第四章 結果與討論

4.1 單體合成部份

4.1.1 螢光單體 C-1 和 C-2

C-1和C-2是屬於OPV(oligo(phenylenevinylene))的衍生物。合成步驟主要 是利用Horner-Emmons-Wadsworth condensation有機合成方法。此兩種單體 的結構兩端分別各有唑(carbazole)及三苯胺(tri-phenyl amine)的電洞傳輸結 構,中間架構則是苯環以醚化的方式聯接長碳鏈雙鍵之官能基。

4.1.2 磷光單體 C-3

有機銥金屬錯合物單體C-3 是利用配位基 2-phenyl pyridine (ppy)與三氯 化銥金屬(IrCl₃)進行金屬環化反應(cyclometalation),形成具有氯橋連接的雙 金屬結構(chloride-bridged dimer)(Fig. 4.1)。此雙體在鹼性的環境下,與具有 長碳鏈雙鍵官能基的乙醯丙酮(acetylacetone)反應,經純化後可得銥金屬 -C^N配化基-乙醯丙酮錯合物C-3。

Fig. 4.1 Synthesis of dimer.

4.2 星狀分子合成部份44

由於選用的 POSS 為具有 8 個 Si-H 官能基的矽氧烷寡聚物,因此所合成出的發光單體皆具有雙鍵,使能與其進行矽氫化(Hydrosilylation)反應。

矽氫化(Hydrosilylation)的反應機構如Fig. 4.2 所示⁴⁵。此反應機構的主要 特徵在於olefins嵌入過渡金屬中形成錯合物,而氫原子會遷移(migration)至 olefins上氫化其雙鍵,接著過渡金屬會脫出,產生新的矽化合物,反應也因 此完成。進行Hydrosilylation反應時,最廣為使用的催化劑為platinum divinyltetramethyldisiloxane[Pt(dvs)],因為其反應所得之產物最純,副產物 較少。

因此,本論文即以 2mM 的[Pt(dvs)],進行 olefins 與 Si-H 的矽氫化反應。 反應後之溶液以活性碳去除催化劑,接著利用再沉澱、管柱層析純化產物, 得 POSS 1~POSS 3 星狀發光材料。

Fig. 4.2 The mechanism of hydrosilylation(Chalk-Harrod's).

4.3 星狀分子的結構鑑定

4.3.1 傅立業紅外光光譜儀鑑定

Fig. 4.3 ~ Fig. 4.5 為POSS-SiH、發光基單體與星狀分子的FTIR光譜。 POSS-SiH的主要特徵峰為 2143 cm⁻¹(Si-H stretching)及 1098 cm⁻¹ (Si-O-Si stretching)⁴³。由 2143 cm⁻¹Si-H峰的消弱,可以觀察Hydrosilylation的反應是 否完全。圖中POSS 1 ~ POSS 3 的 2143 cm⁻¹Si-H峰皆完全消失,表示POSS 上的Si-H皆完全反應。另外,由 1098 cm⁻¹Si-O-Si特徵峰的存在得知,POSS 1~POSS 3 的確含有POSS的結構。

Fig. 4.3 FTIR spectra of POSS,C-1 and POSS 1.

Fig. 4.5 FTIR spectra of POSS,C-3 and POSS 3.

4.3.2¹H-NMR鑑定

POSS-SiH於¹H-NMR有兩個吸收峰,一為Si-H(δ = 4.71 ppm);另一為 Si-CH₃(δ = 0.23 ppm)。附圖 4,8,12 分別為POSS 1 ~ POSS 3 的¹H-NMR光 譜, δ = 4.7 ppm附近皆無訊號,且 δ = 0.2 ppm附近有Si-CH₃的特徵峰,因 此,可以推論POSS 1 ~ POSS 3 化合物中含有POSS結構,且其Si-H官能基完 全反應。另外,雙鍵與Si-H反應生成的Si-CH₂-,其¹H-NMR吸收峰POSS 1 及POSS 2 位於 0.8 ppm, POSS 3 則出現在 0.6 ppm附近。

4.3.3 GPC 量測

GPC 的量測可以得知星狀發光材料之分子量大小及分佈。由於 POSS 1 ~ POSS 3 結構是以 POSS 為中心、發光基團為分支的結構,因此,分子量的量測有助於 POSS 1 ~ POSS 3 的分支數鑑定,進而可以推得星狀分子之立 體結構。

表 4.1 為 POSS 1 ~ POSS 3 之 GPC 數據整理。由 Mn 的大小扣除中心核 POSS 的重量(1017),除以發光基團(C-1 ~ C-3)的分子量,可以求得 POSS 1 ~ POSS 3 的分支數分別為 4.6、7.7 及 6.4。

由此可知, POSS 1、POSS 2、POSS 3 是以 POSS 為中心,外接發光基 團為分支之星狀(star-like)發光材料。

				1 1 1 1 1
 GPC	Mn	Mw	PDI	分支支數
 POSS 1	4140	4290	1.03	4.6
POSS 2	8310	9200	1.10	7.7
POSS 3	5840	7411	1.27	6.4

Table 4.1 星狀發光分子 POSS 1、POSS 2、POSS 3 之分子量及分子量分佈

Mw:重量平均分子量

Mn:數目平均分子量

PDI(polydispersity): Mw/Mn,表示分子量分佈大小

4.4.1 熱重分析儀 TGA(Thermal Gravimetric Analyzer)

Table 4.2 為 POSS 1、POSS 2、POSS 3 熱穩定性(TGA)之整理(如附圖 13,15,17)。比較發光單體與星狀發光分子之 TGA 後發現,發光基團接上 POSS 後,分子的 Td 提升了約 20~90℃。因此,可以推論以矽氧烷為中心 的結構可以增加化合物的熱穩定性。

Table 4.2 發光單體 C-1~C-3 及星狀發光分子 POSS1~POSS 3 之熱重分析結果

5%	C-1	POSS 1	C-2	POSS 2	C-3	POSS 3
Td (⁰ C)	328	384	300	386	314	336

Td:定義為樣品重量損失5%之溫度

Salling .

4.4.2 微差熱分析儀 DSC(Differential Scanning Calorimeter)

Table 4.3 為POSS 1、POSS 2、POSS 3 熱穩定性(DSC)之整理(如附圖 14,16,18)。發光基團聯結上POSS後,Tg提升且變得不明顯。由此可知中心 核POSS的引入,可以降低分子鏈的擾動,進而避免於元件中產生結晶的現 象⁴⁶。

Table 4.3 發光單體 C-1~C-3 及星狀發光分子 POSS 1~POSS 3 之熱分析結果

	C-1	POSS 1	C-2	POSS 2	C-3	POSS 3
$Tg(^{0}C)$	81.2	88.8	85.0	-	43.9	128.4

4.5 光學性質

紫外可見光譜與螢光光譜分析

由於本研究是將發光基聯結於 POSS 中心核形成星狀發光分子,因此, 將利用以下兩種實驗探討聯結 POSS 後對於發光光譜的作用及效應。

4.5.1 溶劑及薄膜的影響

Fig. 4.6 ~ Fig. 4.11 分別為發光基單體與星狀發光分子於不同溶劑及薄 膜下之吸收、放射光譜。其數據整理於 Table 4.4 中。

Table 4.4 發光單體C-1~C-3 及星狀發光分子POSS1~POSS 3 之PL(λ max)

	C-1	POSS 1	C-2	POSS 2	C-3	POSS 3
PL at CH ₂ Cl ₂	464 nm	471 nm	496 nm	495 nm	534 nm	534 nm
PL at toluene	461 nm	468 nm	486 nm	488 nm	535 nm	534 nm
Film	496 nm	496 nm	502 nm	492 nm	539 nm	539 nm

值得注意的是,C-n與POSS n具有相同的發光基團,然而POSS n於 溶液狀態下之 PL-λmax 較 C-n 的紅位移。推測此現象是因為POSS n 中發光 基團因有 POSS 中心核的聯結而拉近了發光基分子間的距離,使得發光基之 間的相互作用增加,所以POSS n 於溶液狀態下產生紅位移。

相反地,於薄膜狀態下,POSS n之 PL- λ max 又較 C-n 的藍位移。這 是由於 POSS n因星狀立體結構的影響使其於薄膜狀態時形成奈米級的分散 (SEM 圖為証, Fig. 4.53 ~ Fig. 4.56),降低了 POSS 發光分子堆疊或構形改 變的可能性,故其於薄膜狀態下之 PL- λ max 較無 POSS 為中心核的 C-n 來 得藍位移。

基於以上兩點,比較同一材料本身於不同媒介之 PL 光譜, POSS n 因 媒介的不同而產生的光譜位移程度皆較 C-n 小。

因此,引入 POSS 此剛硬的結構,可以使發光材料的光色較為穩定,降低因不同媒介的影響而產生的偏移。

43

Fig. 4.6 UV and PL spectra of C-1 in different solution and film states.

Fig. 4.7 UV and PL spectra of POSS 1 in different solution and film states.

Fig.4.8 UV and PL spectra of C-2 in different solution and film states.

Fig.4.9 UV and PL spectra of POSS 2 in different solution and film states.

Fig. 4.10 UV and PL spectra of C-3 in different solution and film states.

Fig. 4.11 UV and PL spectra of POSS 3 in different solution and film states.

4.5.2 迴火(annealing)的影響

元件於電壓的操作環境下,可能會使元件內部的溫度高達 86 ℃以上 47,因此,高溫時是否能維持發光顏色的穩定性,對於材料而言是一重要的 評定因素。因此,此部份是分別將發光基單體C-1~C-3 及含有POSS的星狀 發光分子POSS 1~POSS 3 進行迴火(annealing)實驗。

所用實驗方式係將 C-1 ~ C-3 及 POSS 1 ~ POSS 3 以旋轉塗佈的方式 形成薄膜。於空氣下,先後將薄膜置於 100 ℃、150 ℃及 200 ℃高温烘箱 中,並維持等溫半小時,於每個溫度實驗後測量其 UV 與 PL 光譜。

Fig. 4.12 ~ Fig. 4.17 分別為發光單體與星狀發光分子於 100 ℃、150
℃、200 ℃維持半小時後之 UV-PL 光譜圖。

觀察Fig.4.12 及Fig. 4.13, C-1 於 100℃時, PL的 λ_{max} 已由原來的 496 nm 紅位移到 522 nm, 偏移了 26 nm; 相對地, POSS 1 的PL- λ_{max} 仍維持不變。 當溫度加高至 200 ℃後, C-1 的PL整個偏移了原本的放射範圍, 而POSS 1 雖有偏移, 但仍有一定的穩定度。

C-2 相較於C-1 而言較為穩定,放光範圍沒有大幅度的改變。不過C-2 的shoulder(531 nm)於 100 ℃的迴火下即明顯上升; POSS 2 的PL-λ_{max}於整 個迴火過程中皆維持不變。

C-3 與 C-1 有相似的狀況,於 200 ℃時,PL 放射光譜整個偏移了原本的放射範圍;而 POSS 3 則仍維持一定程度的穩定。

此外,迴火實驗中,發光單體由於成膜性較星狀發光材料差,且變溫過 程中分子構形可能改變,因此 UV 光譜隨著溫度上升而變寬,甚至無法測 得。相較之下,星狀材料由於有較好的熱穩定性及成膜性,所以 UV 光譜 明顯比發光單體穩定。

以上2種實驗結果顯示,星狀分子的結構可以增加材料的成膜性。且由 於含有 POSS 中心核,材料具有良好的熱性質,光色的穩定性也大幅提升。

47

Fig. 3.13 UV and PL spectra of POSS 1 after annealed.

Fig.4.15 UV and PL spectra of POSS 2 after annealed.

Fig. 4.17 UV and PL spectra of POSS 3 after annealed.

4.5.3 PL 量子效率的量测

螢光材料以quinine sulfate做為標準品(Q.Y.=0.546),365nm為激發波長
⁴⁸;磷光材料以Ir(ppy)₂(acac)為標準品(Q.Y.=0.34),460nm為激發波長⁴⁹。代入以下公式即可求得樣品之量子效率(quantum yield,Q.Y.)。

$\Phi_{un} = (I_{sta}/I_{un})(A_{un}/A_{sta})(\eta_{un}/\eta_{sta})^2 \Phi_{sta}$

 Φ_{un} = quantum yield of sample

 Φ_{sta} = quantum yield of standard

I_{sta} = the absorbance of standard

I_{un} = the absorbance of sample

A_{un} = the PL area of sample

A_{sta} = the PL area of standard

 η = the refractive index of the solvent

C-1~C-3 及 POSS 1~POSS 3 的量子效率分別列於 Table 4.5。由表可知,引入 POSS 的星狀發光材料其 Q.Y.皆較發光單體有所提升。

Table 4.5 發光單體 C-1~C-3 及星狀發光分子 POSS1~POSS 3 之 PL 量子效率

	C-1	POSS 1	C-2	POSS 2	C-3	POSS 3
Q.Y.	0.39	0.46	0.31	0.36	0.36	0.58

4.6 電化學性質

循環伏安計量(Cyclic voltammetry)

為了探討發光材料於電激發光過程中,電子和電洞的注入情形,我們 利用循環伏安計量以分析材料之 HOMO 及 LUMO 能帶分布。

實驗方式:

以濃度 0.1 M之TBAPF₆ (tetrabutylammonium hexafluorophosphate)的 acetonitrile溶液為電解質,將待測物溶液塗佈於Pt工作電極上,Ag/Ag⁺為參 考電極。並以ferrocene/ferrocenium(Fe/Fe⁺)為內參考電位,白金絲為導電電 極。量測時以 50 mV/sec的速率掃描記錄其氧化還原曲線。

對於發光材料之電子游離能(Ionization potential, IP)與電子親和力 (Electronic affinity)數據的取得,最簡單的方法就是以CV數據配合 UV-visible光譜之吸收波長數據來計算。一般發光材料IP、EA及能隙(Energy gap, Eg)的標準表示法如下:

| HOMO | = IP = 4.8 + E_{ox,onset}

| LUMO | = EA = 4.8 + E_{red,onset}

$E_g = IP - EA$

其中常數 4.8 為 ferrocence 相對於真空的能量數值

由於高分子材料在量測CV所表現出的還原曲線會因為水或其他物質的 出現而變得非常雜亂,導致材料本身的還原曲線並不明顯,因而無法直接 得到EA值,故對於高分子能隙的取得一般藉由 UV-visible光譜中的最長波 長吸收峰的波長(λonset)來計算:

 $E_g = 1240 / \lambda_{onset}$

其中λonset單位為nm,所得Eg的單位為eV

依據上述方法,將C-1~C-3及POSS1~POSS3經 ferrocene 標準品校 正求得 HOMO、LUMO 數值(Table 4.6)。由此表可知,材料的發光能隙並沒 有因 POSS 的引入而有太大的改變,星狀材料仍能保有原發光基單體的光色 性質。

Table 4.6 發光單體 C-1~C-3 及星狀發光分子 POSS1~POSS 3 之 CV

Fig. 4.18 Energy level of POSS 1~POSS 3

Fig.4.20 Cyclic voltammetry of POSS 1

Fig.4.22 Cyclic voltammetry of POSS 2

Fig.4.24 Cyclic voltammetry of POSS 3