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CONSTRUCTING AN ABSTRACT MODEL FOR LADDER DIAGRAM

DIAGNOSIS USING PETRI NETS

Jui-I Tsai and Ching-Cheng Teng

ABSTRACT

This paper proposes a method for constructing an abstract model for
analyzing and diagnosing electrical circuit ladder diagrams (LDs) using Petri
nets, and also supporting network-based monitoring and supervision. This
approach converts normal open (NO) and normal close (NC) contacts in the
LD into Petri net transitions, and converts devices (e.g. relay coils) in the LD
into Petri net places. This study introduces the concepts of composite transi-
tions, composite places, and relevant state to reduce complexity and increase
readability of Petri nets for constructing abstract models. The current study
constructing diagnosis of fault modeling, introduces simple matrix manipula-
tion and the difference output vector (DOV) to determine the faulty area for
diagnosis in the ladder diagram. An LD controller example demonstrates the
usable approach.

Key Words: Ladder diagram; Petri net; diagnosis; abstract model; BPN; fault
model.

I. INTRODUCTION

Researchers developed ladder diagrams (LDs) to
replace relay symbols, and these diagrams have been
popular for a long time. Using a LD, it is possible to
represent the automated control process both sequen-
tially and graphically.

Petri nets (PNs) describe and analyze information
flow, and are excellent tools for modeling asynchronous
concurrent systems, such as computer systems, manu-
facturing systems, Supply Chain Management [1],
video streaming systems [2] and power systems [3, 4].

Sequence controllers play a key role in industrial
practice or manufacturing systems. Traditionally, ladder
diagrams have been widely applied to programmable
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logic controllers, while Petri nets have supplied an alter-
native tool for the sequence control of complex systems.

Jackman et al. [5] proposed a conceptual model
and working equation for converting relay ladder logic
to the PN model. Lee et al. [6] presented a method for
obtaining an augmented PN from an LD, and then using
the Petri net state equation as an analysis technique
to validate the corresponding flow mechanism of the
generated PNs. However, this approach increases the
total number of nodes and links in the generated PNs
[7]. Venkatesh et al. [8, 9] and Peng et al. [7] modeled
an LD contact to place and increase a virtual transition.
Lee et al. [10] modeled an LD connect to transition and
increase a position. However, the total number of nodes
and links in the generated Petri nets increases, which in
turn increases complexity. Petri nets have an excellent
flexibility corresponding to different models according
to a variety plant. This paper proposes a Boolean Petri
Net (BPN) Model.

Hierarchical control is an approach to designing
large-scale discrete event systems to deduce complexity
[10] as Fig. 1 illustrates. In a manufacturing system,
an LD controller may use a local controller, enabling
the LD controller to be diagnosed and monitored
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Fig. 1. Proposed hierarchical control [10].

remotely. This paper models the local controller
(i.e. LD controller) and abstract model (i.e. corre-
sponding to the LD model) using a BPN. The LD
controller model is a structural model, and the abstract
model is a behavioral model. The structural model is
similar to the original LD architecture, while the behav-
ioral model is simplified through the structural model
but still matches the functions of the LD controller.

The paper is organized as follows. Section II
defines the BPN model, and describes the properties
of a PN. Section III builds a table of a one or more
rung LD corresponding to the BPN module using the
Boolean equation. Section IV presents an example of
transferring the LD to the abstract model, discusses
the properties of the proposed abstract model, and
simulates fault free and fault models of the proposed
BPN. Finally, Section V gives the conclusion.

II. BOOLEAN PETRI NET

Carl Adam Petri proposed the Petri net theory.
Fig. 2 shows the structure of Petri nets in a directed
bipartite graph that consists of places, transitions, and
arcs. A circle with a token represents the places. A bar
that indicates the flow of tokens when firing condition
is satisfied, which represents the transition. Finally, a
straight line that connects the place to the transition,
or the transition to the place denotes the arc, which
indicates the flow of tokens in the direction of the arrow.

2.1 Definition of boolean petri nets

The purpose of developing the BPN model is that
this model exhibits the imply logic property in a LD.
The simplest way to represent an LD is by its Boolean
equation. The approach proposed in this paper embeds
the Boolean equation in a PN transition to develop
the BPN model. This special transition is called the
“Boolean transition.” Table I describes the BPN model

A Bt A Bt

(a) (b)

Fig. 2. (a) An example Petri net, (b) A token moving from A
to B in Fig. 2a after ti fire.

corresponding to the Boolean equation. Clearly, the
BPN model also matches the LD. To map an LD into a
Petri net, the Petri net must be extended. This extended
Petri net is called a Boolean Petri net, which can be
defined formally as

PN =(P,T, A, I,O, in,out,M0) (1)

where P={p1, p2, . . . , pm}, m≥1, is a finite set of
places representing the LD action state. The places are
associated with a component or a set of components
(i.e., a compound component) such as the actuator
output, relay coil, timer, counter solenoid, or source;
T ={t1, t2, . . . , tn}, n≥1, is a finite set of transitions
representing event whether occurs or not. These tran-
sitions are always associates with a switch or a set
of switches and represented by Boolean equations or
variables.

The switch can be a normal open (NO) switch
or normal closed (NC) switch. The NO switch is also
called an “a” contact and the NC switch is also called
a “b” contact, where P∩T =� and P∪T �=�.

A⊂(P×T )∪(T ×P) is a set of arcs (→)

consisting of input arcs Ai (P×T ) and output arcs
Ao(T ×P). The weight of each directed arc in this
paper is 1, and Ai (P×T ) is defined as directed arcs
from a place to a transition. Places are called input
places and transitions are called output transitions,
and the input arc is represented by a connected line
as channel of token. Ao(T ×P) is defined as directed
arcs from a transition to a place, the transition is
called the input transition and the place is called the
output place, and the output arc is represented by a
connected line as channel of token. The arc may be
preservation arc (•→) that a input arc and a output
arc exist simultaneously between same place and
transition [6]; I :T ×P→N is an input function that
defines as number of output arcs Ao(T ×P), where
N ={0,1,2, . . .}, O : P×T →N is an output function
that are defined as number of input arcs Ai (P×T ),
where N ={0,1,2, . . .}; in={in1, in2, . . . , inn} is a set
of input switch, which is represented by Boolean func-
tion or variable. A set of input switches is associated
with a transition t j and is denoted by t j ={in}. The
Boolean function or variable can be ‘1’, in which case
the related transition t j is allowed to fire if it is enabled,
or it can be ‘0’, in which case the related transition t is
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not allowed to fire; out={out1,out2, . . . ,outm} is a set
of output actuator which is associated with a pi and
is denoted by pi ={out}; M0(P) is the initial marking
that uses a token to represent the place status.

A transition is enabled if the number of tokens at
the place is larger than or equal to the number of input
arcs. A transition is firing if the enabled transition is
fired and its transition states are true (i.e., the Boolean
equation is true). When a transition fires, it moves the
tokens from input places to output places along the input
arcs and output arcs, as Fig. 2 illustrates. This moves the
token of place A to place B along directed arcs if tran-
sition ti is firing. A marking is denoted as an m-vector,
where m is the total number of place P , while m(pi ) is
represented by the number of tokens at place pi [11].

For the marking m0, there is an enabled transition
t1. If there is a firing of transition t1, then the marking
is immediately reachable to m′ from m0, denoted by
m0[t1>m′. A marking mi is said reachable from m0 if
there exists a sequence of firings that transforms m0 to
mi . R(m0) is defined as the set of all reachable mark-
ings from m0. F(m0) is defined as the set of all firing
sequences from m0. A place pi is said to be bounded
for an initial marking m0 if ∃k>0, m(pi )≤k, and ∀m∈
R(m0). Specifically, it is said to be safe if k=1. A
marking m0 is said to be live for a Petri net if every
marking has been reached from m0, which indicates
it is possible to fire any transition of the net by some
firing sequence [12, 13]. Ifm0 may be reached from any
marking, The Petri net is said to be reversible.

To simulate the behavior of LD, this approach
changes a state or marking according to defined firing
rules for the Boolean Petri nets model.

2.2 State equation

The firing definition easily shows that the token
moves from state Mk−1 to another state Mk by the kth
firing, and Uk is a firing vector which can be given
in terms of the following matrix state equation for
Petri nets [12]

Mk =Mk−1+ATUk (2)

where Uk is called firing vector, and AT is called the
incidence matrix for any given topological structure of
Petri nets, defined by

AT (pi , t j ) =

⎧⎪⎨
⎪⎩

−Ao(pi , t j )

0

Ai (t j , pi )

⎫⎪⎬
⎪⎭ , where 1

≤ i≤m, 1≤ j ≤n. (3)

)(:2 Yp 2t )(:3 Dp

)(:1 Mp

3t
1t

Fig. 3. A simple example.

)(:2 Yp )(:3 Dp 3t2t1t

Fig. 4. The reduction result of Fig. 3.

1
p

)(:3 Yp

)(: 22 PLp

1t 1
p ),(: 22 PLYp

1t

(a) (b)

Fig. 5. (a) A simple example and (b) The composite
result of Fig. 5a.

Note that Mk must be a vector of nonnegative integers
[12]. The firing vector will then select an appropriate
column of AT such that

Mk−1+ATUk ≥0 for each k (4)

2.3 Definition of action dominance and
equivalence

Dominance. An action p1 is said to dominate another
action p2 in an irredundant place iff every exist of token
for p2 is also exist of token for p1. i.e., the life of a token
of p1 is longer than p2, denoted as m(p1)>m(p2). The
reduction of the place p1 to be analyzed is based on the
dominance relation.

Example 1. Fig. 3 shows a PN in which p1 is
dominated by p2 and p3, i.e., m(p1)>m(p2) and
m(p1)>m(p3). Fig. 4 shows the reduction result.

Equivalence. The actions p1 and p2 are equivalent if
exist of token is same condition for p1 and p2, i.e.,
m(p1)>m(p2) and m(p2)>m(p1). The composite of
the place p1 and p2 to be analyzed is based on the
equivalent action.

Example 2. Fig. 5a shows a PN in which p2 is equiv-
alent to p3, i.e., m(p3)>m(p2) and m(p2)>m(p3).
Fig. 5(b) shows the composite result.
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III. LADDER DIAGRAM MODEL USING
BOOLEAN PETRI NET

3.1 Model of basic modules

In ladder diagrams, the horizontal line (rung) and
the associated elements represent Boolean equations.
Similarly, in Boolean Petri nets, the associated transi-
tions represent Boolean equations. In ladder diagrams,
the symbol “©” represents the dependent element
of the equation (coil). Similarly, in Boolean Petri nets,
the symbol “©” represents the dependent element
of the equation (place). In ladder diagrams, “| |” repre-
sents the independent element (normal open contacts),
while in Boolean Petri nets, “| or |” represents the
independent element (input transitions). A diagonal
line placed in the middle of these symbols (i.e., “|/|”)
represents normal closed contacts, which indicate that
the negated value of the variable is used. Similarly,
bar “| or |” represents the output transition. In ladder
diagrams, variables (contacts) placed in a series repre-
sent the AND Boolean function, while contacts placed
in parallel represent the OR Boolean function. The
rungs are executed in order from top to bottom. There-
fore, the Type 8 ladder diagram in Table 1 represents
Boolean equations M=(A+M)B and N =M [14]. In
Boolean Petri nets, a similar input transition represents
(A+M), denoted as t1 :(A+M), which is a composite
transition. Conversely, output transitions represent B,
denoted as t2 :(B), and output places are denoted as
p2 :(M,N ) which are composite places. Finally, Table
I summarizes some typical LD modules and their
corresponding Boolean Petri net models, where S is a
pseudo source and the composite and decomposite of
Boolean Petri net are as shown in Table II.

3.2 Model of faulty ladder diagram

An LD circuit fault may generally be classed as
both stuck-at 0 (s-a-0) and stuck-at 1 (s-a-1) type; the
stuck-at 0 fault is like a NO switch and the stuck-at 1
fault is like an NC switch. Hence the fault model of the
ladder diagram can be modeled as a Petri net. An LD of
the possessed example fault is illustrated in Fig. 6a and
the Petri net model is illustrated in Fig. 6b. Where fault
f1 are represented s-a-0 to represent the switch A is
struck at open, fault f2 is represented s-a-1 to represent
the switch B is stuck at close. According to Eq. (3), the
incidence matrix is

AT = p1

p2

t1 t2[−1 1

1 −1

]
.

The faults classified in the two cases are inter-
preted as below.

Case 1. Assume f1 is s-a-0 fault and initial
marking is

M0= p1

p2

[
1

0

]

When the bottom is pushed A=1.

U1 = t1 :(A)

t2

[
1

0

]
, U f1 = t1 :(A · f1)

t2

[
0

0

]
,

U1/ f1 = t1 :(A/A · f1)
t2

[
1/0

0

]
,

where U1 and U f1 are represented as the fault free and
faulty firing vector, respectively. U1/ f is represented as
the fault free/faulty firing vector.

According to Eq. (2)

M1/ f1 = M0+ATU1t/ f = p1

p2

[
1

0

]

+
t1 t2[−1 1

1 −1

][
1/0

0

]

=
[
1

0

]
+

[−1/0

1/0

]
=

[
0/1

1/0

]
,

i.e., M1=
[
0
1

]
; M f1 =

[
1
0

]
, where M1 and M f1 are

represented as the fault free and faulty marking vector,
respectively. M1/ f is represented as the fault free/faulty
making vector.

In the LD circuit, f1 fault means the coil C is not
active since the switch A is stuck at open.

Case 2. Assume f2 is s-a-1 fault and current
marking is

M1= p1

p2

[
0

1

]

When the bottom is pushed B=1

U2 =
t1

t2 :(B/B · f 2)

[
0

1/0

]
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Table II. Composite and Decomposite of Boolean Petri nets.

BPN

LD Boolean Equation Decomposite Composite

AS C

D
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S A CBs
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Fig. 6. (a) An LD of possessed fault and (b) A Petri net
model of possessed fault.

M2/ f2 = M1+ATU2= p1

p2

[
0

1

]

+
t1 t2[−1 1

1 −1

][
0

1/0

]
=

[
0

1

]

+
[

1/0

−1/0

]
=

[
1/0

0/1

]

i.e., M2=
[
1
0

]
; M f2 =

[
0
1

]
.

In the LD circuit, f2 fault means the coil C is
maintain action since the switch B is stuck at close.

IV. APPLICATION EXAMPLE

This section illustrates a practical example of hier-
archical control system in Fig. 1. The local controller is

an LD circuit. This circuit can be modeled by BPN and
is simplified to obtain an abstract model using Table I
of the preceding section. The system fault can be diag-
nosed by the difference between the LD response and
abstract model response. The differences are as decision
of supervisor agent.

4.1 Constructing an abstract model using a
Boolean PN

To start a three-phase motor, an LD controller use
type of Y-� starting to limit starting current, as shown
in Fig. 7 and symbol descriptions in Table III. In the LD
controller, the bottom Pb1 is control relay coil M , Y
and timer coil active. The motor enters the starting state
when NO contacts of M and Y are turned on. Next, the
relay coil Y turns off after delay time T�, and the motor
returns to the normal state when the relay coil Y turns
off and relay coil D turns on. Finally, the motor stops
if the bottom Pb2 is pushed or the current is overload.
This LD controller can be specified as follows:

Step (1) The motor is commanded to start (Pb1).
Step (2) The motor starting time is T�.
Step (3) The motor is commanded to stop (Pb2).
Step (4) The motor will stop if the current is over-
loaded.

q 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
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Fig. 7. Control circuit of a Y-� starting motor.

Table III. The Descriptions of Symbol.

Symbol Description Symbol Description

PL1 Indicator light of green “b” contact of Push bottom

PL2 Indicator light of yellow “a” contact of Push bottom

PL3 Indicator light of red “a” contact of relay

Relay “b” contact of relay
T Timer “a” contact of timer

Stuck at 0 (s-a-0) switch for simulate fault [15] “b” contact of timer
1∼9 rung number “b” contact of over load

The implicit specification is as following:
Spec) The relay coil D and relay coil Y are mutu-

ally exclusive.
The transformation from the ladder diagram (in

parallel) to the abstract model (in series) is based on the
following steps:

Step (1) A rung or compound rung of LD is converted
to a Boolean Petri net module using Table
I or the Boolean equation. LD controller
then assembles Boolean Petri net modules,
as Fig. 8 shows, where (1), (2) . . . and (9)
correspond to the number of LD rungs.

Step (2) A Boolean Petri net can be given after elim-
inating the redundant or pseudo places (i.e.,
the S place), as Fig. 9 illustrates.

Step (3) An abstract model can be obtained according
to dominance relation reduce some places
(in this case, an abstract model reduce
place p2), and eliminating some redundant
elements (i.e., the coil of time or auxiliary
relay), as Fig. 10 shows.

Fig. 8. BPN model of an LD controller.

4.2 Properties of the proposed Boolean Petri net

The reachability of a PN is a tree, which uses states
as nodes and transitions as arcs [16]. The construction of
this tree starts from the root node. The root node is repre-
sented as the initial state, and the arcs outgoing from
the root node are marked by the corresponding enabled

q 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society



J.-I. Tsai and C.-C. Teng: Constructing an Abstract Model for Ladder Diagram 317

Fig. 9. Equivalent diagram of Fig. 8.

1PL )(: 11 Pbt Y D)(:2 ΔTt

)(: 232 Pbt

)(: 231 Pbt

Fig. 10. Abstract model of Fig. 9.

0]00[1

1]01[0

0]11[0

)(: 11 Pbt

)(:2 ΔTt

)(: 232 OLPbt +

)(: 232 OLPbt +

Fig. 11. The reachability tree of the Proposed BPN.

transition. The arc will outgo to a new node (state)
from the firing of the corresponding transition (arc).
The above procedures are repeated until they produce
duplicate nodes. Terminal nodes are identical to existing
nodes, which have no any enable transitions are met. In
the reachability tree, dash lines indicate nodes.

Due to the similar processes of PN reachability
tree, this study presents the reachability tree of the
proposed BPN in Fig. 9. For the sake of simplicity
in representing the node (node) in the reachablility
tree, define the state variable vector in the reachability
tree as [p1 p2 p3 p4], and allow the initial state to be
[1 0 0 0]. If transition t1 :(Pb1) fires when Pb1=1
(i.e. Pb1 is active), the state moves to [0 1 1 0]. If
transition t31 :(Pb2) fires when Pb2=1 (i.e. Pb2 is
active), then the state moves to [1 0 0 0]. Subse-
quently, if transition t2 :(T�) is enabled and fires,
then the state moves to [0 1 0 1], while if transition

t32 :(Pb2) is enabled and fires, the state moves to
[1 0 0 0].
Proposition 1. The proposed BPN is live.

Proof. Consider a case based on the reachability
tree in Fig. 11. This figure shows that there is no
terminal node. Therefore, there always exist some
sample path such that any transitions can eventually
fire to reach any states from the initial state p1, i.e.
R(m0)={p2, p3, p4}, F(m0)={t1, t2}. According to
this definition, the proposed BPN is live. �

Proposition 2. The proposed BPN is reversible.

Proof. The reachability tree in Fig. 11 indicates that
there is no terminal node. Therefore, there always exist
some sample path such that any transitions can even-
tually fire to reach the initial state p1 from any states
(i.e. p2, p3, p4), p1∈ R(p2), p1∈ R(p3), p1∈ R(p4).
According to this definition, the proposed BPN is
reversible. �

Proposition 3. The proposed BPN is bound.

Proof. In a stable PN, the number of tokens in any
place will not grow infinitely. The reachability tree in
Fig. 11 indicates that one and only one marked token
corresponds to any specific state. Therefore, the number
of marked tokens in p1, p2, p3 and p4 is bounded above
by 1. According to this definition, the proposed BPN is
bounded and safe. �

Similarly, the proposed abstract model in Fig. 10
is live, reversible, and safe. In the Petri net model, the
live is represented as a reachable starting state (i.e. Y
state) and running state (i.e. D state) from the ideal state
(i.e. PL1 state), the safe is represented as only existing
in one state, the reversible is represented as returning to
the ideal state (i.e. PL1 state) from any other state (i.e.
Y state and D state).

4.3 State equation

According to Eq. (2), Fig. 9 shows that the state
equation is Mk =Mk−1+ATUk

AT =

p1

p2

p3

p4

t1 t2 t31 t32⎡
⎢⎢⎢⎢⎣

−1 0 1 1

1 0 −1 −1

1 −1 −1 0

0 1 0 −1

⎤
⎥⎥⎥⎥⎦,
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M0 =

p1

p2

p3

p4

⎡
⎢⎢⎢⎢⎣
1

0

0

0

⎤
⎥⎥⎥⎥⎦ ,U1=

t1

t2

t31

t32

⎡
⎢⎢⎢⎢⎣
1

0

0

0

⎤
⎥⎥⎥⎥⎦ ,

U2 =

t1

t2

t31

t32

⎡
⎢⎢⎢⎢⎣
0

1

0

0

⎤
⎥⎥⎥⎥⎦ ,U31=

t1

t2

t31

t32

⎡
⎢⎢⎢⎢⎣
0

0

1

0

⎤
⎥⎥⎥⎥⎦ ,U32=

t1

t2

t31

t32

⎡
⎢⎢⎢⎢⎣
0

0

0

1

⎤
⎥⎥⎥⎥⎦

M1 = M0+ATU1=

p1

p2

p3

p4

⎡
⎢⎢⎢⎢⎣
1

0

0

0

⎤
⎥⎥⎥⎥⎦

+

t1 t2 t31 t32⎡
⎢⎢⎢⎢⎣

−1 0 1 1

1 0 −1 −1

1 −1 −1 0

0 1 0 −1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
1

0

0

0

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣
1

0

0

0

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

−1

1

1

0

⎤
⎥⎥⎥⎥⎦=

p1

p2

p3

p4

⎡
⎢⎢⎢⎢⎣
0

1

1

0

⎤
⎥⎥⎥⎥⎦

M2 = M1+ATU2=

p1

p2

p3

p4

⎡
⎢⎢⎢⎢⎣
0

1

1

0

⎤
⎥⎥⎥⎥⎦

+

t1 t2 t31 t32⎡
⎢⎢⎢⎢⎣

−1 0 1 1

1 0 −1 −1

1 −1 −1 0

0 1 0 −1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
0

1

0

0

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣
0

1

1

0

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

0

0

−1

1

⎤
⎥⎥⎥⎥⎦=

p1

p2

p3

p4

⎡
⎢⎢⎢⎢⎣
0

1

0

1

⎤
⎥⎥⎥⎥⎦

M31 = M1+CT ATU31=

p1

p2

p3

p4

⎡
⎢⎢⎢⎢⎣
0

1

1

0

⎤
⎥⎥⎥⎥⎦

+

t1 t2 t31 t32⎡
⎢⎢⎢⎢⎣

−1 0 1 1

1 0 −1 −1

1 −1 −1 0

0 1 0 −1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
0

0

1

0

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣
0

1

1

0

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

1

−1

−1

0

⎤
⎥⎥⎥⎥⎦=

p1

p2

p3

p4

⎡
⎢⎢⎢⎢⎣
1

0

0

0

⎤
⎥⎥⎥⎥⎦

M32 = M2+ATU32=

p1

p2

p3

p4

⎡
⎢⎢⎢⎢⎣
0

1

0

1

⎤
⎥⎥⎥⎥⎦

+

t1 t2 t31 t32⎡
⎢⎢⎢⎢⎣

−1 0 1 1

1 0 −1 −1

1 −1 −1 0

0 1 0 −1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
0

0

0

1

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣
0

1

0

1

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

1

−1

0

−1

⎤
⎥⎥⎥⎥⎦=

p1

p2

p3

p4

⎡
⎢⎢⎢⎢⎣
1

0

0

0

⎤
⎥⎥⎥⎥⎦

In reality, places p2 :(X,M,Timer), p3 :(Y, PL2), and
p1 :(D, PL3) are compounded places in Petri nets.
Therefore, the state of P={p1, p2, p3, p4} can be
decompounded into the P={PL1, X,M,Timer,Y,

PL2,D, PL3} state, so MT
0 (P)=[1 0 0 0] can be

transferred into MT
0 (p)=[1 (0 0 0) (0 0) (0 0)].

Similarly, MT
1 (P), MT

2 (P), MT
31(P) and MT

32(P) can
be decomposed into places [0 (1 1 1) (1 1) (0 0)],
[0 (1 1 1) (0 0) (1 1)], [1 (0 0 0) (0 0) (0 0)]
and [1 (0 0 0) (0 0) (0 0)], respectively.
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)(: OLpbt +

),(: 23 PLYp )(:4 Dp

),,(2 TimerMXp =

)(: OLpbt +

)(: Tt

)(: Pbt

)(: OLPbt +

)(: 33 PLpf)(: fDt

)(: OLPbt +

)(: OLpbt +

),(: 2PLYp ),(: 34 PLDp

),,(:2 TimerMXp

)(: OLpbt +

)(: Tt

)(: fPbt

)( OLPbt +=

)(: OLpbt +

),(: 2PLYp ),(: 34 PLDp

),,(:2 TimerMXp

)(: OLpbt +

)(: Tt

)(: Pbt

)(: OLPbt +

)(: fXt

)(: OLPbt +

(a) (b)

(c)

Fig. 12. Petri nets model: (a) with fault f1; (b) with fault f2; and (c) with fault f3 in Fig. 7.

4.4 Analysis and diagnosis of fault modeling

Assume that the faults f1, f2 and f3 in the LD
are stuck at 0 (s-a-0), as Fig. 7 illustrates. The fault can
then be modeled into Petri nets as shown in Fig. 12(a),
(b), and (c), respectively. In case 1, a transition t1 :(pb1)
is fired since pb1 is active. However, the transition t f1 :
(pb1 f1)=0 cannot be fired since f1 is stuck at 0. Simi-
larly, in case 2, t f2 :(X2 f2)=0, t2 :(X2)=1. In case 3,
t f3 :(D2 f3)=0, t3 :(D2)=1. For simple calculation of
state equation, a control vector Uk contains the fault
free Boolean equation and faulty Boolean equation of
transitions, as denoted by t fi :(fault free/fault)=1/0.
Fig. 13 shows fault free model and fault model simu-
lated structure.

A difference output vector (DOV) = fault free
output vector-fault output vector. If has fault occur then
difference output vector �=0. The fault is covered area
from place of negative value to place of positive value,
and the faulty path flows through transition ti in DOV.

Case 1. Assume f1 is s-a-0.

AT
f1 =

p1

p2

p3

p4

t1 t2 t31 t32⎡
⎢⎢⎢⎢⎣

−1 0 1 1

1 0 −1 −1

1 −1 −1 0

0 1 0 −1

⎤
⎥⎥⎥⎥⎦,

M0 =

p1

p2

p3

p4

⎡
⎢⎢⎢⎢⎣
1

0

0

0

⎤
⎥⎥⎥⎥⎦ ,U1=

t f1 :(pb1/pb1 f1)
t2

t31

t32

⎡
⎢⎢⎢⎢⎣
1/0

0

0

0

⎤
⎥⎥⎥⎥⎦

M f1 = M0+AT
f 1U1=

p1

p2

p3

p4

⎡
⎢⎢⎢⎢⎣
1

0

0

0

⎤
⎥⎥⎥⎥⎦

+

t1 t2 t31 t32⎡
⎢⎢⎢⎢⎣

−1 0 1 1

1 0 −1 −1

1 −1 −1 0

0 1 0 −1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
1/0

0

0

0

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣
1

0

0

0

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

−1/0

1/0

1/0

0

⎤
⎥⎥⎥⎥⎦=

p1

p2

p3

p4

⎡
⎢⎢⎢⎢⎣
0/1

1/0

1/0

0

⎤
⎥⎥⎥⎥⎦

DOV=[−1 1 1 0]T . The faulty area is covered
from p1 to p2 and p3 as Fig. 14 indicates, and the fault
path flows through t1 :(pb1). Thus, the fault is located
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Model

Fault

Model

FreeFault
Comparison

Input

Output

OutputDifference

Output

Fig. 13. Simulated fault free model and fault model.

)(: OLpbt +

),(: 23 PLYp

),,(:2 TimerMXp

)(:
Pb

XPbt
=

+

Fig. 14. The faulty area in case 1.

between rung 1 and rung 3 in Fig. 7. In physical terms,
this means the motor cannot start rotation.

Case 2. Assume f2 is s-a-0.

AT
f 2 =

p1

p2

p f2

t1 t f2⎡
⎢⎣

−1 0

1 0

0 1

⎤
⎥⎦; M0=

p1

p2

p3

⎡
⎢⎣
1

0

0

⎤
⎥⎦ ;

U1 = t1 :(Pb1)
t f2

[
1

0

]
;

U1 = t1

t f2 :(X2/X2 f2)

[
1

0

]

M1( f2) = M0+AT
f 2U1=

p1

p2

p f2

⎡
⎢⎣
1

0

0

⎤
⎥⎦

+
p1

p2

p f2

t1 t f2⎡
⎢⎣

−1 0

1 0

0 1

⎤
⎥⎦

[
1

0

]
=

⎡
⎢⎣
1

0

0

⎤
⎥⎦

+
⎡
⎢⎣

−1

1

0

⎤
⎥⎦=

⎡
⎢⎣
0

1

0

⎤
⎥⎦

M2( f2) = M1+CT
f 2U2=

p1

p2

p f2

⎡
⎢⎣
0

1

0

⎤
⎥⎦

+
p1

p2

p f2

⎡
⎢⎣

−1 0

1 0

0 1

⎤
⎥⎦

[
0

1/0

]

=
⎡
⎢⎣
0

1

0

⎤
⎥⎦+

⎡
⎢⎣

0

0

1/0

⎤
⎥⎦=

p1

p2

p f2 :(Y, PL2)

⎡
⎢⎣

0

1

1/0

⎤
⎥⎦

DOV=[0 0 1]T . The faulty area is covered only in p f2
as Fig. 12b indicates, and the fault path flows through
t f2 :(X2). Thus, the fault is located between rung 2 and
rung 5 in Fig. 7. In physical terms, this means the motor
cannot run.

Case 3. Assume f3 is s-a-0.

AT
f3 =

p1

p2

p3

p4

p f 4

t1 t2 t31 t32 t33 t f3⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 1 1 1 0

1 0 −1 −1 −1 0

1 −1 −1 0 0 0

0 1 0 −1 0 0

0 0 0 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

;

U1 =

t1(Pb1)

t2

t31

t32

t33

t f3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; U2=

t1

t2(T�)

t31

t32

t33

t f3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

U f3 =

t1

t2

t31

t32

t33

t f3 :(D2/D2 f3)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

1/0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M0 =

p1

p2

p3

p4

p f3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

; M1=M0+AT
f3U1
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=

p1

p2

p3

p4

p f3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

1

1

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

; M2=M1+AT
f3U2

=

p1

p2

p3

p4

p f 2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

1

0

1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

; M f3 =M2+AT
f3U f3

=

p1

p2

p3

p4

p f3 :(PL3)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

1

0

1

1/0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

DOV=[0 0 0 0 1]T . The faulty area is covered only
in p f3 as Fig. 12c indicates, and the fault path flows
through t f3 :(D2). Thus, the fault is located between
rung 7 and rung 9 in Fig. 7. In physical terms, this means
the indicator light PL3 cannot light.

V. CONCLUSIONS

This paper proposes the Boolean Petri net using
the Boolean equation, constructs a ladder diagram
module using the Petri net and develops an abstract
model using Petri nets to diagnose local faults in the
LD. The diagnostic process employs simple matrix
manipulation and DOV to determine the faulty area for
diagnosing the ladder diagram. This study also provides
an example using composite transition, composite
place, and relevant state to reduce complexity and
increase readability of the Petri nets. The proposed
methodology is useful and clear.
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