第三章 結果與討論

3.1 單體 M1~M3 的結構鑑定

單體 M1~M3 的合成步驟見 Schemes 1~3,其結構鑑定如下說 明。單體 M1 的 ¹H-NMR 圖譜(見附圖 1),其結構特徵為側鏈 fluorene 的 9-H 上有一個具有分支的長碳鏈烷基 δ = 2.56~2.84 ppm 有二群多 重峰訊號都是長碳鏈上的氫,位於 δ = 3.7 ppm 的二重峰訊號則是鄰 接著氧的碳上的氫,位於 δ = 4.34 和 4.36 ppm 的二重峰訊號則是屬於 CH₂Cl 的氫,最後在 δ = 7.01~7.60 ppm 之間兩群多重峰,則是苯環 上及 fluorene 的氫訊號,由 NMR 圖譜可以確認 M1 之化學結構,再 由其 mass 的圖譜(見附圖 3)所顯示的分子量符合理論分子量,由此可 確認 M1 的化學結構正確無誤。單體 M2~M3 亦可由 ¹H-NMR 圖譜與 Mass 圖譜(見附圖 4~9)來確定其化學結構

3.2 聚合物 P1~P19 的合成與鑑定

聚合物 P1~P19 是採用 Gilch route 的聚合方式^[39],將單體一當 量,加入 12 倍的過量鹼 *t*-BuOK 進行聚合反應,利用調整單體的反 應濃度來控制分子量的大小,而在鹼的用量方面,為了使單體能更完 全的反應,故加入過量的鹼,以期能合成出有足夠分子量且 Cl 或 Br 脫去完全的聚合物。

有關於 Gilch route 的反應機制,在文獻上有認為是 radical polymerization^[49],也有認為是進行 anionic polymerization^[48],但是目 前並沒有確切的解釋,其反應可能機制如下圖所示^[47]:

Fig 3-1 Gilch route polymerization

P1~P19的分子量及分子量分布結果如下 Table 3-1.所示:

Table 3-1. Molecular weights and molecular weightdistributions of polymers P1~P19

Polymer	Mw	<u> </u>	$\overline{Mw}/\overline{Mn}$
P1	513600	374100	1.37
P2	397400	266200	1.49
Р3	667000	580800	1.15
P4	600300	556200	1.08
Р5	1024000	906200	1.13
P6	1123000	874400	1.28
P7	657500	547900	1.20
P8	1728000	1563000	1.11
Р9	1511000	1284000	1.18
P10	961400	909000	1.06
P11	709200	611020	1.18
P12	689600	522400	1.32
P13	762900	713000	1.07
P14	2024000	1857000	1.10
P15	1562000	1289000	1.13
P16	533700	472700	1.13
P17	444900	390100	1.14
P18	360000	332900	1.08
P19	397215	209423	1.89

3.2.1 P1~P4 的聚合結果討論

P1~P4 (¹H NMR 見附圖 10~13)本部分研究是要合成出含芴環及 苯環雙取代基的共軛 PPV 高分子,企圖合成出最大放射位置在藍光 區域的 PPV 發光材料,因此合成了兩種含芴及苯環雙取代的 PPV 單 體,利用 Gilch route,以大量強鹼 *t*-BuOK 趨使一次反應得到聚合物, 聚合結果顯示,皆得到高分子量的 PPV 高分子,即使是立體阻礙大 的 **M2** 單體,都可得到很好的聚合效果。

從低的 PDI (*Mw*/*Mn*: 1.06~1.49)值可以看出半透膜透析可以達 到好的高分子純化的效果,純化之後的高分子,其元件特性皆有相當 大的改善。

M1 含兩個不對稱的取代基,可以增加所合成聚合物之溶解度, 因此所聚合出來 P1 其分子量 Mn 仍高達 374100,經過透析後,PDI 值為 1.37,算是不錯的結果。當導入 1,4-bis(chloromethyl)-2,5dimethoxy benzene (M4 單體)做共聚合反應,我們期望 M4 單體的導 入能成功的提高元件性質,根據本實驗室過去的合成經驗,加入 M4 單體共聚其溶解度會因導入 M4 的比率增加而下降,因此 P2 以 M1: M4 = 90:10,希望在不影響溶解度的情況之下提高元件性質,雖然 得到全系列最小分子量,Mw = 397400,Mn = 266200,其分子量仍 是可以接受的範圍。

M2 具有兩個對-芴基苯基取代基,聚合後所得 P3 分子量為 Mw
= 667000, Mn = 580800,所以可以看出聚合並未受到兩個大取代基
團的立體阻礙所影響。P4 同樣以 M2: M4 = 90:10 的比例作共聚合
反應,分子量亦有略小的趨勢 Mw = 600300, Mn = 556200。

3.2.2 P5~P19 的聚合結果討論

近年來本實驗室,合成出數種 DP-PPV 的衍生物,其化學結構如

下圖所示:

DP6-PPV Fig 3-2. DPn-PPV **DP10-PPV**

這三種以 DP-PPV 為主結構的衍生物(後文將此三種 PPV 簡稱 DPn-PPV), 掛在主鏈上的長碳鏈成功的解決了 DP-PPV 的溶解度問 題,原先預期長碳鏈和雙苯環取代基會使 PPV 主鏈之排列(packing) 不易,可以避免 self-quenching 現象增加元件 EL 之效率,然而根據中 山大學蘇安仲教授實驗室以 X-ray 量測結果顯示,此類高分子其 PPV 主鏈形成螺旋狀,數條高分子主鏈形成規則的 hexagonal packing(詳見 圖 Fig-3-3),而不同高分子主鏈上之苯環取代基會有很強的 π - π interaction,所得 DP-PPV 聚合物的元件亮度效率不佳,最大亮度並 未超過100 cd/m²。

Fig. 3-3 Hexagonal packing of DPn-PPV

去年本實驗室李興銓學長之論文做了一些改進,合成出了單體 M3,把烷氧基導入側面苯環取代基上,希望能破壞 DPn-PPV 主鏈的 規則排列,以提高元件效率。

P5~P7(¹H NMR 見附圖 14~16)為 **M1** 單體,與不同比例的 **M3** 聚合產生之共聚合物,我們期望 **M3**的導入能成功的提高元件性質, 由 **P5** 至 **P7**,其中 **M3** 之比率由 10% 增加至 50%,隨著 **M3**的導入 的比率增加,共聚合物的分子量有便小的趨勢,但所有數目平均分子 量皆大於 540000。

P8~P10 (¹H NMR 見附圖 17~19)是以單體 **M2** 為主體,與不同比例的 **M3** 做共聚合反應。分別是 **M2**: **M3** = 90:10 (**P8**),75:25 (**P9**), 50:50 (**P10**)。**P8** 的 Mw = 1728000, Mn = 1563000。**P9** 的 Mw = 1511000, Mn = 1284000。**P10** 的 Mw = 961400, Mn = 909000。其分子量皆相當大。

P11~P13 (¹H NMR 見附圖 20~22)是以單體 **M1** 為主體,配合少量 的 **M5** 做共聚合反應,因為 **M5** 結構類似 **M4** 而且又帶有分支碳鏈作 為幫助溶解的基團,若是能和 **M4** 一樣有提高元件性質的效果,我們 也可以把握它的良好溶解度而來做更多比例的共聚研究。分別是 **M1**: **M5** = 90 : 10 (**P11**),75 : 25 (**P12**),50 : 50 (**P13**)。**P11** 的 Mw = 709200, Mn = 611020。**P12** 的 Mw = 689600, Mn = 522400。**P13** 的 Mw = 762900, Mn = 713000。所得到的分子量並沒有因為 **M5** 加入量的增 加而有太大的變化。

P14~P16 (¹H NMR 見附圖 23~25)是以單體 **M2** 為主體,配合少量的 **M5** 做共聚合反應,分別是 **M1**: **M5** = 90: 10 (**P14**),75: 25 (**P15**),50: 50 (**P16**)。**P14** 的 Mw = 2024000, Mn = 1857000。**P15** 的 Mw = 1562000, Mn = 1289000。**P16** 的 Mw = 533700, Mn = 472700。和 **P11~P13** 不同的是分子量因 **M5** 量的增加而減少。

P17~P19 (¹H NMR 見附圖 26~28)是以單體 M3 為主體,配合少量的 M1 或 M2 以及 M4 做共聚合反應,分別是 M3: M4: M1 = 80: 10:10 (P17)。M3: M4: M2 = 80:10:10 (P18)。M3: M4 = 90:10

(P19) ° P17 的 Mw = 444900 , Mn = 390100 ° P18 的 Mw = 360000 , Mn = 332900 ° P19 的 Mw = 397215 , Mn = 209423 °

3.3 熱性質分析

一個好的發光材料除了色彩飽和度要夠外,材料本身的結構穩定 性也要夠,這個穩定性可分為化學性的穩定及物理性的穩定,所謂化 學性的穩定即材料本身的化學結構是否易產生化學鍵的斷裂,通常發 光元件在電壓操作下溫度會不斷上升,若材料在低溫就產生化學鍵的 斷裂,那麼材料本質便發生改變進而造成元件壽命減短,而所謂物理 性的穩定即材料是否易有規則的排列,在發光元件中材料愈易有規則 的排列,則會有局部結晶現象產生造成 defect,就高分子材料而言, 當溫度超過玻璃轉移溫度(Tg,glass transition temperature)時,其高分 子鏈主鏈便開始運動,如此一來,高分子鏈便有機會做規則排列,所 以為了要得到發光材料這兩個穩定性指標,我們測量 TGA 及 DSC 來 獲得這方面的資訊,高分子 P1~P19 的 TGA 及 DSC 圖譜,見附圖 29~66,而 T_d 及 T_g 值列於 Table 3-2.中。

TGA	DSC
Td (°C)	Tg (°C)
416.9	177.9
435.2	178.5
423.2	124.9
421.4	143.7
415.4	171.3
426.7	183.7
431.1	166.8
410.5	127.2
414.7	127.6
429.3	134.9
433.5	170.5
411.9	161.3
375.6	152.2
414.3	134.4
403.6	144.8
381.6	140.6
408.5	135.7
397.9	137.7
439.0	144.5
	TGA Td (°C) 416.9 435.2 423.2 421.4 415.4 426.7 431.1 410.5 414.7 429.3 433.5 411.9 375.6 414.3 403.6 381.6 408.5 397.9 439.0

Table3-2. Thermal transition and thermal degradationtemperature of polymers P1~P19

在熱穩定度方面,由 TGA 測量產物 5 %重量損失的結果可知,除 了 P13 和 P16 在 375.6 與 381.6℃外,其它的都在 400 度附近甚至以 上,熱穩定性算是不錯。所以可知導入較為剛硬的芴環取代基於 PPV 側鏈可以明顯的增加熱穩定性。

至於 DSC 方面, DP-PPV 系列的衍生物都易測量到玻璃轉移溫度 (Tg),本系列量測都是先在 120℃淬火 3 小時,接著降溫到-50℃後, 以每分鐘 20℃速度上升,便可發現明顯的 Tg 點。P1~P4 可以看出加 入 M4 可以使得 Tg 點上升,分別是 P1 的 177.9℃與 P2 的 178.5℃, P3 的 124.9℃與 P4 的 143.7℃。而 P5~P10 是 M1 導入 M3 做共聚合 反應,其 Tg 點和 Homopolymer 比起來是差不多的,分別是 P5:171.3 ℃、P6:183.7℃、P7:166.8℃與 P8:的 127.2℃,P9:127.6℃、P10: 134.9℃。P11~P13 是 M1 和 M5 做共聚合反應,隨著 M5 的比例增加 也有 Tg 下降的趨勢,分別是 P11:170.5℃、P12:161.3℃、P13:152.2 ℃。P14~P16 是 M2 和 M5 做共聚合反應,可以看出是比 Homopolymer 的 Tg 來的高一些,分別是 P14:134.4℃、P15:144.8℃、P16:140.6 ℃。P17~P19 是以 M3 為主加入少量 M1 或 M2 以及 M4 做共聚合反 應,得到的 Tg 分別為 P17 的 135.7℃與 P18 的 137.7℃、P19 的 144.5 ℃。

3.4 聚合物之紫外可見光譜與螢光光譜之分析

本研究所合成的聚合物 P1~P19,均為具有高螢光性的高分子, 其詳細的 UV-Vis 吸收,與 PL 放射最大位置如 Table 3-3.所示,薄膜 皆是以 toluene 為溶劑,以 0.5% (w/v)為濃度 1000 rpm/s 的速度 spin coating 在乾淨玻璃上,而溶液態吸收放射同是以 toluene 做溶劑。

Polymer	UV-Vis (nm)		PL (nm)		
	Film	Solution	Film	Solution	
P1	444	442	498	481	
P2	444	443	536	509	
P3	323	320	498	472	
P4	323	320	535	505	
Р5	444	441	495	493	
P6	443	441	496	494	
P7	445	443	496	492	
P8	438	435	498	488	
Р9	441	438	490	489	
P10	441	439	500	491	
P11	454	449	526	519	
P12	465	461	544	529	
P13	480	476	552	543	
P14	453	450	530	521	
P15	463	459	552	532	
P16	483	479	556	545	
P17	450	448	539	518	
P18	451	448	541	519	
P19	441	439	545	520	

Table 3-3. UV-visible absorption spectrum andPhotoluminescence spectrum of polymer P1~P19

P1、P3 (UV 及 PL 光譜見 Fig. 3-4、3-6)為 Homopolymer,較能 顯現出芴環發藍光的特性,所以可以從 PL 發現放射光在 500 nm 以 內屬於藍綠光,P3 甚至在 solution 時 PL 在 375 nm 附近有發現紫外 光的放射。P1 最大吸收位置約在 444 nm 而最大放射位置則是薄膜 498 nm,溶液 481 nm;P3 最大吸收位置約在 323 nm 而最大放射位置則 是薄膜 498 nm,溶液 472 nm。本實驗室之前所合成的 DPn-PPV 系列 雖然可以將 PL 向藍光推進,但是在分子量上面由於立障的關係無法 得到高分子量的產物,所以其藍位移的原因純粹是因為共軛長度短的 關係。P1和P3是導入芴環於側鏈上,而且聚合的分子量大共軛長度 也夠長,但仍有明顯的藍位移的效果,因此可知芴環在此藍位移的現 象上扮演極大的角色。至於薄膜態所得的PL較溶液態來的紅位移許 多,是因為本身苯環以及芴環皆屬平面的取代基,在製成薄膜後會較 有明顯的堆疊(aggregation)現象產生。

P2和P4 (UV及PL 光譜見 Fig. 3-5、3-7)我們將 M4 導入做共聚, 因為 M4 化學結構本身立體阻礙小,少量的導入之後已可發現明顯的 紅位移出現在薄膜對溶液態的 PL 最大放射位置。此紅位移的現象是 因為當分子在薄膜狀態時,其分子與分子之間的距離較溶液態來的靠 近,其堆疊 (aggregation)造成高分子鏈的能 階形成簡併態 (degenerency),因此薄膜時最大放射光譜會有紅位移的現象。又由於 M4 的聚合產物本身是橘紅光的材料,因此我們所得的 P2 和 P4 最大 放射峰都會較 P1 及 P3 的 498 nm 往長波長區域移動許多。P2 最大吸 收位置約在 444 nm 而最大放射位置則是薄膜 536 nm,溶液 509 nm; P4 最大吸收位置約在 323 nm 而最大放射位置則是薄膜 535 nm,溶 液 505 nm。

P5~P10 (UV 及 PL 光譜見 Fig. 3-8~3-13)是由 M1 和 M2 與 M3 所聚合而來的。由於本身 M3 也是屬於綠光的材料,所以在吸收和放 射光皆和 Homopolymer 差不多同為藍綠光材料。不過由於 M3 其化 學結構擁有一長烷基可以破壞堆疊所以薄膜態的紅位移現象較不顯 著。P5 最大吸收位置約在 444 nm 而最大放射位置則是薄膜 495 nm, 溶液 493 nm;P6 最大吸收位置約在 443 nm 而最大放射位置則是薄膜 496 nm,溶液 494 nm; P7 最大吸收位置約在 445 nm 而最大放射位 置則是薄膜 496 nm,溶液 492 nm;P8 最大吸收位置約在 438 nm 而 最大放射位置則是薄膜 498 nm,溶液 488 nm; P9 最大吸收位置約在 441 nm 而最大放射位置則是薄膜 490 nm,溶液 489 nm; P10 最大吸 收位置約在 441 nm 而最大放射位置則是薄膜 500 nm,溶液 491 nm。

P11~P16 (UV 及 PL 光譜見 Fig. 3-14~3-19)是由 M1 和 M2 為主 體,與不同比例的 M5 做共聚合反應,隨著 M5 的導入的比率增加, 最大放射與 Homopolymer 相比,紅位移的情況也增加不少,明顯的 可以看出,M5 帶來的烷氧基之推電子效應產生的薄膜最大放射峰紅 位移現象與 M5 所造成的幾乎相同,不過由於 M5 的長烷基可以破壞 堆疊(aggregation),所以薄膜態所產生的紅位移現象較不顯著。P11 最大吸收位置約在 454 nm 而最大放射位置則是薄膜 526 nm,溶液 519 nm;P12 最大吸收位置約在 465 nm 而最大放射位置則是薄膜 544 nm,溶液 529 nm;P13 最大吸收位置約在 480 nm 而最大放射位置則 是薄膜 552 nm,溶液 543 nm;P14 最大吸收位置約在 453 nm 而最大 放射位置則是薄膜 530 nm,溶液 521 nm;P15 最大吸收位置約在 463 nm 而最大放射位置則是薄膜 552 nm,溶液 532 nm;P16 最大吸收位 置約在 483 nm 而最大放射位置則是薄膜 556 nm,溶液 545 nm。

P17~P19 (UV 及 PL 光譜見 Fig. 3-20~3-22)是由 M3 為主體,與 少量的比例的 M4 及 M1 或 M2 做共聚合反應,所發現的現象和 P2、 P4 差不多,都起因於 M4 立障較小導致 PL 薄膜態有將近 20 nm 的紅 位移。P17 最大吸收位置約在 450 nm 而最大放射位置則是薄膜 539 nm,溶液 518 nm; P18 最大吸收位置約在 451 nm 而最大放射位置則 是薄膜 541 nm,溶液 519 nm; P19 最大吸收位置約在 441 nm 而最大 放射位置則是薄膜 545 nm,溶液 520 nm。

Photoluminescence spectrum of P2

Photoluminescence spectrum of P4

Photoluminescence spectrum of P8

Photoluminescence spectrum of P10

Fig. 3-17 UV-visible absorption spectrum and Photoluminescence spectrum of P14

3.5 循環伏安計量(Cyclic voltammetry)分析

為了瞭解發光材料於光激發光或電激發光過程中 HOMO 及 LUMO 等能帶的高低關係,我們對高分子 P1~P19 進行了循環伏安 計量分析,實驗時以濃度 0.1M 之 TBAHFP 的 acetonitrile 溶液為電解 質,高分子部分以塗覆在 Pt 電極上量測,量測時以 50 mV/sec 的速率 掃描記錄其氧化還原曲線。

發光材料之能帶結構會直接影響其 PL 及 EL 的光色,故這一方面的數據亦是評估發光材料的一項重要指標。對於發光材料之電子游離能(Ionization potential, IP)與電子親和力(Electronic affinity, EA) 數據的取得,最簡單的方法就是以 CV 數據配合 UV-visible 光譜之吸 收波長數據來計算。一般發光材料 IP、EA 及能隙(Energy gap, Eg) 的標準表示法如下^[50]::

 $HOMO = 4.4 + E_{ox.onset}$ $LUMO = 4.4 + E_{red,onset}$ 1896

由於高分子材料在量測CV所表現出的還原曲線會因為有水或其 他物質的出現而變得非常雜亂,導致材料本身的還原曲線並不明顯, 因而無法直接得到 EA 值,故對於高分子能隙的取得一般藉由 UV-visible 光譜中的最長波長吸收峰的起始波長(λ_{onset})來計算:

$$E_g = 1240 / \lambda_{onset}$$

其中λ_{onset}單位為 nm,而所得 E_g的單位為 eV Fig. 3-24~3-42 列出高分子 **P1~P19** 的計算後的能帶圖及 CV 圖。

Fig. 3-23 Energy-level diagram for Polymer P1~P19

Inset: Energy band diagram of P2

Inset: Energy band diagram of P4

Inset: Energy band diagram of P8

Inset: Energy band diagram of P10

Inset: Energy band diagram of P14

Inset: Energy band diagram of P16

Inset: Energy band diagram of P18

3.6.1 ITO pattern 的製作

本實驗所使用的玻璃基板為 Merck Display Tecnology 公司之阻 值為 20Ω / square 的 indium-tin oxide (ITO)玻璃,使用時並切割為 30 $\times 30 \text{ mm}^2$ 之正方形。由於我們欲將所製作之元件圖形化(pattern),故 必須有以下之步驟:

- (1) 上光阻:本研究所使用之光阻為長春人造樹酯股份有限公司 AF5040 乾式光阻。
- (2) 曝 光:依照所需 pattern 在 300~400 nm 波長紫外光曝光 55 秒。
- (3) 顯 影:以1%~2% 重量百分率濃度之碳酸鈉水溶液顯影。

- (4) 蝕 刻:再將顯影過後的 ITO 玻璃基板浸入 50℃的濃鹽酸水溶液
 (4) 蝕 刻: 再將顯影過後的 ITO 玻璃基板浸入 50℃的濃鹽酸水溶液
- (5) 去光阻:以1%~3% 重量百分率濃度之氫氧化鈉水溶液剝除 光阻。

Cleaning step	Time		
Detergent	10 min		
H ₂ O	10 min		
NaOH(aq)	10 min		
D.I water	10 min		
Acetone	10 min		
IPA 1896	10 min		
Oven 150°C	12 hr		

Table 3-4. Glass-cleaning process

3.6.2 高分子發光元件製作

為探討本研究所合成出聚合物的電激發光性質,因此我們製作了 高分子發光二極體元件,在元件方面,其結構為 ITO/PEDOT/polymer/Ca/Al,作元件時多加一層 PEDOT^[51]作為電洞傳 輸層^[51], poly (3,4-ethylenedioxythiophene) (PEDOT)具有高導電度及很 好的熱穩定性,且由於其為水溶性,因此不會有與有機發光層互溶的 問題,藉由此層之加入,能增加元件的發光效率。

在元件的製作上,首先是 ITO 玻璃的選擇,我們採用 20Ω /square

的 ITO 玻璃,經過裁切為 6 cm x 6 cm 大小,再經適當的清洗程序(如 Table. 7 所示)後使用。在高分子溶液的配置方面,濃度為 5 mg/ml, 溶劑的選擇為 Toluene,高分子以超音波震盪溶解後,再以 0.22 μm 的 Telfon 分子過濾板進行過濾。PEDOT 與高分子均是經由旋轉塗佈 成膜,在 PEDOT 的旋轉塗佈方面,我們以 6500 轉/秒旋轉 40 秒,塗 佈完成後於 150°C 下烘烤 1 小時。

在高分子的旋轉塗佈方面,為了求得適當的發光層膜厚,在文獻 上高分子發光層厚度約在 80-150 nm^[52],因此我們以第一階段 600/1000/1400/2000/3000 轉/秒等不同轉速變化旋轉十秒,第二階段 3000 轉/秒旋轉三十秒為最後旋轉塗佈的條件,配合不同濃度的改變 來找出較好的元件條件。將高分子溶液塗佈於 ITO 玻璃之後,在烘箱 內 80°C 並抽真空1 小時,然後將元件送入氮氣箱內作陰極的蒸鍍, 在陰極金屬的蒸鍍上面,先將塗佈高分子薄膜的基材置於金屬蒸鍍機 之腔體內,以高真空馬達抽真空使腔體內壓力達到 9×10⁻⁶ torr,即可 進行金屬 Ca 與 Al 的蒸鍍,其厚度約為 30/120 nm。

3.6.3 元件光電性質之量測

P1~P19 皆有足夠的分子量來提供優良的成膜性,而且也皆具良好的熱穩定性,對於有機溶劑的溶解度也有相當好的表現。

Mannun .

Table 3-5. EL analysis of P1~P19

Polymer	turn-on voltage	Max brightness	current density at max brightness	best performance	best Power Eff.	PL spectrum	EL spectrum	CIE 1931	
	[V]	$cd/m^2 @ V$	[mA/cm2]	cd/A @ V	[lm/W] @V	max (nm)	max (nm)	Х	у
P1	6	437 (10)	253	0.23(8)	0.09(8)	498	500	0.255	0.570
P2	5	1990(9)	522	1.91(5)	0.33(7.0)	536	528	0.367	0.588
Р3	6	492(10)	431	0.11(8)	0.25(6)	498	492	0.243	0.501
P4	5	1184(10)	652	0.18(10)	0.41(6)	535	530	0.372	0.582
Р5	5	405(11.5)	1033.3	0.07(5)	0.02(12)	495	496	0.250	0.576
P6	5	457(14)	1139	0.04(14)	0.08(9)	496	496	0.259	0.524
P7	6	489(14)	1038	0.05(13)	0.02(10)	496	496	0.248	0.567
P8	5	103.6(11)	589	0.07(8)	0.01(10)	498	492	0.227	0.423
Р9	5	218.9(9)	687	0.08(8)	0.09(8)	490	496	0.242	0.504
P10	5	202(12)	607	0.06(8)	0.02(7)	500	492	0.231	0.465
P11	4	6010(11)	1337	0.45(11)	0.38(5)	526	520	0.318	0.589
P12	4	3244(11)	1182	0.33(6)	0.19(5)	544	532	0.371	0.584
P13	3	2902(11)	1200	0.38(6)	0.23(5)	552	548	0.428	0.555
P14	5	856(12)	837	0.12(9)	0.39(7)	530	520	0.321	0.568
P15	4	528(11)	877	0.11(12)	0.06(6)	552	540	0.384	0.572
P16	3	795(12)	1000	0.11(6)	0.061(5)	556	552	0.442	0.543
P17	3	14070(13)	946	1.51(5)	0.74(4)	539	528	0.367	0.589
P18	3	1298(10)	1384	0.16(7)	0.11(5)	541	524	0.339	0.577
P19	3	16910 (10)	488	1.37 (7.5)	1.46(7)	545	540	0.389	0.579

P1 (元件性質見圖 Fig. 3-43~3-44)是單體 M1 的 Homopolymer, 元件所得最大放射波長 500 nm 與其 PL 最大放射位置 498 nm 相近, CIE 座標是在 X = 0.255, Y = 0.570 的位置,屬於藍綠光範圍,驅動 電壓 6V,最大效率為 0.23 cd/A,最大亮度為 437 cd/m²。P3 (元件性) 質見圖 Fig 3-45~3-46)是單體 M2 的 Homopolymer,元件所得最大放 射波長 492 nm 與其 PL 最大放射位置 498 nm 相近,CIE 座標是在 X = 0.243,Y=0.501 的位置,也屬於藍綠光範圍,驅動電壓 6V,最大 效率為 0.11 cd/A,最大亮度為 492 cd/m²,由於 M2 是有兩個芴環取 代基導入所以更加的往藍位移推進。由此可以得知我們已經改善了本 實驗室之前 DPn-PPV 藍光系列分子量小成膜性差的缺點,成功的將 雙取代基 PPV 系列往短波長推進。

我們參考文獻^[53]的報導,導入了 M4 作為共聚合物,用以改善電 子傳導的 mobility,期望讓電子電洞傳導速率達平衡,以增加元件的 效率及亮度。P2 及 P4 (元件性質見圖 Fig 3-43~3-44、3-45~3-46),在 不影響溶解度的情況之下我們導入了 10 %M4,最大放射光色由 P2 的藍綠光 500 nm 轉移到了綠光 528 nm,CIE 座標值為 X = 0.367, Y =0.588,驅動電壓為 5V,最大亮度達 1990 cd/m²,最大效率也達到 1.91 cd/A; P4 的藍綠光 492 nm 轉移到了綠光 530 nm,CIE 座標值為 X =0.372, Y = 0.582,驅動電壓為 5V,最大亮度達 1184 cd/m²,最大效 率也達到 0.18 cd/A。元件效果有相當大的進步。證明 M4 的導入,如 同文獻報導般可以使得電子的 mobility 上升,當電子電洞的 mobility 接近時,元件的效率便會有極大的改善。

P5~P10 (元件性質見圖 Fig. 3-47~3-50)是與 M3 的共聚,導入比 例為 10 %、25 %、50 %,本組實驗是希望藉由 M3 的長烷基來破 壞高分子鏈之間的堆疊,將薄膜態紅位移的現象降低,將光色保留在 藍綠光甚至是更加往短波長推進。實驗所得 P5 的 EL 光色由 P1 Homopolymer 的 500 nm 轉移到了 496 nm,CIE 座標值為 X = 0.250, Y = 0.576,驅動電壓為 5V,最大亮度達 405 cd/m²,最大效率下降至 0.07 cd/A; P6 的 EL 轉移到了 496 nm,CIE 座標值為 X = 0.259,Y = 0.524,驅動電壓為 5V,最大亮度達 457 cd/m²,最大效率 0.04 cd/A; P7 的 EL 轉移到了 496 nm,CIE 座標值為 X = 0.267,驅

動電壓為 6V,最大亮度達 489 cd/m²,最大效率下降至 0.05 cd/A。

P8~P10 的 EL 光色大致上和 **P3** Homopolymer 沒有太大的差距。 **P8** 的 EL 光色 492 nm, CIE 座標值為 X = 0.2227, Y = 0.423, 驅動電 壓為 5V,最大亮度達 103 cd/m²,最大效率下降至 0.07 cd/A; **P9** 的 EL 光色 496 nm, CIE 座標值為 X = 0.242, Y = 0.504,驅動電壓為 5V, 最大亮度達 218 cd/m²,最大效率 0.08 cd/A; **P10** 的 EL 光色 492 nm, CIE 座標值為 X = 0.231, Y = 0.465,驅動電壓為 5V,最大亮度達 202 cd/m²,最大效率下降至 0.06 cd/A。由此可知,導入 **M3** 雖然保留了 原有的藍綠光光色但是卻沒有得到好的元件 EL 性質,應該是因為 **M3** 雖有長烷基破壞堆疊,但由於兩個單體皆為平面雙取代且都為共 軛的取代基團,因此高分子間會有很強的 π - π interaction,所以此系 列的 EL 元件效果都不佳。

由於 M4 的導入之後會有溶解度變差的因素要考量,因此我們試 著改成導入結構類似,但是擁有良好溶解度的 M5 來作為共聚替代 物,此外 M5 的聚合物也是一個橘紅光的材料,可以用來調光色,希 望能得到較好的共聚 PPV 發光材料。

P11~P16 (元件性質見圖 Fig. 3-51~3-54)是導入 M5 做共聚合反應,導入的比例為 10 %~50 %。**P11~P13**為 M1 的共合聚物,可以發現隨著 M5 的比例增加紅位移的現象越趨明顯,光色可以由綠光到黃綠光。此外,從 EL 結果可以推知 M5 亦可作為幫助降低驅動電壓,因此為本系列 EL 結果性質最好的系列。**P11** 的 EL 光色 520 nm,CIE 座標值為 X = 0.318,Y = 0.589,驅動電壓為 4V,最大亮度達 6010 cd/m^2 ,最大效率 0.45 cd/A; **P12** 的 EL 光色 532 nm,CIE 座標值為 X = 0.371,Y = 0.584,驅動電壓為 4V,最大亮度達 3244 cd/m^2 ,最大效率 0.33 cd/A; **P13** 的 EL 光色 548 nm,CIE 座標值為 X = 0.428,Y = 0.555,驅動電壓為 3V,最大亮度達 2902 cd/m^2 ,最大效率 0.38 cd/A。**P14~P16**為 M2 的共聚合物,所得到的光色轉變也和 **P11~P13**

類似,不過 M2 單體本身是屬於對稱性較好的結構,所以製成薄膜時 堆疊問題較為明顯,因此 EL 性質未有很大的改善。P14 的 EL 光色 520 nm,CIE 座標值為 X = 0.321,Y = 0.568,驅動電壓為 5V,最大 亮度達 856 cd/m²,最大效率 0.12 cd/A;P15 的 EL 光色 540 nm,CIE 座標值為 X = 0.384,Y = 0.572,驅動電壓為 4V,最大亮度達 528 cd/m²,最大效率 0.11 cd/A;P16 的 EL 光色 552 nm,CIE 座標值為 X = 0.442,Y = 0.543,驅動電壓為 3V,最大亮度達 795 cd/m²,最大效 率至 0.11 cd/A。

P17~P19 (元件性質見圖 Fig. 3-55~3-56)是以 M3 為主體與少量 M1 和 M2、M4 做共聚, P17 (M3: M1: M4 = 80:10:10); P18 (M3: M2: M4 = 80:10:10); P19 (M3: M4 = 90:10)。其中 P19 已經經 由元件的改進從之前學長的 14390 cd/m²改進至 16910 cd/m², 驅動電 壓由 4 V 降至 3 V, 當導入 M1 和 M2 共聚時,我們可以發現例如: P17 (M3: M1: M4 = 80:10:10) M4 的比例是比 P19 來的高的,所 以照理說應當是要得到光色更加往長波長移動的產物,但由於 M1 和 M2 的加入使得光色可以拉至線光,足以顯示芴環取代基在此一大幅 度的藍位移中扮演非常重要的角色,EL 效率也有提升。P17 的 EL 光 色 528 nm, CIE 座標值為 X = 0.367, Y = 0.589, 驅動電壓為 3V,最 大亮度達 14070 cd/m²,最大效率 1.51 cd/A; P18 的 EL 光色 524 nm, CIE 座標值為 X = 0.339, Y = 0.577, 驅動電壓為 3V,最大亮度達 1298 cd/m²,最大效率 0.16 cd/A; P19 的 EL 光色 540 nm, CIE 座標值為 X = 0.389, Y = 0.579 驅動電壓為 3V,最大亮度達 16910 cd/m²,最大效 率至 1.37 cd/A。

Fig. 3-44 EL efficiency for the device with configuration : ITO/PEDOT/ P1 or P2/Ca(Al)

ITO/PEDOT/ P3 or P4/Ca(Al)

Fig. 3-48 EL efficiency for the device with configuration : ITO/PEDOT/ P5, P6 or P7/Ca(Al)

Fig. 3-50 EL efficiency for the device with configuration : ITO/PEDOT/ P8, P9 or P10/Ca(Al)

Fig. 3-52 EL efficiency for the device with configuration : ITO/PEDOT/ P11, P12 or P13/Ca(Al)

Fig. 3-54 EL efficiency for the device with configuration : ITO/PEDOT/ P14, P15 or P16 /Ca(Al)

Fig. 3-56 EL efficiency for the device with configuration : ITO/PEDOT/ P17, P18 or P19/Ca(Al)

3.6.4 元件 EL 光譜與 PL 光譜之比較

在比較 EL 和 PL 薄膜態光譜 (Fig. 3-57~3-75)可以發現 P1-P19 大部分的 EL 比起薄膜態的 PL 光譜來的藍位移,以 P5 (Fig. 3-61)的 藍位移的現象較為明顯,從 5V 的 548 nm 隨著電壓增加而有明顯的 藍位移,到 12V 有最大亮度時,最大放射波長為 496 nm。這樣隨著 電壓增大而藍位移的現象可以解釋側鏈的 Fluorene 基團本身具有較 大的能階,所以在較高電壓時主鏈和側鏈可能發生能量的轉移。從 P17 的 L-V 和 EL 效率的數據圖中,可明顯看到當到達 10V 時亮度 和效率即停止下降,隨著電壓再度上升,亮度、效率也隨之上升,達 到最大亮度 14070 cd/m²,最高效率 1.51 cd/A,高於未導入 M1 進行 共聚合的 P19。此外,P17 光色隨電壓上升從 544 nm 藍位移到最大 亮度時為 528 nm (Fig. 3-73),改進了 P19 過於偏黃綠光的缺點,成為 一個光色相當純的綠光材料。同樣的現象我們也可以在 P12~P18 發 現,更加說明了加掛 Fluorene 基團於 PPV 側鏈上,可以藉由調控電 壓的大小來獲得不同階段的光色。896

Fig. 3-58 P2 EL spectrum and PL film spectrum

Fig. 3-64 P8 EL spectrum and PL film spectrum

Fig. 3-68 P12 EL spectrum and PL film spectrum

Fig 3-70 P14 EL spectrum and PL film spectrum

Fig. 3-72 P16 EL spectrum and PL film spectrum

Fig. 3-74 P18 EL spectrum and PL film spectrum

