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Adaptive AR Modeling in White Gaussian Noise

Wen-Rong Wu and Po-Cheng Chen

Abstract—Autoregressive (AR) modeling is widely used in the Wiener solution. In this paper, we approach the problem
signal processing. The coefficients of an AR model can be easilypy extending works of Vijayaret al. [10]-[11], in which
obtained with a least mean square (LMS) prediction error filter. they proposed a nonlinear prediction error filter to suppress

However, it is known that this filter gives a biased solution when th band interf in direct DS d
the input signal is corrupted by white Gaussian noise. Treichler € Narrowband interference in direct-sequence (DS) sprea

suggested they-LMS algorithm to remedy this problem and SPectrum systems. The nonlinearity of the filter is due to the
proved that the mean weight vector can converge to the Wiener non-Gaussian (binary) spread signal. Using simulation results,

solution. In this paper, we develop a new algorithm that extends \jjayan et al. showed that the nonlinear filter is superior to a
works of Vijayan et al. for adaptive AR modeling in the presence |inear one. Recently, this filter was used by Kim and Efron

of white Gaussian noise. By theoretical analysis, we show that the 121 f bust i | ise filteri F -
performance of the new algorithm is superior to they-LMS filter. [12] for robust impulse noise filtering. For convenience, we

Simulations are also provided to support our theoretical results. called the prediction error filter the-LMS filter, where p(:)
is the nonlinear function used in [10].

I. INTRODUCTION Our contribution can be divided into two parts. First, we

i hni h Ul derive the second-order statistic of thelL MS filter, which
HE AR modeling technique has been successfully usgd ¢en ysed to measure the performance of an adaptive

in wide range of applications such as speech analy$igrithm. This result was not shown in [9]. Second, we use
[1], [2], spectrum estimation [3], [4], and noise cancellatiofgtimation theory to derive the-LMS filter and apply it to

[5]. Given a random signal, the main task of this teChniqL{ﬂe AR modeling problem. Specifically, we developed a linear

is to find the optimal AR coefficients that minimize a meanﬁ-LMS filter for signals corrupted by white Gaussian noise.

square error (MSE) criterion. When second-order statistics gl gerived the first- and second-order statistics of the linear
the _S|gnal are known, optimal c_oefﬂments can be obtalne_d BYLMS filter to show that it performs better than theLMS
solving the Wiener—Hopf equations. However, these stalistigg.; This paper is organized as follows. Section Il states
are not aIvyays avallable. In reall appllcau.ons. A COMMARe pias effect in the LMS prediction error filter caused by
alternative IS to use gd'aptlve fllte.rlng.technlques. ! white Gaussian noise. In Section lll, we describe theMS

The adaptive prediction ervor filter is an all-zero filter thafye, ang derive second-order statistics. In Section IV, we
adaptively adjusts its weights to flatten the spectrum of the,ejon the generad-LMS filter. Specifically, we focus on
output signal. Such filters start from initial conditions th linear one and derive its first- and second-order statistics. In

contain no desired information and then update their filt@{y tion v/ we report simulation results and draw conclusions
weights based on a sequence of input data. For stationary;in-gaction Vi

puts, it has been shown that with a proper algorithm, the mean

weight vector of adaptive prediction error filters will converge

to optimal AR coefficients (Wiener solutions) [6]. Commonly Il. THE LMS PREDICTION ERROR FILTER IN WHITE NOISE
used adaptive algorithms include the recursive least-squared, signal z;, modeled as ath-order AR process can be
(RLS) and least-mean-square (LMS) [7]. Although the RL8xpressed as

algorithm may give a rapid convergence, its computational

complexity is high. Thus, the LMS algorithm is preferred in P
many real-word applications. Tk = Zwﬂ?k—j + dy. 1
In practice, the input signal often contains white Gaussian J=1

noise. Thus, the signal spectrum will become flatter than tuﬁﬁeredk is the prediction error, aneb,, w, w, are AR

original [8]. The LMS prediction error filter, in trying to flatten C10§ffi0ient5. It has been shown thapifs large enoughd is

the d|stortetcri]_sp§ctrul;n, tkhe_P C_OT]\I/erggs toa b|af[szd Eg\l/ljts'on'a hite sequence [6]. The main task of AR modeling is to find
overcome this drawback, Treichler [3] suggested 4 optimal AR coefficients that minimize the mean square value

filter and showed that the mean weight vector can converge {p,o prediction error. LeK, = [z4_; zx— -+ 2" be
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z Ty Ti- Ty wherel is ap x p identity matrix. Thus, the steady-state MSD
S sty e ) Y prp ey Y

1
Moo ~ Qup‘]min- (12)

wa/ w@/____ }kj( In most applications, the signal to be modeled contains white

Gaussian noise. White noise tends to flatten the signal and

Cz\fk o distort the correlation function. If; is contaminated by white
Gaussian noise; with zero mean and varianeg, the input

to the prediction error filter, which is denoted as becomes

2k = Xk + V. (13)

Fig. 1. LMS prediction error filter. Let Z; = [Zk—l Zh—g e Zk—p]T be the noisy input vector.
Equation (3) now becomes

The LMS prediction error filter, which is illustrated in

Fig. 1, can be used to adaptively estimate the optimal AR Wit1 = Wi + pZey, (14)
coefficients. The weight-update equation is given as follows:
where
Wit = Wi + pXpep 3) .
=z, — Z;, Wy 15

where ep = 2k — Zy Wy (15)

cn = Ty — Th (4) s the prediction error based on noisy inputs. Deffiie =
' o E{Z}ZI'Y = R + 02] and P, = E{z.Z;} = P. From (14),
is the prediction error, and we find that the mean weight vector converges to

T = XEWy 5 _

TS ®) W.=R;'P. = (R+02)'P. (16)

is the prediction ofz;,. The step sizg: in (3) determines the
rate of convergence and stability of the weights. It has be€@®mparing (16) with (2), it is clear that the optimal solution
shown [7] that whery is chosen properly, the mean weighis biased. This bias is due to the extra terms in the diagonal
vector will converge to the Wiener solution. W, = W*, z,  of the correlation matrix ofZ;.
is the optimal prediction af, and the minimum mean-square
error (MMSE) will be

Jnlin:E{(xk_X}?W*)Q} :O'JQC—PTW* (6)

lll. THE v-LMS FILTER

9 . A. Formulation and Mean Convergence
where oz is the variance ofcy.

Define the weight-error vectas, and its correlation matrix ~ 10 Solve the bias problem, Treichler suggestedHeMS
K, as algorithm [9], which is described as follows:

e =Wi—W*=[er1 e - eplt (7) Wit1 = YWk + pnZyel. (17)

and If o2 is known and

T
Kk E{ekek } (8) v = 14 uo_g (18)
The excess MSE is given by
ex 2 . E{W}} will converge to W*. This can easily be shown.
i = Bl } = Jumin = U(RKL) ©) T;king}the expectation from (17), we have
where tf-) denotes the trace operation. To measure the per-
formance of the LMS algorithm, the mean-square weight —E{Wit1} = E{Wi} + pE{ (o} — Za Z{) Wi }
difference (MSD) [13], which is defined as follows, is fre- + pE{z 2} (29)
quently used.
Let W, and Z; be independent. ThenE{Z,Z}'W;} =

p
My, = E{Zéfz} = tr(E{erel }) = tr(Ky). (10) E{ZZFYE{W}}. In the steady state, (19) becomes
=1

_ _ 2" lp _ p-1
In the steady state, the correlation matrix of weight-error vector E{Wi} = (R. —oul) "P.=R"'F (20)

K}, can be approximated by [7] which is the Wiener solution. Apparently, theLMS algo-

(11) rithm utilizes the noise variance? to cancel the extra terms

1
Koo ~ oo Jmin-[ . . . .
e in the diagonal of the correlation matrix ¢fy.



1186 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 5, MAY 1997

B. The Second-Order Statistics By = {Bri;} = E{ Zym2n Z{ }

In [9], Treichler did not provide the second-order statistics = {E{zr—izkznzr—j}}
for 4-LMS. Here, we derive them in detail. First, (17) can be = {2F{z,_ ;2. Y E{zizn—; }} + {E{z—izn—; YE{ e 21 }}

rewritten in terms of weight-error vectors —op.PT 4 R.o% —2PPT + R. (02 +02) (26)
€nt1 = [L+ p(oll — Z1Z}) ] e and
+ u[Zkzk + (O’EI - ZkZ;?) W*] . (22) Cp = {Ck,ij} — E{ZkaW*TZkZE}
b
Thus, the correlation matrix of the weight-error vec#df, _ El o ot 21z -
can be evaluated by {; {er—szpy 7k_l7k_’}}
T b
K1 = E{€k+1€k+l} =< E{z_iz} Z w}kE{zk_lzk_j}
=E{[I+ u(aff — ZkZE)]ekef =1
2 T b
x [(I+pl(oll = ZpZL)] } + {E{Zkzk—j} ZWTE{Zk—iZk—z}}
+ 12 B{[Zia + (o2 - 220) W]
x [ ZE + W (021 — 2, Z5) L. (22) p
[ hk ( hk )] } + E{zk_izk_j} Z w}kE{zkzk_l}
=1

Substituting (2) into (22), we have
=PW*TR. + RW*PT + RW*TP,

Ky =(I+ 2u02 + pioy) Ky = PW*T R+ RW*PT 4+ o2(PW*T 4+ W*PT)
— (n+ 1200) (K R. + R Ky) — oy W W +RWTP, (27)
+ qu{Zka ei‘;{ZkZ:F’%F} + W E{ZxaaZi } Substituting (2) into (27), we have
- “2E {Z’“Z’“f/ ) Z’“ZT’“ } Cp = 2PPT + o2 (PW*T + W*PT) + R.W*TP.  (28)
— WPE{Z LW 2 Z } .
n NQE{ZkZEW*W*TZkZE}. 23) Note thatD;, is equal to the transpose 6f;

Dk = {Dkﬂj} = E{ZkZ{W*7ka } Ck
Equation (23) involves fourth-order moments of the input —2PPT 4 2(PW*T + W*PT) + R.W*TP,  (29)
signal. These high-order moments can be evaluated by using Y - '
the Gaussian moment factoring theorem. ketao, a3, and Fj can be obtained by a procedure similar to (25).

a4 denote four samples of a real Gaussian process with zero I 7 EL 2. ZEWW T 2, 71
mean. The Gaussian moment factoring theorem states that = i} = {2y WW 22, )
=2R.W*W*'R. + R.tr(R.W*W*T)

Elaiazazas} = Elaiaz }E{aszas} + E{aias} E{azas} =2(R+o;[)W*W*T(R+a}1)
+ F{aya4}E{azas}. (24) + Rtr[(R+ o2)W*WT]. (30)

Denote the five expectation terms in (23).48, By, Cx, Dy, Substituting (2) into (30) and noting that(W*W**) =
and Fj,. Assumingz;, is a Gaussian process, invoking théV* ' W*, we can rewritel';, as follows:

fundamental assumption [6], and using (24), we have F, = 2PPT 4 252 (PW*T L wrpT 4 O_VQ.W*W*T)
Ay = {Ak iy = E{Z% 2  enel 2,28 + R (WP 4 o2W W), (31)
L Finally, substituting (25), (26), (28), (29), and (31) into (23),
Z Z E{zk—izk—teriehmzk—m2—j} we obtain the time evolution of the correlation matrix of the
=1 m=1

weight-error vector

E{Zk—izk—lzk—mzk—j}E{ék,lék,m}} K1 = (1+ 2u0? + pPoy) Ky
— (u+p?0}) (KxR. + R.K}) + 20* R Ky R

Il =
i Mv
MR

1m

+ 1 RoAr(R.Ky) + p? R+ plotWrwT

E{zk_izk_l}E{zk_mzk_j}E{ekylek m min
(32)

M@
M@

N
Il
=
3
3
Il
=

+

and is defined as

o~

M’U
1} M%

{ 1m
i = {(Zk—Z;ZFW*)Q}
E 2 E . E nl min
{Zr—izp— J};; {Z—12h—m } {6k16k —aw—W*TP-i-UEW*TW* _‘_05

= 2R.KiR. + R.tr(R.Ky) (25) = Juin + C2WTW* 4+ 52, (33)

E{zuizte—m YE{zh—171— YE{er160m } WhereJn”m1 is the MSE yielded by usingV* on noisy inputs
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To simplify (32), we can rotate coordinates df;. The IV. THE p-LMS FILTER
particular coordinate rotation is described by

T A. Formulation
Q" RQ=A (34) :
From (14) and (15), we know that the weight vector of
where A = diag([\; A2 --- A,]) is a diagonal matrix the LMS filter is adapted by the noisy input vectdy, and
consisting of the eigenvalues of the correlation matfx the prediction error based af, ¢;;. This causes the weight
and @ is the unitary matrix consisting of the eigenvectorgector to converge to a biased solution. To reduce the effect of
associated with these eigenvalues. Note tfdtQ = I. noise, we can first estimate the noise-free inpytand noise-
Furthermore, let free prediction erroe;, and then use the estimates in the LMS
algorithm. Since the estimates of ande; will contain less
QT KQ = Sy (35) noise, the LMS algorithm will give better performance.

Given an observation sequenZé = {z; zo --- 2}, the

Using the transformation described by (34) and (35), We C3ftimal estimate of:;, based on the observation upkds the
rewrite the recursive equation (32) as follows: conditional mean of:;,, which is

Sk = (14 2p07 + pP0y) Si & = E{a| 2} (42)
_ 2 2 2 2 21y2
2gu+ H f;u) (1::(%])251&‘ + 2’“; (Aj 0. 1) Si From Bayes' law and (13), tha posteriordensity function
+ 12 (A + 020 P+ 12 (A + 02D T p(zx | Z*) can be expanded as follows:
+ /JQO'ZL.QTW*W*TQ (36)

p(or, 2 | Z571)
pla | Z2%1)

U = w(RK) = w[(A+021)S,]. (37) _ pleal 277 p(e | o) (43)
p(an | ZF-1).

The densityp(z; | zx) can be determined by(v;) and

X Zk = |z Zk_l =
where J;** is defined as plexl 2°) = plar| 2 )

Let h;,i = 1,2,...,p denote the diagonal term ap? W+
w*T'Q and sk, the diagonal term oby. Then

Sk+1,i = Sk,i — 2N)\i3k,i + u2 [2()\2 + UE)AZSkﬂ + O':L.Sk’i p(Zk | Zk_l) = /p(zk |-77k7 Zk_l)p(xk | Zk_l)dxk
+ N+ o) T+ (N +02) T ]+ pPoth. 4
( ) k ( ) ] (38) = /p(a:k | Zk_l)p(zk | 1) dxy,. (44)

In the steady state, (38) can be further simplified. If th¥ote that without making any assumptions, the recursive
step size is smallj"** is much smaller than/?. . Thus, estimate ofz; is almost impossible. As in [14], we assume

¢ min"* k—1\ : -
(A + 02)J7° can be ignored in comparison with; + thatp(zx|2"7) is Gaussian. Define

O—'g)‘]n"qin' From (37), we nqte thaf,:”ex = Ele()\J—FO’%)Sk’J [ = E{.’L’k | Zk—l} (45)
Therefore,(\; 4+ ¢2)J,"* is larger tharo sy ;. This implies
that aﬁskﬂ‘ can be ignored. Moreover and

2(\i + 02) Niski < 2(\i + 02) T, (39) ne = = p, 0y, = E{ni}. (46)

The equality holds only when the signal is a first-order A has been shown [14] that the conditional mean:pfcan
process. Thu2(\; + o2)\;s;.; can also be ignored. Finally, be written as
we have the steady statg ; as follows:

Ty =+ op g(z) (47)
1 o2\ 1 oth; : : b1y
Soo,i A 5 H 1+ " iin T SLavar (40) whereg(zy) is the score function of(z, | Z*~ 1), i.e.,
z z Ip(zp | ZFL —
Therefore, the steady-state MSD becomes g(z) = —%}g) [p(z1| Z2F71)] t (48)
Moo = tr(K o) = tr(Sao) = EP:S ‘ However, without the signal model, we cannot fipg and
= = e o2 . For the time being, we assume théf, ~ W* and
k—1 k—i c_
1 1, . E{rp—i| 2"} ~ E{op—i|Z2"'} for @ = 1,...,p. Let
RSP i + 5o (R ) Kp = [fr_1 &r—2 -+~ Zx_p|- From (45), we have
1 -
+ 5,w;%tr(R—lw*W*T). (41) = E{XFW* +dy| 2}

) ) ) :E{[ajk_l|Zk_1,$k_2|Zk_1,...,$k_p|Zk_l]}W*
Equation (41) shows that the MSD is affected by the noise _ - .
. . . . . NE{[x |Zk laj |Zk 2 z |Zk p]}W
variance and optimal weights. When the noise power increases, ~ = Ll*k=1 »Pk—2 v kep k
the MSD of they-LMS algorithm will also increase. = XI'Wy =5 (49)
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B. Thep-LMS Filter for White Gaussian Noise
The density function of Gaussian noisg with variances2
is given by

L 2
p(vr) = Noz2 () = (2r02) "% exp {—21;’“2 } (59)

v

Thus, from (44), we can expregéz; | Z¥~1) as

p(Zk | Zk—l) = N‘Tgk'i’c'% (Zk - .%k)

_ 2 oo E o ) (e = )
= [27r(a§k —l—a,v)] exp{ 2(0§k n 03) }

Fig. 2. p-LMS prediction error filter.

(60)
In (49), we have used the property thét is white noise From (48), the score function of (60) is found to be
and independent oZ*~1. Thus, ;. is the prediction based 2 — &
on X; and W;. We can also approximaig?, using the the 9(z) = W' (61)
ke v

conditional prediction error varianczﬁgk in which ] ) o ) )
Thus, the estimate of the noise-free prediction error in (55) is

&e=ar— o, of =E{&} (50) o}
. pler) = 5k2—k2 (62)
Thus, (47) can be written as follows: og, t o5

(51) It is not surprising that the filter function is linear since the

~ o 2
T =Tt o0 2k ) . . . . .
5’“9( ) noise is Gaussian. Define the filter gain as

Next, we consider the optimal estimate «@f. 0,52
f
, 4 ‘ ok G = 35— 5 (63)
ér = E{er | 2"}y = E{x | 2"} — E{z| Z*} o} +o?
=3 — E{fk | Z’“}. (52) We can rewrite (56) and (57) as
Since it is difficult to obtainE{z, | Z*}, we usez,, to replace = Ty + gren X (64)
it. From (51) and (52), we have Wiy = Wi + pgr Xyek. (65)
P A 2
ek A~ Bk — T = 05, 9(2). (3) c. The Convergence Analysis
Define the noisy prediction errarn, as From (63) and (64), we find thak} is nonstationary; it
R is, therefore, difficult to analyze the transient behavior of the
€k =2k = Tk = &+ Uk (54) p-LMS algorithm. In what follows, we will concentrate on

analyzing the steady-state behavior of }&MS algorithm.
In the steady state, we assume thaapproaches a stationary
ér ~ agkg(sk + 1) = pler)- (55) white process with a constant variangg. This implies that
gx, Which is denoted ag, is constant. From (4), (54), and

The functionp(-) can be seen as the filtering operation ofs4) X, ande), can be written as follows:
noisy prediction errog;. Substituting (55) into (51), we have

Equation (53) can be rewritten as a functionzgf

o X=X - (1= 9)=k + gV (66)

T = T + plen)- (56) ex =cr + (1= Q)=Zf Wy, — gVI Wy + o (67)

Utilizing 2y, as the input to the LMS prediction error filterwhere =), = [¢_1 &2 --- p)t and Vi = [vr—1
andp(ey) as the error signal to adjust filter weights, we obtaip, , ... vg_p]T. Thus, the term of;.x can be expanded to

the weight-update equation for thelLMS filter as follows: N _
Xier = Xper — (1 — g)Exer + gVier

Wit1 = Wi + uXpp(er). (57) +(1- )Xk ZEWy, — (1 — 9)2=x=E W
For comparison, we list the weight-update equation for the +9(1 — OVAER Wi, — g X VT Wi
conventional LMS filter below. +9(1 = 9)ERVIEWy, — 2ViVE W)
W1 = Wi + 1Zscl! (58) + Xpvr — (1 = 9)Zxvr + gVivr. (68)

To make the analysis mathematically tractable, we make the

The p-LMS algorithm replaces the noisy inpuf, with Zy, following assumptions:

which is an estimate of the noise-free input and the o _
prediction error based on noisy inpufs with p(e;.), which is ) Wi is independent of\;, Zx, and V.
an estimate of the noise-free prediction erepr The structure ~ 2) = IS independent o, and Vj.

of the p-LMS filter is illustrated in Fig. 2. 3) ¢ is independent of.
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Note that this is an extension of the fundamental assumptiorvitnere 2y = E{ka(,’{}. The third term on the right-
the analysis of the conventional LMS algorithm [6]. Applyinchand side of (77) can be expanded by the Gaussian moment
Assumptions 1 and 2, we can write the expectation of (68) &ctoring theorem. From (25), we have

N _r o o
E{Xyer} = E{Xyer} + (1 - 9) E{ Xy }E{W} E{X X erel X3 X} = 2R Ky Ry + Rytr(Ry Ky).
— (1 - 9?02 E{Wy,} — g*o, BE{W}}. (69) (78)
Substitute (78) into (77). We obtain
F{X3Z}} can be evaluated using the relatiop = Zj, + &

and Assumption 3. Then, (69) is reduced to Kiy1 = Ky — w(K Ry + R Ky) + 2MQRXKkRX
E{Xpex} = E{Xper} + [(1 - g)o? + WP Rgte(Re Ky) + i Ry I, (79)
— (1-g)%0% — g0} | E{W,}
whereJ/. = E{e2,}. We can findJ?. by using (76) and

= B{Xuar} +9[(1 = 9)oF = god) B{WL). (70) pa®min = FlE0n) win DY 05109 (76)
Using the relationy = 0?/(0?+0?), we find(1—g)o? —go? =
0. Thus, we have €ok = Cop T (L= QELW* =gV W* + v (80)

E{Xyper} = E{Xrer}. (71)  wheree, ;, = 3, — X} W*. Squaring both sides of (80) and

) taking expectation of the result, we have
The expectation of (65) now becomes

N fo . N2 2y T A 2 2y7+T a7+ 2
E{Wis1} = E{Wi} + ugB{Xye1} ain = Jmin+ (1= 9)"og W W +g" 0, W W 0y, -
= E{Wi} + ngB{Xxer}. (72) Using the relation(1 — g)o? = go?, we can rewrite (81) as
Note that (72) is simply the recursive equation for the mean ;
weight vector of the conventional LMS algorithm (with noise- Jihin = Jmin + goiWTW* + 62, (82)

free inputx; and step sizeug). Thus, we can say that the

mean weight vector of the-LMS algorithm converges to the  Similar to the derivation of the MSD of the-LMS algo-

Wiener solutionR~! P. The stability condition for the step rithm in (32), we can rotate the coordinates ¥ such that

size is then Ry becomes diagonal. Lef;, ; be the diagonal term ok
after rotation. From (79), the equation for updatisg; can

(73) Dbe written as

O<pu<
u g)‘ma.x

2 2
. . . Skali = Sk.i — 210G;Sk; + 207 Sge s
where A,.x is the maximum eigenvalue @&. Rl = ki T SHQG Sk, T SO Sksd

In the rest of this subsection, we will consider the MSD of + il I+ P d ], (83)
the p-LMS filter. In the steady state, the filter gain approachesherea

! . ;'s are eigenvalues oRy, and J;"™ = tr(R¢ Ky).
a constant and can be absorbed into the step size. Equa}?’?lré third and fourth terms on the right-hand side of (83) can
(65) then becomes

be ignored ify, is small. Therefore, the MSD of theLMS

Wir = Wi + 1t Rien. (74) filter in the steady state can be approximated by
L
Rewriting (74) in terms of the weight-error vector, we have Moo ~ §“pjmin' (84)
exn1 = [T = nX1 X7 en + 1 Xe0 75y Comparing (82) with (33) and noting that< 1, we find that
ot = 1= nXien + Xacor (75) J?, is smaller thanJ', . Thus, (84) is smaller than the first
where term of (41). The second term of (41) is positive. Sirf¢e!
) is positive definite, (R=1W*W*T) = t(W*T R=1W*) > 0.
Eok = 2k - XFw=, (76) Thus, the third term in (41) is also positive. We conclude

. that for the same step size, the steady-state MSD ofpthe
Assume thati;, is a stationary Gaussian process angland LMS filter is smaller than that of the-LMS filter. In the next
€01 are uncorrelated. From (75), the correlation matrix of theection, we will present experiments to show the accuracy of
weight-error vector is derived as our theoretical results.

K1 = E{(I - NXkXE)GkGCIC (I - NXkXE)} D. Practical Implementations

2 % T
+p E{Xk%‘?o,ka} To use (65), the variancegk in (63) must be estimated.
=K — (KR + Ry Ky) From (54), we find thato? = o2 — oZ. However, we

+N2E{XkXE€k€£XkXE} +N2RXE{Eg,k} caqnot use this relation to estima&é’k. TheA reason is ex-
77) plained as below. In (49) and (50), we usg and agk to
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approximatey, and a%k. Note that these approximations are s . . . .

based on two assumptiond?, ~ W* and E{z;_; | Z*~'} ~ —LMS
so00cy—LMS

E{zy_;| Z*} for i = 1,...,p. In the transient state, these
two assumptions are not valid. As a consequea@@js much
larger tharv? . Here, we develop another method to overcome
this problem. Observe that the filter tries to make(i.e., &) =

=1

-5

as close taiy, (i.e., e;) as possible. Thus, it will be reasonableg/
to let x-10
=
z

O'gk ~ O'gk. (85) -15
o? can be derived using a procedure similatf,, . Assume 20
that during the periok —p, £ — 1], gz, and(’f?.k changg slowly
and can be seen as constants. From (@z)Js then given by

_o5 L 1 ' L I
0 2000 4000 6000 8000 10000 12000

0<52k _ E{G%} + (1 _ gk—1)20§k_lE{WEWk} Number of iterations
+ gi_lcfﬁE{WEWk} + 03 (86) Fig. 3. Learning curve of NMSD for wide-band signal.
where 02 = E{e;} and of = E{&_,}. Using the whered, is white Gaussian noise. The corresponding poles

relations(1 — gk_l)o'gk_l = gx_102, we can rewrite (86) as are located a0.3 + j0.4. The other was a narrowband signal
obtained from

02, =0l + G100  E{W{ Wy} + o0 (87) 2 = 16251 — 0.953625,_ + dy (91)

From (85), We obtaiv? as and having poles 5.8 & j0.56. In both cases, additive white
& Gaussian noise was used to contamingteThe power ofzy,
was fixed at 10, and the input SNR was held at 5 dB. We

2 2 2 T 2
of, ~ 0z, = G109, E{Wy Wi} — o, (88)  gefined the normalized-MSD as the performance criterion.
In practice, the expectation terms in (88) cannot be obtained. NMSD = 10log,q ———— W*TW* (dB). (92)

Thus, a fading-memory average is used to recursively estimate
To compare the NMSD at the same convergence speed, we
used (74) instead of (65) to update the filter weights of the
62 =6 _ 4+ (1= p)(eh — gro102WEWy — o2) (89) LMS algorithm. Fig. 3 shows the learning curves of the NMSD
for the wideband signal from the LMS;-LMS, and p-LMS
filters. The step size used here was 0.0002. Fig. 4 shows the
52) is the estimate of_;. 3 is a forgetting factor and is results for the narr(_)wband signal. Th_e corresponding step size
chosen to be close to 1. was 0.001. Both figures were obtalngd from an average of
50 runs with3 = 0.99. In Fig. 3, we find that thep-LMS
Finally, we summarize the whole algorithm for the I|nea]{
LMS filter as follows: ilter had only a slight performance improvement over the
P LMS filter. This is because the signal was wideband making

2
Tey

wheres?, is the estimate of7 , andgy—1 =67, _ /(63 _ +

Step 1) & = Xk Wj prediction difficult. For the narrowband signal, we see that the
Step 2) ex = ke S p-LMS filter had much better performance. In Fig. 4, we find
Step 3) % = /30—5k L +(1- /3)( = gk-10; Wi Wik =03). that the NMSD of thep-LMS filter is about 8 dB lower than
Step 4) g = ng/(agk +07). that of they-LMS filter. Note that the weight vector of the
Step 5) &x = Tk + Grek- LMS filter converged to a biased solution; hence, it had poor
Step 6) Wit1 = Wi + pgrXrer- performance in both cases.

Step 7) k = k + 1, and go to step 1. As we know, the steady-state MSD is proportional to the

step size, but the convergence rate is inversely proportional
to the step size. To simultaneously include both into perfor-
V. SIMULATIONS mance evaluation, we then define a comprehensive measure

Computer simulations were carried out to evaluate t@$ follows:
accuracy of our theoretical MSD’s for theLMS and p-LMS (2 = Steady state MSD
filters. In this study, two AR processes were used. One was a

wideband signal obtained from x Number of iterations to achieve convergence. (93)

Thus, the smaller th& is, the better performance a filter has.
zp = 0.6x,_1 — 0.25x5,_2 + dj, (90) We used the narrowband signal to perform simulations, and list
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5 T T T T T r T T T TABLE I
——LMS EXPERIMENTAL AND THEORETICAL MSD’S FOR THE p-LMS FILTER
o 7:11:'1\1\//11 g 4 Wide-band | Narrow-band
P Experimental MSD | 0.002461 0.001593
MSD in (84) 0.002264 0.001504
v 8.70% 5.92%

_30 1 L

o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of iterations

Fig. 4. Learning curve of NMSD for narrow-band signal.

TABLE |
's FOR THEY-LMS and p-LMS FILTERS
Step size | y—LMS | p—LMS
0.000125 | 83.95 13.80
0.00025 79.44 11.30
0.0005 77.84 9.784
0.001 81.64 9.884
0.002 119.8 18.74
0.004 125.8 33.78
TABLE 11
EXPERIMENTAL AND THEORETICAL MSD’s FOR THEY-LMS FILTER
Wide-band | Narrow-band
Experimental MSD | 0.003469 0.007902
MSD in (41) 0.003370 0.007425
v 2.94% 6.42%

's for the v-LMS and p-LMS filters in Table I. Each value

was obtained from an average of 50 runs. We can sedXkat
for the p-LMS filter are significantly smaller than those of the
~-LMS filter in all cases. It is also worth mentioning that therel®

is an optimal step size corresponding to the smaflestor the

simulations conducted here, the optimal step size is 0.0005.[6]

biased coefficients. Treichler has suggested~tHevS filter

to obtain unbiased solutions. In this paper, we applied the
p-LMS filter proposed in [10] and [11] to the AR modeling
problem. We first derived the second-order statistic of-the
LMS filter, which is often used to measure the performance of
adaptive filters. Then, using estimation theory, we derived the
p-LMS filter and showed that the filter is linear when noise
is Gaussian. We analyzed the first- and second-order statistics
of the linearp-LMS filter and proved that it performs better
than the~-LMS filter. Experimental results demonstrate that
our theoretical analysis is adequate.

Conventional approaches to the filtering problems involve
two-stage operations. First, an algorithm is used to identify the
signal model. Then, a filter is applied to perform the filtering
operation. As a byproduct, theLMS filter can output filtered
results for signals corrupted by white Gaussian noise. This
is a significant advantage since identification and filtering are
combined into a single filter. The-LMS filter can be applied
in many areas such as speech filtering, line enhancement, and
active noise cancellation. Research in these directions is now
underway.
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