
3.2 Design Goals

In a typical Query-by-Example (QBE) CBIR system with relevance feedback capa-

bility, the problem is how one utilizes multiple image features and multiple query

instances (images) to derive the proper search parameters. Multiple features and

multiple instances represent two different aspects. The former is how we describe

an image in an application; the latter is how we guess the user intention using the

given instances. There exist many proposals on combining multiple features for im-

age search such as using Borda counts[25]. Methods of combining multiple instances

are usually considered as a part of a relevance feedback function. There are several

existing CBIR proposals containing relevance feedback such as MARS[15][26] and

iPURE[27]. In many cases, the multi-instance analysis process uses the selected fea-

tures. Since the feature selection problem is a design-time issue, the analysis method

varies from application to application. For example, if the features are expressed as

a vector of moments, the weighting factors for each moment can be computed by

the boosting method[28], as described in [29] and [30].

In our previous project, we developed an MPEG-7 testbed [31] and thus have

used it to examine several low-level MPEG-7 features. We observed that subjec-

tively similar pictures tend to be close (near) in one or more feature spaces. Another

observation is that a low-level feature often has (somewhat) different values when

it is extracted from the same picture with different spatial resolutions and/or pic-

ture quality (SNR scalability). Our investigation finds that people often design a

QBE system with feedback under the assumption that a sufficient number of query

instances or feedback iterations can be provided by the user. However, this assump-

tion is not always true in a real-world application[32][33]. Often, the sample size is

very small (one to three) and the information contained in the samples may not be

all consistent in terms of data clustering.

Based on our observations, we are motivated to develop a user perception es-

timation algorithm, which tries to make a correct conjecture on the user intention

36

based on the small number of samples (instances) provided by the user. For simplic-

ity and fast calculation, our system uses only low-level features for automatically

high-volume feature extraction and matching. Another consideration is that it in-

corporates only simple distance-based weighting and matching scheme to make it

easily integrated into various environments. We also consider a simple user interface

for relevance feedback: the application only asks users to label positive or negative

images in a free way. (No specific number of feedback images is required.)

3.3 Feature Weighting Method

There are several ways to combine different low-level features. Here we adopt a

straightforward one: weighted sum of feature distances. We use the originally des-

ignated distance definition of individual features. Our focus is to find the most ap-

propriate weight of each feature to produce an effective combined distance measure.

Thus, our method preserves the individual feature space properties. In this scheme,

the user perception is expressed by a weighting vector. Note that the weighting

vector is derived from the multiple instances provided by the user.

Similar to many other image retrieval schemes, we assume the following condi-

tions are satisfied:

• All the basic feature distance metrics are bounded.

• Two perceptually similar images have a small distance in at least one feature

space.

• Low-level features are locally inferable[34]. That is, if all the feature values of

two images are fairly close, then the two images are perceptually similar.

In addition to the above assumptions, we add another conjecture: if two images have

a large distance value in a specific feature space, we cannot determine the perceptual

similarity of them based merely on this feature. Note that this feature space is

37

simply irrelevant to our perception. It does not necessarily decide dissimilarity in

perception.

Different from several well-known CBIR systems, our system does not rely on a

priori feature distributions. These distributions may help to optimize inter-feature

normalization, as in MARS[15], to produce better matching performance. How-

ever, they often introduce overheads and require high computation. Even if feature

distributions are available, they may not lead to appropriate normalization. More

importantly, user perceptions do not necessarily match the feature distributions in

the database. Thus, we try to design our method to be independent of feature dis-

tributions as shown below. The need of normalization is eliminated because of the

way we define distance function.

In summary, our feature weighting and combination principle is: given two user-

input query images, if they are farther apart in a certain feature space, this feature is

less important in deciding the perceptual similarity for this particular query. Suppose

we have a query image set with n samples, Q = {qi | i = 1..n}, and an available

basic feature set F = {Fj | j = 1..m}. Let fij denote the value of feature Fj for

image qi. The normalized distance function for feature Fj is dj(f1j , f2j) = nj ∗

Dj(f1j , f2j), where Dj(f1j , f2j) is the designated distance function for Fj, and nj is

the normalization factor for Fj, which sets the normalized value dj(f1j , f2j) in the

range of [0, 1]. Though nj is an a priori information, we will see that it can be safely

discarded at the end of this section.

To measure the sparseness of a set of feature points, first we assume all the

feature distances satisfy triangular inequality, and there exists at least one hyper-

sphere, inside which all the feature points are located. A hyper-sphere can be defined

by a “pivot” (centroid) and a radius. Among all possible spheres in the Fj space, we

call the smallest one as the bounding sphere, and its radius is defined as the scatter

number of this space.

Based on the above discussion, we define the scatter number (sj) of Q for feature

38

Fj as follows:

sj =



























1, if | Q |= 1 (1)

1
2
dj(q1, q2), if | Q |= 2 (2)

max∀kr
(k)
j , if | Q |≥ 3 (3)

,

where | Q | is the size of set Q.

In condition (1), because we do not have enough information to determine the

scatter of each feature, we simply assign a default value (= 1) to sj. In case (2),

we only have two query samples Q = q1, q2. Thus, the minimal bounding radius

is half of the distance between them. In case (3), we have more than two query

instances, and we can derive the bounding radius using geometry theorems. Let

Q(k) = {q
(k)
1 , q

(k)
2 , q

(k)
3 } be the k-th combination out of the total Cn

3 combinations of

the query set Q, and they satisfy the following criterion:

t
(k)
1 = dj(q

(k)
1 , q

(k)
2)

t
(k)
2 = dj(q

(k)
2 , q

(k)
3)

t
(k)
3 = dj(q

(k)
3 , q

(k)
1)

t
(k)
1 ≥ t

(k)
2 ≥ t

(k)
3

,

Under this condition, there are two sub-cases: one is (t
(k)
1)2 ≥ (t

(k)
2)2 + (t

(k)
3)2, and

the other is (t
(k)
1)2 < (t

(k)
2)2 + (t

(k)
3)2. When the former one occurs, the bounding

radius is r
(k)
j = 1

2
t
(k)
1 ; when the latter one occurs, r

(k)
j is the solution of the two

equations:

(t
(k)
1)2 = (t

(k)
2)2 + (t

(k)
3)2 − 2(t

(k)
2)(t

(k)
3) cos θ

(t
(k)
1)2 = (r

(k)
j)2 + (r

(k)
j)2 − 2(r

(k)
j)(r

(k)
j) cos 2θ

The scatter numbers may be interpreted as an “importance” indicator of that

feature, because a larger bounding sphere means that feature points are spreaded

over a large region. Based on the previously described principles, we give less per-

ception weight to a more scattered feature (Fj):

wj =
1

sj
∗

(

m
∑

k=1

1

sk

)−1

.

39

The distance function (of two images, q1 and q2) combining m features is then defined

as

D(q1, q2) =
m
∑

j=1

wj ∗ dj(f1j , f2j).

Finally, the distance function between image I and n query instances (Q) is defined

by

D(I, Q) = min
i=1..n

D(I, qi).

Note that the normalization factor nj is canceled in every wj ∗dj(f1j , f2j) term. This

implies that we can safely ignore the distance normalization problem as long as all

the feature metrics are bounded.

To test the efficiency of the method, we perform subjective queries against the

image database that will be described in detail in Sec. 3.7.1. Three image global

features defined by MPEG-7[24] are adopted. They are scalable color, color layout,

and edge histogram. Figure 3.4 illustrates how our proposed method improves the

query accuracy. Figure 3.4(a) shows the results when a user specifies one image as

the query example. Since we do not have enough information to weight the features,

we simply assign them equal weights. The top-25 results are listed from left to right

and top to bottom, with the most similar at the top-left corner. The red-boxed

images are the ground-truth images. We may see that three non-ground-truth images

are considered more similar than the ground-truth images. Figure 3.4(b) shows the

results when a user gives two of the ground-truth images as the query examples.

The system derives weighting factors for each feature, and the results are improved.

All the ground-truth images occupy the top ranks, a desired result. Figure 3.5 shows

the two groud-truth sets which occupies top ranks of Fig. 3.4(a). The top-left image

of Fig. 3.5(a) is the query instance, and the second set (Fig. 3.5(b)) interferes the

query results in the condition of Fig. 3.4(a).

40

(a) (b)

Figure 3.4: Subjective result of multi-instance effects.

(a) Ground-truth set I

(b) Ground-truth set II

Figure 3.5: The two interfering groud-truth sets in Fig. 3.4(a).

41

3.4 Negative Instances

In this section, we will describe how to use irrelevant (negative feedback) images

to improve the query accuracy. For a typical QBE search, a user provides a non-

empty set of relevant (positive feedback) images. Suppose we can also ask the user

to select negative (irrelevant) images. In the following proposed scheme, negative

images are not included in computing the perceptual weights. This is due to the

following observations.

1. All positive examples are alike; each negative example is negative in its own

way[33].

2. The human perception of similarity and dissimilarity may not be (linearly)

additive.

3. When an image is considered dissimilar to the query one, we do not know which

features (one or many) dominate in producing the perceptual dissimilarity.

So we use negative images in the following way: they create “holes” in the feature

space. That is, the database images located inside the pruning radius and close to

the negative images are removed from the top-N (similar) list. As shown in Fig. 3.6,

a negative sample is denoted as gi and the positive samples are denoted as p1, p2,

and p3. Essentially, we conduct a pruning process for removing positively correlated

images based on the given negative image(s). Let Qp and Qn are the positive and

the negative image sets respectively. A pruning radius associated with a negative

image gi ∈ Qn is specified by rp(gi) = D(gi, Qp). An image Ir is thus removed from

the top-N list if Ir is located in a pruning region:

∃gi ∈ Qn satisfies











D(Ir, gi) < rp(gi)

D(Ir, Qp) > D(Ir, gi)
.

There are two conditions given in the preceding equation. An intuitive explanation

to the second condition is that if an image is closer to Qn than Qp, it is excluded

42

p
1

p
2

p
3

g
i

Figure 3.6: Pruning area in the combined feature space.

from the top-N list. Since the negative feedback sample set is small and incomplete,

we do not want to exclude the images that are a bit far away from both sets but are

slightly closer to a negative sample. Therefore, the first condition gives a maximum

pruning radius. Thus, our pruning operation starts from the highest priority item

on the top-N list. If an image is closer to Qn than Qp and is located inside the

pruning radius, it is excluded from the top-N list.

Figure 3.7 illustrates the matching results with and without the negative query

instance. Figure 3.7(a) is the query results of using a single positive instance. After

assigning the highest-ranked non-ground-truth image as the negative feedback, the

query results is shown as Fig. 3.7(b). We may see that the query accuracy is im-

proved even when using equal-weighted combined distance function (remember that

only positive instances participate in the weighting estimation).

43

(a) (b)

Figure 3.7: Subjective result of negative instance effects.

3.5 Pseudo Instances

In the case that the number of query images is too small, we use the multi-scale

technique to create pseudo query images. The term “scale” here refers to either

the spatial resolution or the SNR quality. It is based on the conjecture that the

down-sampled or noise-added images are subjectively similar to the original version.

We also observe that a low-level feature often have somewhat different values at

different scales.

An unstable (sensitive) feature in our definition yields a large distance value

among the scaled images derived from the original with different scales. The measure

of instability is again specified by the scatter number sj defined in Sec. 3.3. Stable

features often represent the most noticeable features of an image and they in term

are often the features that the inquiring users desire. Therefore, we come up with

another principle: We give the stable features of a query image more confidence

(more weight) in searching for its similar images. Thus, we include these pseudo

images into the query set. The combined procedure thus puts less weight to more

scattered features, which may be due to either perceptual irrelevance or feature

instability. Two possible pseudo image generation methods are described later in

Sec. 3.7.1. We will see that the pseudo image improves accuracy when the number of

44

(a) (b)

Figure 3.8: Subjective result of pseudo instance effects.

input images is one or two. Hence, the feature stability principle is justified mostly

by observations and experiments.

The effect of pseudo-image generation is illustrated by Fig. 3.8. As before,

Fig. 3.8(a) is the single positive image query. When we enable the multi-scale

pseudo-image generation (one SNR pseudo image in this example), the query re-

turns the desired result, as shown in Fig. 3.8(b). Often, by incorporating pseudo

image concepts, the system gives users the best results at the first query iteration.

3.6 Architecture

The proposed CBIR query system architecture is summarized by Fig. 3.9. The orig-

inal positive query (input) images are used to generate pseudo-images. Together

they form the query set. The query set is fed into the user perception analysis

process to estimate the weighting factors. Then, the query set and the weighting

factors are passed to the image matching process to compute image similarity. A

tentative matching list is thus produced. Then, the pruning process based on the

supplied negative images is applied to the tentative matching list and some “irrele-

vant” images may be removed. At the end, we receive the final top-N list.

45

Negative Image
Pruning

Top−N
Similar Results

Multi−Feature
Matching

Image
Database

Perception Weighting
Estimation

Pseudo
Query Images

Multi−scale
Image GenerationPositive

Negative

Query Images

submit/feedback

present

Figure 3.9: Proposed perception estimation and query system.

46

