4.8 星狀分子之奈米結構探討

文獻⁵⁵中指出, 籠狀結構的矽氧烷(RSiO_{1.5})₈(T₈)本身具有高結晶 性(crystalline),可以形成大小約為 1.5 nm的六方體系結晶體 ⁵⁶(hexagonal crystal structure,又可視為rhombohedral菱形),內部Si-Si 原子間的直徑約為 0.54 nm。一般取代基為烷基(alkyl)的矽氧烷(T₈), 中心的籠狀結構可視為一個球體,八個角落上的取代基環繞著球體中 心,並使得POSS分子分散在六方平面上形成六方體系結晶體(Fig. 4.51)。

基於 POSS 結構即具有奈米尺寸的特性,本章節將進一步地利用 廣角 X 光繞射儀(Wide Angle X-ray Diffraction, WAXD)及掃描式電子 顯微鏡(Scanning Electron Microscopy, SEM),來分析星狀發光材料 POSS 1~POSS 3 之結晶形態及粒子大小。

Fig. 4.51 Schematic of hexagonally packed POSS molecules

4.8.1 廣角 X 光繞射儀

(Wide Angle X-ray Diffraction , WAXD)

當 X-ray(λ = 1.54 Å)經過結晶性的分子時,對於分子中有規則 排列的晶格平面會產生繞射的現象。經由繞射角(2θ)的大小與強 度,可以分析其晶格的種類及大小。WAXD 的理論基礎為布拉格 (Bragg)定律,公式如下:

 $2d\sin\theta = n\lambda$

其中:

d:繞射晶格平面間距

λ: X-ray 波長(1.54 Å)

ATTILLER,

本研究所採用的POSS其角落上 8 個取代基皆為-OSi(CH₃)₂H。由 Fig. 4.52 WAXD的 2θ可以算出POSS的結晶形態,並將數據整理於 Table 4.13 中。

2θ (deg)	<i>d</i> -spacing(Å)	Hkl	Intensity*		
8.0	11.04	101	VS		
10.7	8.25	110	Μ		
18.7	4.74	113	Μ		
24.2	43.68	312	М		

Table 4.13 POSS之六方體系結晶體⁴

* VS,very strong;M,middle

所求出的面距(*d*-spacing)代入六方晶體之面距公式(式 1),即可求 出 POSS 六方晶體結構之 a = 16.5 Å, c = 17.4 Å。

進一步地,我們將接上發光單體的星狀發光材料 POSS 1~POSS 3 與單純的 POSS 做比較(Fig. 4.52 及 Fig. 4.53)。結果發現,接上有機 發光單體後,其 WAXD 圖譜只有於 7.3 deg 附近有繞射峰,其餘的繞 射峰因有機發光分子的導入而趨向非晶相(amorphous)狀態。此外,星 狀發光材料其第一個繞射峰角度(7.3 deg)明顯較單純 POSS 的繞射峰 (8.0 deg)來得小,根據布拉格定律($2dsin \theta = n \lambda$)可以推知,因為引 入發光基團於 POSS 上,使得 POSS 的結晶面距變大(Table 4.14)。

Table 4.14 星狀分子與POSS之d-spacing比較					
		2θ (deg)	<i>d</i> -spacing(Å)	hkl	
РО	SS	8.0	11.04	101	
POS	SS 1	7.35	12.01	101	
POS	SS 2	7.30	12.09	101	
POS	SS 3	7.30	12.09	101	
		EL	1996		

除了往小角度位移外,繞射峰也有變寬(broader)的跡象,且基準線(baseline)也變得較不平整,這些都是晶格結構大小改變的佐証。另外,晶格排列的紊亂性(disorder)增加或分子結構中取代基結構的不對稱(anisotropic),都是造成繞射峰變寬的因素之一。

即使因引入發光單體而使得中心核 POSS 之晶格結構有些改變, 我們還是可以由 WAXD 看出星狀發光材料因有 POSS 的存在而具有 奈米尺寸的晶格結構。

Fig . 4.53 WAXD from 5 deg to 15 deg

4.8.2 掃描式電子顯微鏡

(Scanning Electron Microscopy , SEM)

掃描式電子顯微鏡是觀察粒子大小、形狀與分佈情形的直接方式。Fig. 4.54 ~ Fig. 4.56 為星狀發光材料之 SEM 圖。圖中顯示 POSS 1
~ POSS 3 為直徑大小約 20 nm 的圓形粒子,且具有均一性的分佈。

由 SEM 得知,星狀發光分子 POSS 1~POSS 3 的確為具發光特性的有機奈米材料。

Fig. 4.54 SEM of POSS 1

Fig . 4.56 SEM of POSS 3