
Chapter 3

Image Retrieval with Relevance

Feedback

Due to the increasing popularity of digital capturing devices such as digital camera,

the dramatically large size of digital contents demands for highly efficient multimedia

content management. For a particular application, a content-based image retrieval

(CBIR) system often has a distinct set of configurations[14] including selected image

features and a processing architecture, in order to achieve the desired matching

accuracy. A known approach for constructing a satisfactory CBIR system is to

incorporate semantic related features for matching. However, there are no general

guidelines in designing or acquiring these features; thus, many CBIR systems have

been proposed to bridge the gap between image feature space and human semantics

by relevance feedback. In this chapter, we will focus on the content-based image

retrieval (CBIR) methods using low-level image features.

Before developing our method, we perform a few experiments on different sizes

of database in Sec. 3.1. These tests are meant to verify whether the common as-

sumptions about feature distances are always valid. The results are interesting, and

they lead to the design that we do not rely on the “distance normalization”. In

Sec. 3.2, we briefly discuss the concept of multiple query instances (relevance feed-
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back) and the problems in using this technique. Based on a few assumptions, we

propose a straightforward yet effective method that incorporates multiple samples

and image multi-scale property for estimating user intention in Sec. 3.3. When an

image is selected as a negative example, we use the method described in Sec. 3.4

to prune irrelevant results. Then, the approach of generating pseudo images using

multiple (spatial or SNR) scales is described in Sec. 3.5. In Sec. 3.6, we propose

a CBIR architecture that integrates the proposed techniques. It solves the feature

space normalization problem, and reduces the impact of insufficient user supplied

information. We also provide several screen-shots to demonstrate the subjective re-

sults of our method. In Sec. 3.7, we conduct simulations to evaluate our conjectures.

Base on a fairly recognized objective performance index, we compare a few different

methods. In Sec. 3.8, we experiment an alternative weighting method which relaxes

the Euclidean space assumption. At the end of this chapter, we summarize this

presentation with Sec. 3.10.

3.1 Distance Distribution over Image Database

To determine the similarity of two given images, feature distance is an effective

method. In many designs, we have to combine several kinds of feature distances to

compute the final distance. A simple way to combine them is using weighted sum of

all the distances. Since different feature distance function could have different range

of values, we often normalize the computed distances to prevent that one distance

function may overshadow the others.

A commonly adopted normalization is based on the assumption that the distance

values are near-Gaussian distributed. Hence, we can easily normalize them using the

mean and the variance parameters. When we compute the Euclidean distance of two

feature vectors, this assumption should be valid for most cases. However, sometimes

we adopt designated distance functions (such as those proposed in MPEG-7 [4]).

They may be designed to match human perceptual differentiation among features.
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It is known that many perceptual measurements are not linear, we wonder whether

the designated distance function produces values that satisfy this assumption or not.

To verify the validity of the assumption, we test several data sets:

• Data set 1 (256 images): the ground-truth images used in Sec. 3.7;

• Data set 2 (794 images): 194 people (party) photos, 200 flower pictures, 200

undersea pictures, 200 outdoor scenery pictures;

• Data set 3 (17383 images): the pictures selected from the Corel gallery.

Then, we construct three sizes of image databases using the data sets:

• DB-256: data set 1;

• DB-1050: data set 1 and data set 2;

• DB-18k: data set 1, data set 2, and data set 3.

The testing image features are Color Layout, Edge Histogram, and Scalable Color.

All the representation feature vector and distance function are defined and proposed

in the MPEG-7 visual part [24].

We perform the experiments as follows. From the database, compute the feature

distance of each pair of the feature vectors. Then we aggregate all the values,

normalize the maximum distance value to be 1.0, and plot them in a 5000-bin

value histogram. Figure 3.1 shows the distance distribution of the Color Layout

feature in DB-256, DB-1050, and DB-18k. Similarly, Fig. 3.2 and Fig. 3.3 show the

distance distributions of the Edge Histogram feature and the Scalable Color feature,

respectively. The distance distributions are often Gaussian-like. However, take the

distribution of Scalable Color distances as an example, the peak value is biased to

be lower end. This phenomenon indicates that Gaussian normalization on distances

may not be always valid for designated distance functions. Another problem is the

computational cost for obtaining parameters for normalization purpose. This can

particularly be a difficult issue in a distributed database environment.
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Figure 3.1: Distance distributions of Color Layout in databases. (a) DB-256

database. (b) DB-1050 database. (c) DB-18k database.
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Figure 3.2: Distance distributions of Edge Histogram in databases. (a) DB-256

database. (b) DB-1050 database. (c) DB-18k database.
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Figure 3.3: Distance distributions of Scalable Color in databases. (a) DB-256

database. (b) DB-1050 database. (c) DB-18k database.
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