目 錄

百	-10
只	八

審定書		
授權書		
中文摘要		i
英文摘要		iii
謝誌		v
目錄		vii
Scheme 目錄		X
表目錄		xi
圖目錄		xii
附圖目錄		XV
第一章	緒論	1
1.1	有機電激發光元件之基本原理簡介	1
1.2	PLED 元件發光原理及基本結構	3
1.3	有機電激發光機制	3
1.4	對苯二乙烯衍生物於光化學上的應用	5
1.5	磷光元件之發展	6
1.6	奈米粒子之介紹	8
1.6.1	奈米材料的幾何結構	9
1.6.2	奈米材料的特性	10
1.6.3	奈米材料在有機發光二極體元件上的應用	11
第二章	多面體矽氧烷寡聚物	13
2.1	多面體矽氧烷寡聚物(POSS)材料的發展起源	13
2.2	多面體矽氧烷寡聚物(POSS)材料的定義	13
2.3	多面體矽氧烷寡聚物(POSS)於 OLED 之應用	15
2.3.1	OLED 製程中真空蒸鍍與旋轉塗佈之比較	15
2.3.2	OLED 材料設計的考慮因素	16
2.3.3	多面體矽氧烷寡聚物(POSS)於 OLED 之優勢	17
2.4	研究動機	18
第三章	實驗部份	19
3.1	試藥	19
3.2	測試儀器	19
3.2.1	核磁共振光譜儀(Nuclear Magnetic Resonance, NMR)	19

3.2.2	微差掃描卡計(Differential Scanning Calorimeter, DSC)	19
3.2.3	熱重分析儀(Thermal Gravimetric Analyzer, TGA)	19
3.2.4	傅立業紅外光光譜儀	
	(Fourier Transform Infrared Spectroscopy, FTIR)	20
3.2.5	凝膠滲透層析儀(Gel Permeation Chromatography, GPC)…	20
3.2.6	紫外線與可見光譜儀 (UV-Vis Spectrophotometer)	20
3.2.7	螢光光譜儀(Luminescence Spectrophotometer)	20
3.2.8	循環伏安計量儀(Cyclic Voltammetry, CV)	20
3.2.9	OLED 元件性質的量測······	21
3.2.10	掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)…	21
3.2.11	廣角 X 光繞射儀(Wide Angle X-ray Diffraction, WAXD)…	21
3.2.12	薄膜測厚儀(surface profile, α-step)	21
3.3	合成部分	22
3.3.1	發光單體 C-1~C-3 的合成	22
3.3.2	星狀分子 POSS 1 ~ POSS 3 的合成	30
第四章	結果與討論	37
4.1	單體合成部份	37
4.1.1	螢光單體 C-1 和 C-2	37
4.1.2	磷光單體 C-3	37
4.2	星狀分子合成部份	38
4.3	星狀分子的結構鑑定	39
4.3.1	傅立業紅外光光譜儀鑑定	39
4.3.2	¹ H-NMR鑑定······	41
4.3.3	GPC 量測	41
4.4	熱性質分析	42
4.4.1	熱重分析儀 TGA(Thermal Gravimetric Analyzer)	42
4.4.2	微差熱分析儀 DSC(Differential Scanning Calorimeter)	42
4.5	光學性質	42
4.5.1	溶劑及薄膜的影響	43
4.5.2	退火(annealing)的影響	47
4.5.3	PL 量子效率的量测	51
4.6	電化學性質	52
4.7	有機發光二極體元件製作與光電性質量測	57
4.7.1	ITO pattern 的製作	57
4.7.2	高分子發光元件的結構	58
4.7.3	螢光高分子發光元件的結構與光電性質(POSS)	59
4.7.4	磷光高分子發光元件的結構與光電性質(POSS)	68
4.8	星狀分子之奈米結構探討	77

4.8.1	廣角 X 光繞射儀	78
4.8.2	掃描式電子顯微鏡	81
第五章	結論	83
第六章	參考文獻	85

Schemes 目 錄

32
33
34
35
36

•

表目錄

Table 1.1	奈米粒子中所含的原子數以及表面原子所佔的比例(%)	11
Table 4.1	POSS 1、POSS 2、POSS 3 之分子量及分子量分佈	41
Table 4.2	發光單體 C-1 ~ C-3 及星狀發光分子 POSS1 ~ POSS 3 之熱	
	重分析結果	42
Table 4.3	發光單體 C-1~C-3 及星狀發光分子 POSS 1~POSS 3 之熱	
	分析結果	42
Table 4.4	發光單體C-1 ~ C-3 及星狀發光分子POSS1 ~ POSS 3 之PL	
	(λ_{max})	43
Table 4.5	發光單體 C-1~C-3 及星狀發光分子 POSS1~POSS 3 之 PL	
	量子效率	51
Table 4.6	發光單體C-1~C-3及星狀發光分子POSS1~POSS3之CV	53
Table 4.7	POSS 1 與 POSS 2 於 Device I、Device II 的元件性質	60
Table 4.8	螢光星狀分子與發光單體於 Device II 結構的元件性質比較	60
Table 4.9	POSS 3 於不同濃度及比例下的元件性質比較	68
Table 4.10	磷光星狀分子與發光單體於 Device I 結構的元件性質比較	69
Table 4.11	POSS 3:CBP 於不同陰極結構的元件性質比較	69
Table 4.12	POSS 3:CBP 於不同 TPBI%下之元件性質比較	70
Table 4.13	POSS 之六方體系結晶體······	78
Table 4.14	星狀分子與 POSS 之 d-spacing 比較	79
	A A A A A A A A A A A A A A A A A A A	

圖目錄

Fig. 1.1	1987 年 Kodak 公司的 device	1
Fig. 1.2	單層三明治結構的 PLED ······	2
Fig. 1.3	激發分子的釋能機制	5
Fig. 1.4	材料的維度(dimension):(a)零維、(b)一維、(c)二維 奈米材	
	料	9
Fig. 1.5	金屬與半導體之塊材及奈米材料的能帶結構圖	10
Fig. 2.1	Structures of sisesquioxanes	14
Fig. 2.2	The structure of T ₈	15
Fig. 4.1	Synthesis of dimmer	37
Fig. 4.2	The mechanism of hydrosilylation(Chalk-Harrod's)	38
Fig. 4.3	FTIR spectra of POSS,C-1 and POSS 1	39
Fig. 4.4	FTIR spectra of POSS,C-2 and POSS 2······	40
Fig. 4.5	FTIR spectra of POSS,C-3 and POSS 3······	40
Fig. 4.6	UV and PL of C-1 in different solution and film states	44
Fig. 4.7	UV and PL of POSS 1 in different solution and film states	44
Fig. 4.8	UV and PL of C-2 in different solution and film states	45
Fig. 4.9	UV and PL of POSS 2 in different solution and film states	45
Fig. 4.10	UV and PL of C-3 in different solution and film states	46
Fig. 4.11	UV and PL of POSS 3 in different solution and film states	46
Fig. 4.12	UV and PL of C-1 after annealed	48
Fig. 4.13	UV and PL of POSS 1 after annealed	48
Fig. 4.14	UV and PL of C-2 after annealed	49
Fig. 4.15	UV and PL of POSS 2 after annealed	49
Fig. 4.16	UV and PL of C-3 after annealed	50
Fig. 4.17	UV and PL of POSS 3 after annealed	50
Fig. 4.18	Energy level of POSS 1~POSS 3······	53
Fig. 4.19	CV of C-1·····	54
Fig. 4.20	CV of POSS 1	54
Fig. 4.21	CV of C-3·····	55
Fig. 4.22	CV of POSS 2	55
Fig. 4.23	CV of C-3·····	56
Fig. 4.24	CV of POSS 3	56
Fig. 4.25	L-V-Yield curve for the device ITO/PEDOT/POSS 1/Ca/Al····	61
Fig. 4.26	L-V-Yield curve for the device ITO/PEDOT/POSS 2/Ca/Al····	61
Fig. 4.27	L-V curve for the device ITO/PEDOT/POSS 1:PVK:PBD/	

	Ca/Al with different contents of PBD	62
Fig. 4.28	Yield-V curve for the device ITO/PEDOT/POSS 1:PVK:PBD/	
-	Ca/Al with different contents of PBD	62
Fig. 4.29	L-V curve for the device ITO/PEDOT/POSS 2:PVK:PBD/	
	Ca/Al with different contents of PBD	63
Fig. 4.30	Yield-V curve for the device ITO/PEDOT/POSS 2:PVK:PBD/	
	Ca/Al with different contents of PBD	63
Fig. 4.31	L-V curve for the device C-1 and POSS 1	64
Fig. 4.32	Yield-V curve for the device C-1 and POSS 1	64
Fig. 4.33	EL curve of C-1 at different V·····	65
Fig. 4.34	EL curve of POSS 1 at different V·····	65
Fig. 4.35	L-V curve for the device C-2 and POSS 2	66
Fig. 4.36	Yield-V curve for the device C-2 and POSS 2······	66
Fig. 4.37	EL curve of C-2 at different V·····	67
Fig. 4.38	EL curve of POSS 2 at different V······	67
Fig. 4.39	L-V curve for the device ITO/PEDOT/POSS 3:CBP/Ca/Al	
\mathcal{O}^{*}	with different concentration and wt%	71
Fig. 4.40	Yield-V curve for the device ITO/PEDOT/POSS 3:CBP/Ca/Al	
C	with different concentration and wt%	71
Fig. 4.41	L-V curve for the device ITO/PEDOT/POSS 3:CBP/Ca/Al	
-	with different concentration	72
Fig. 4.42	Yield-V curve for the device ITO/PEDOT/POSS 3:CBP/Ca/Al	
	with different concentration	72
Fig. 4.43	L-V curve for the device C-3 and POSS 3	73
Fig. 4.44	Yield-V curve for the device C-3 and POSS 3	73
Fig. 4.45	L-V curve for the device ITO/PEDOT/POSS 3:CBP:TPBI/	
	Cathode with different cathodes	74
Fig. 4.46	Yield-V curve for the device ITO/PEDOT/POSS 3:CBP:TPBI/	
	Cathode with different cathodes	74
Fig. 4.47	L-V curve for the device ITO/PEDOT/POSS 3:CBP:TPBI/	
	Cathode with different TPBI wt%	75
Fig. 4.48	Yield-V curve for the device ITO/PEDOT/POSS 3:CBP:TPBI/	
	Cathode with different TPBIwt %	75
Fig. 4.49	L-V curve for the device ITO/PEDOT/POSS 3:CBP:TPBI/	
	Cathode with different TPBI wt%	76
Fig. 4.50	Yield-V curve for the device ITO/PEDOT/POSS 3:CBP:TPBI/	
	Cathode with different TPBIwt %	76
F1g. 4.51	Schematic of hexagonally packed POSS molecules	77
Fig. 4.52	WAXD of POSS and POSS 1 ~ POSS 3······	80

Fig. 4.53	WAXD from 5 deg to 15 deg	80
Fig. 4.54	SEM of POSS 1·····	81
Fig. 4.55	SEM of POSS 2·····	82
Fig. 4.56	SEM of POSS 3	82

附圖目錄

附圖	1	¹ H-NMR of C-1	88
附圖	2	¹³ C-NMR of C-1·····	89
附圖	3	Mass spectrum of C-1·····	90
附圖	4	¹ H-NMR of POSS 1	91
附圖	5	¹ H-NMR of C-1	92
附圖	6	¹³ C-NMR of C-1·····	93
附圖	7	Mass spectrum of C-1·····	94
附圖	8	¹ H-NMR of POSS 1	95
附圖	9	¹ H-NMR of C-1	96
附圖	10	¹³ C-NMR of C-1·····	97
附圖	11	Mass spectrum of C-1·····	98
附圖	12	¹ H-NMR of POSS 1	99
附圖	13	TGA of C-1 and POSS 1·····	100
附圖	14	DSC of C-1 and POSS 1	100
附圖	15	TGA of C-2 and POSS 2·····	101
附圖	16	DSC of C-2 and POSS 2·····	101
附圖	17	TGA of C-3 and POSS 3······	102
附圖	18	DSC of C-3 and POSS 3	102
		ETHIN CONTRACTOR	