
                                  (d) 

Fig. 5.2. The classifiers corresponding to JPEG compression quality factor (a) 50 (b) 60 (c) 70 

(d) 80 with coefficients from 30 natural images. 

 

Thus, we can now select effective watermarking coefficients with the simplified rules. 
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Table 5.2 shows the classifiers (coefficient selecting rules) corresponding to different JPEG 

quality factor ranging from 50 to 80 in the design phase and Figure 5.2 visualize them. 

Although these rules eliminate a number of poor candi-date coefficients, the remaining 

coefficients do not necessarily have the required robustness. Therefore, we apply the original 

Stage One process to the retained coefficients for further removing weak coefficients. 

 

5.4 Simulation Results 
To examine the performance of the proposed rules, we test images which are not used in 

training. Limited by space, only the results for pictures Lena and Baboon are included. For the 

JPEG quality factor 50 in the design phase, the PSNR values between the original and the 

watermarked images are 45.2 dB and 39.98 dB for Lena and Baboon, respectively. And, they 

are 42.9 dB and 36.82 dB for JPEG quality factor 80 in the design phase. The embedded 

watermarks are invisible as we inspect them visually. 

The comparisons between the original and the simplified schemes are shown in Tables 

5.3 and 5.4. Let the overlapped percentage be the number of coefficients selected by both the 

original Stage One and the simplified scheme divided by the number of selected coefficients 

by the original Stage One. We find that the overlapped percentage is higher than 70%. The 

detection error probability using the simplified scheme is still very small (all less than 13510−  

for Lena). Practically these rules are as good as the original massive iteration scheme. In the 

case of Baboon image, the overlapped percentage is over 85% and the detection error 

probability is all less than 24510− .   

The data shown in Figs. 5.3, 5.5(a) and 5.6 are each averaged over 5000 watermarked 

images with different random watermark sequences. Also, the same 5000 watermark 

sequences are correlated with the unmarked but JPEG compressed image and the results are 

averaged in Figs. 5.4, 5.5(b) and 5.7. Figure 5.5(a) shows that the selected coefficient survives 
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JPEG compression at higher quality factors may not survive JPEG compression at lower 

quality factors. To verify the designed false negative and positive error probabilities, the mean, 

variance, minimum and maximum values of the normalized correlation sum after the JPEG 

attacks are computed (The normalization is normalized against the embedded watermark 

power as discussed in Chapter 4, and thus is not bounded to [-1, 1].) The mean value of the 

normalized correlation sum C is computed by      
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where y[i] is the difference between the DCT coefficients of the received image and the 

original image, w[i] is the watermark signature and M is the number of selected coefficients. 

For a watermark sequence, C is compared against the detection threshold which is 

approximately the average of the mean values of the normalized correlation sum of the 

watermarked }H|E{ 1c  and unmarked images }H|E{ 0c  as shown in Chapter 4. The presence of 

the watermark is declared if H1 is favored. In all cases, there is no failure for either 

watermarked or unmarked 5000 images. Finally, small variance implies lower error detection 

probability. The variance values }H|Var{ 1c  and }H|Var{ 0c  are all smaller than 0.0018 after 

JPEG attacks with different quality factors for both watermarked and un-marked cases as 

shown in Figs. 5.3(b) and 5.4(b). We also test the JPEG-robust watermark against other signal 

processing attacks as shown in Fig. 5.8 and the data are obtained by averaging over 100 

different random watermark sequences. The }H|E{ 1c  is over 0.8 after JPEG2000 attacks at bit 

rates 0.125 bpp and 0.0625 bpp. We also compare the computational complexity between the 

original and the simplified stages as shown in Table 5.4. The computational complexity is 

expressed by the number of processed DCT coefficients. For image Lena at JPEG quality 

factor 80, the simplified scheme requires roughly 1/266 of the computations of the original 

scheme (Stage One + Stage Two) for large candidate sets. The simplified scheme does greatly 

reduce the computational complexity. 
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5.5 Summary 
In this chapter, we propose an efficient algorithm for selecting JPEG-effective watermark 

coefficients. In most cases, the new scheme uses only 1/100 of the computation needed in the 

original scheme in Chapter 4. The methodology of both the original coefficient selection 

procedure in Chapter 4 and the simplified algorithm proposed here can be easily extended to 

the other types of attacks. 

 

 

Table 5.3. The comparisons of the selected coefficients for Lena. (The number of selected 

coefficients by simplified scheme equals to the number of overlapped coefficients by both the 

original Stage One and simplified scheme.) 

Original Scheme Simplified Scheme JPEG 
Quality 

Factor in 
Design 
Phase 

No. of 
Selected 
Coeff. 

by Stage 1 

No. of 
Selected 

Coeff. after 
Stage 2 

Estimated 

errorP   after 
Stage 2 

No. of 
Selected 
Coeff. 

 

Estimated 
errorP  

50 4738 4019 5.5052e-299 3609 2.0978e-136
60 6007 5082 0.0000e+000 4516 6.8039e-181
70 8041 6587 0.0000e+000 5911 2.3203e-253
80 111473 9439 0.0000e+000 8166 0.0000e+000
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Table 5.4. The comparisons of the selected coefficients for Baboon. (The number of selected 

coefficients by simplified scheme equals to the number of overlapped coefficients by both the 

original Stage One and simplified scheme.) 

Original Scheme Simplified Scheme 
JPEG 

Quality 
Factor in 
Design 
Phase 

No. of 
Selected 
Coeff.   

by Stage 
1 

No. of 
Selected 

Coeff. after 
Stage 2  

Estimated 

errorP   after 
Stage 2 

No. of 
Selected 
Coeff.  

 

Estimated 
errorP   

50 9270 7359 0.0000e+000 7877 3.0992e-246
60 11743 8972 0.0000e+000 10130 0.0000e+000
70 15912 13105 0.0000e+000 13708 0.0000e+000
80 22931 18885 0.0000e+000 20120 0.0000e+000

 

Table 5.5. The computation complexity (coefficient processing time) for Lena. 

Number of coefficients processed 
Original Scheme 

JPEG  
Quality Factor in 

Design Phase Stage 1 Stage 2 
Simplified 

Scheme 
50 64512 3152520 73629 
60 64512 5134207 74108 
70 64512 10641870 75139 
80 64512 21277960 76366 

 

(a) 
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(b) 

Fig. 5.3. The mean and variance of the normalized correlation sum after JPEG attacks at 

different quality factors for watermarked image Lena: (a) Mean }H|E{ 1c  and (b) Variance 

}H|Var{ 1c . 

 

  

(a) 
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(b) 

Fig. 5.4. The mean and variance of the normalized correlation sum after the JPEG attacks (at 

four different quality factors) for the unwatermarked image Lena: (a) Mean }H|E{ 0c  and (b) 

Variance }H|Var{ 0c . 

 

(a) 

 

(b) 
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Fig. 5.5. The percentage of correctly decoded coefficients at the detector after JPEG attacks 

for image Lena: (a) Watermarked and (b) Unwatermarked. 

 

 

(a) 

 

(b) 

Fig. 5.6. The maximum and minimum values of the normalized correlation sum }H|E{ 0c  after the 

JPEG attacks (at four different quality factors) for the watermarked image Lena: (a) Maximum and 

(b) Minimum. 
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(a) 

 

                                         (b) 

Fig. 5.7. The maximum and minimum values of the normalized correlation sum }H|E{ 0c  after the 

JPEG attacks (at four different quality factors) for the unwatermarked image Lena: (a) Maximum 

and (b) Minimum.
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Fig. 5.8. The mean of the normalized correlation sum after various signal processing attacks 

for watermarked Lena. 


