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Adaptive AR Modeling in White Gaussian Noise
Wen-Rong Wu and Po-Cheng Chen

Abstract—Autoregressive (AR) modeling is widely used in
signal processing. The coefficients of an AR model can be easily
obtained with a least mean square (LMS) prediction error filter.
However, it is known that this filter gives a biased solution when
the input signal is corrupted by white Gaussian noise. Treichler
suggested the
-LMS algorithm to remedy this problem and
proved that the mean weight vector can converge to the Wiener
solution. In this paper, we develop a new algorithm that extends
works of Vijayan et al. for adaptive AR modeling in the presence
of white Gaussian noise. By theoretical analysis, we show that the
performance of the new algorithm is superior to the
-LMS filter.
Simulations are also provided to support our theoretical results.

I. INTRODUCTION

T HE AR modeling technique has been successfully used
in wide range of applications such as speech analysis

[1], [2], spectrum estimation [3], [4], and noise cancellation
[5]. Given a random signal, the main task of this technique
is to find the optimal AR coefficients that minimize a mean-
square error (MSE) criterion. When second-order statistics of
the signal are known, optimal coefficients can be obtained by
solving the Wiener–Hopf equations. However, these statistics
are not always available in real applications. A common
alternative is to use adaptive filtering techniques.

The adaptive prediction error filter is an all-zero filter that
adaptively adjusts its weights to flatten the spectrum of the
output signal. Such filters start from initial conditions that
contain no desired information and then update their filter
weights based on a sequence of input data. For stationary in-
puts, it has been shown that with a proper algorithm, the mean
weight vector of adaptive prediction error filters will converge
to optimal AR coefficients (Wiener solutions) [6]. Commonly
used adaptive algorithms include the recursive least-squares
(RLS) and least-mean-square (LMS) [7]. Although the RLS
algorithm may give a rapid convergence, its computational
complexity is high. Thus, the LMS algorithm is preferred in
many real-word applications.

In practice, the input signal often contains white Gaussian
noise. Thus, the signal spectrum will become flatter than the
original [8]. The LMS prediction error filter, in trying to flatten
the distorted spectrum, then converges to a biased solution. To
overcome this drawback, Treichler [9] suggested the-LMS
filter and showed that the mean weight vector can converge to
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the Wiener solution. In this paper, we approach the problem
by extending works of Vijayanet al. [10]–[11], in which
they proposed a nonlinear prediction error filter to suppress
the narrowband interference in direct-sequence (DS) spread
spectrum systems. The nonlinearity of the filter is due to the
non-Gaussian (binary) spread signal. Using simulation results,
Vijayan et al. showed that the nonlinear filter is superior to a
linear one. Recently, this filter was used by Kim and Efron
[12] for robust impulse noise filtering. For convenience, we
called the prediction error filter the-LMS filter, where
is the nonlinear function used in [10].

Our contribution can be divided into two parts. First, we
derive the second-order statistic of the-LMS filter, which
is often used to measure the performance of an adaptive
algorithm. This result was not shown in [9]. Second, we use
estimation theory to derive the-LMS filter and apply it to
the AR modeling problem. Specifically, we developed a linear
-LMS filter for signals corrupted by white Gaussian noise.

We derived the first- and second-order statistics of the linear
-LMS filter to show that it performs better than the-LMS

filter. This paper is organized as follows. Section II states
the bias effect in the LMS prediction error filter caused by
white Gaussian noise. In Section III, we describe the-LMS
filter and derive second-order statistics. In Section IV, we
develop the general-LMS filter. Specifically, we focus on
a linear one and derive its first- and second-order statistics. In
Section V, we report simulation results and draw conclusions
in Section VI.

II. THE LMS PREDICTION ERROR FILTER IN WHITE NOISE

A signal modeled as a th-order AR process can be
expressed as

(1)

where is the prediction error, and are AR
coefficients. It has been shown that ifis large enough, is
a white sequence [6]. The main task of AR modeling is to find
optimal AR coefficients that minimize the mean square value
of the prediction error. Let be
the input vector. The optimal coefficient vector is known
to be the Wiener solution given by

(2)

where is the correlation matrix, and
.
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Fig. 1. LMS prediction error filter.

The LMS prediction error filter, which is illustrated in
Fig. 1, can be used to adaptively estimate the optimal AR
coefficients. The weight-update equation is given as follows:

(3)

where

(4)

is the prediction error, and

(5)

is the prediction of . The step size in (3) determines the
rate of convergence and stability of the weights. It has been
shown [7] that when is chosen properly, the mean weight
vector will converge to the Wiener solution. If
is the optimal prediction of , and the minimum mean-square
error (MMSE) will be

(6)

where is the variance of .
Define the weight-error vector and its correlation matrix

as

(7)

and

(8)

The excess MSE is given by

tr (9)

where tr denotes the trace operation. To measure the per-
formance of the LMS algorithm, the mean-square weight
difference (MSD) [13], which is defined as follows, is fre-
quently used.

tr tr (10)

In the steady state, the correlation matrix of weight-error vector
can be approximated by [7]

(11)

where is a identity matrix. Thus, the steady-state MSD
is

(12)

In most applications, the signal to be modeled contains white
Gaussian noise. White noise tends to flatten the signal and
distort the correlation function. If is contaminated by white
Gaussian noise with zero mean and variance , the input
to the prediction error filter, which is denoted as, becomes

(13)

Let be the noisy input vector.
Equation (3) now becomes

(14)

where

(15)

is the prediction error based on noisy inputs. Define
and . From (14),

we find that the mean weight vector converges to

(16)

Comparing (16) with (2), it is clear that the optimal solution
is biased. This bias is due to the extra terms in the diagonal
of the correlation matrix of .

III. T HE -LMS FILTER

A. Formulation and Mean Convergence

To solve the bias problem, Treichler suggested the-LMS
algorithm [9], which is described as follows:

(17)

If is known and

(18)

will converge to . This can easily be shown.
Taking the expectation from (17), we have

(19)

Let and be independent. Then,
. In the steady state, (19) becomes

(20)

which is the Wiener solution. Apparently, the-LMS algo-
rithm utilizes the noise variance to cancel the extra terms
in the diagonal of the correlation matrix of .
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B. The Second-Order Statistics

In [9], Treichler did not provide the second-order statistics
for -LMS. Here, we derive them in detail. First, (17) can be
rewritten in terms of weight-error vectors

(21)

Thus, the correlation matrix of the weight-error vector
can be evaluated by

(22)

Substituting (2) into (22), we have

(23)

Equation (23) involves fourth-order moments of the input
signal. These high-order moments can be evaluated by using
the Gaussian moment factoring theorem. Let and

denote four samples of a real Gaussian process with zero
mean. The Gaussian moment factoring theorem states that

(24)

Denote the five expectation terms in (23) as
and . Assuming is a Gaussian process, invoking the
fundamental assumption [6], and using (24), we have

(25)

(26)

and

(27)

Substituting (2) into (27), we have

(28)

Note that is equal to the transpose of

(29)

can be obtained by a procedure similar to (25).

(30)

Substituting (2) into (30) and noting that tr
, we can rewrite as follows:

(31)

Finally, substituting (25), (26), (28), (29), and (31) into (23),
we obtain the time evolution of the correlation matrix of the
weight-error vector

(32)

where is the MSE yielded by using on noisy inputs
and is defined as

(33)
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To simplify (32), we can rotate coordinates of . The
particular coordinate rotation is described by

(34)

where is a diagonal matrix
consisting of the eigenvalues of the correlation matrix,
and is the unitary matrix consisting of the eigenvectors
associated with these eigenvalues. Note that .
Furthermore, let

(35)

Using the transformation described by (34) and (35), we can
rewrite the recursive equation (32) as follows:

(36)

where is defined as

tr (37)

Let denote the diagonal term of
and the diagonal term of . Then

(38)

In the steady state, (38) can be further simplified. If the
step size is small, is much smaller than . Thus,

can be ignored in comparison with
. From (37), we note that .

Therefore, is larger than . This implies
that can be ignored. Moreover

(39)

The equality holds only when the signal is a first-order AR
process. Thus, can also be ignored. Finally,
we have the steady state as follows:

(40)

Therefore, the steady-state MSD becomes

tr tr

(41)

Equation (41) shows that the MSD is affected by the noise
variance and optimal weights. When the noise power increases,
the MSD of the -LMS algorithm will also increase.

IV. THE -LMS FILTER

A. Formulation

From (14) and (15), we know that the weight vector of
the LMS filter is adapted by the noisy input vector and
the prediction error based on . This causes the weight
vector to converge to a biased solution. To reduce the effect of
noise, we can first estimate the noise-free inputand noise-
free prediction error and then use the estimates in the LMS
algorithm. Since the estimates of and will contain less
noise, the LMS algorithm will give better performance.

Given an observation sequence , the
optimal estimate of based on the observation up tois the
conditional mean of , which is

(42)

From Bayes’ law and (13), thea posterior density function
can be expanded as follows:

(43)

The density can be determined by and

(44)

Note that without making any assumptions, the recursive
estimate of is almost impossible. As in [14], we assume
that is Gaussian. Define

(45)

and

(46)

It has been shown [14] that the conditional mean ofcan
be written as

(47)

where is the score function of , i.e.,

(48)

However, without the signal model, we cannot find and
. For the time being, we assume that and

for . Let
. From (45), we have

(49)
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Fig. 2. �-LMS prediction error filter.

In (49), we have used the property that is white noise
and independent of . Thus, is the prediction based
on and . We can also approximate using the the
conditional prediction error variance in which

(50)

Thus, (47) can be written as follows:

(51)

Next, we consider the optimal estimate of.

(52)

Since it is difficult to obtain , we use to replace
it. From (51) and (52), we have

(53)

Define the noisy prediction error as

(54)

Equation (53) can be rewritten as a function of

(55)

The function can be seen as the filtering operation on
noisy prediction error . Substituting (55) into (51), we have

(56)

Utilizing as the input to the LMS prediction error filter
and as the error signal to adjust filter weights, we obtain
the weight-update equation for the-LMS filter as follows:

(57)

For comparison, we list the weight-update equation for the
conventional LMS filter below.

(58)

The -LMS algorithm replaces the noisy input with ,
which is an estimate of the noise-free input and the
prediction error based on noisy inputs with , which is
an estimate of the noise-free prediction error. The structure
of the -LMS filter is illustrated in Fig. 2.

B. The -LMS Filter for White Gaussian Noise

The density function of Gaussian noisewith variance
is given by

(59)

Thus, from (44), we can express as

(60)

From (48), the score function of (60) is found to be

(61)

Thus, the estimate of the noise-free prediction error in (55) is

(62)

It is not surprising that the filter function is linear since the
noise is Gaussian. Define the filter gain as

(63)

We can rewrite (56) and (57) as

(64)

(65)

C. The Convergence Analysis

From (63) and (64), we find that is nonstationary; it
is, therefore, difficult to analyze the transient behavior of the
-LMS algorithm. In what follows, we will concentrate on

analyzing the steady-state behavior of the-LMS algorithm.
In the steady state, we assume thatapproaches a stationary
white process with a constant variance. This implies that

, which is denoted as, is constant. From (4), (54), and
(64), and can be written as follows:

(66)

(67)

where and
. Thus, the term of can be expanded to

(68)

To make the analysis mathematically tractable, we make the
following assumptions:

1) is independent of and .
2) is independent of and .
3) is independent of .
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Note that this is an extension of the fundamental assumption in
the analysis of the conventional LMS algorithm [6]. Applying
Assumptions 1 and 2, we can write the expectation of (68) as

(69)

can be evaluated using the relation
and Assumption 3. Then, (69) is reduced to

(70)

Using the relation , we find
. Thus, we have

(71)

The expectation of (65) now becomes

(72)

Note that (72) is simply the recursive equation for the mean
weight vector of the conventional LMS algorithm (with noise-
free input and step size ). Thus, we can say that the
mean weight vector of the-LMS algorithm converges to the
Wiener solution . The stability condition for the step
size is then

(73)

where is the maximum eigenvalue of .
In the rest of this subsection, we will consider the MSD of

the -LMS filter. In the steady state, the filter gain approaches
a constant and can be absorbed into the step size. Equation
(65) then becomes

(74)

Rewriting (74) in terms of the weight-error vector, we have

(75)

where

(76)

Assume that is a stationary Gaussian process and and
are uncorrelated. From (75), the correlation matrix of the

weight-error vector is derived as

(77)

where . The third term on the right-
hand side of (77) can be expanded by the Gaussian moment
factoring theorem. From (25), we have

(78)
Substitute (78) into (77). We obtain

(79)

where . We can find by using (76) and
(67).

(80)

where . Squaring both sides of (80) and
taking expectation of the result, we have

(81)
Using the relation , we can rewrite (81) as

(82)

Similar to the derivation of the MSD of the-LMS algo-
rithm in (32), we can rotate the coordinates of such that

becomes diagonal. Let be the diagonal term of
after rotation. From (79), the equation for updating can
be written as

(83)

where ’s are eigenvalues of , and tr .
The third and fourth terms on the right-hand side of (83) can
be ignored if is small. Therefore, the MSD of the-LMS
filter in the steady state can be approximated by

(84)

Comparing (82) with (33) and noting that , we find that
is smaller than . Thus, (84) is smaller than the first

term of (41). The second term of (41) is positive. Since
is positive definite, tr tr .
Thus, the third term in (41) is also positive. We conclude
that for the same step size, the steady-state MSD of the-
LMS filter is smaller than that of the-LMS filter. In the next
section, we will present experiments to show the accuracy of
our theoretical results.

D. Practical Implementations

To use (65), the variance in (63) must be estimated.
From (54), we find that . However, we
cannot use this relation to estimate . The reason is ex-
plained as below. In (49) and (50), we use and to
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approximate and . Note that these approximations are
based on two assumptions: and

for . In the transient state, these
two assumptions are not valid. As a consequence,is much
larger than . Here, we develop another method to overcome
this problem. Observe that the filter tries to make(i.e., )
as close to (i.e., ) as possible. Thus, it will be reasonable
to let

(85)

can be derived using a procedure similar to . Assume
that during the period and change slowly
and can be seen as constants. From (67),is then given by

(86)

where and . Using the
relations , we can rewrite (86) as

(87)

From (85), We obtain as

(88)

In practice, the expectation terms in (88) cannot be obtained.
Thus, a fading-memory average is used to recursively estimate

(89)

where is the estimate of , and
is the estimate of . is a forgetting factor and is

chosen to be close to 1.
Finally, we summarize the whole algorithm for the linear

-LMS filter as follows:

Step 1) .
Step 2) .
Step 3) .
Step 4) .
Step 5) .
Step 6)
Step 7) and go to step 1.

V. SIMULATIONS

Computer simulations were carried out to evaluate the
accuracy of our theoretical MSD’s for the-LMS and -LMS
filters. In this study, two AR processes were used. One was a
wideband signal obtained from

(90)

Fig. 3. Learning curve of NMSD for wide-band signal.

where is white Gaussian noise. The corresponding poles
are located at . The other was a narrowband signal
obtained from

(91)

and having poles at . In both cases, additive white
Gaussian noise was used to contaminate. The power of
was fixed at 10, and the input SNR was held at 5 dB. We
defined the normalized-MSD as the performance criterion.

NMSD (dB). (92)

To compare the NMSD at the same convergence speed, we
used (74) instead of (65) to update the filter weights of the-
LMS algorithm. Fig. 3 shows the learning curves of the NMSD
for the wideband signal from the LMS,-LMS, and -LMS
filters. The step size used here was 0.0002. Fig. 4 shows the
results for the narrowband signal. The corresponding step size
was 0.001. Both figures were obtained from an average of
50 runs with . In Fig. 3, we find that the -LMS
filter had only a slight performance improvement over the-
LMS filter. This is because the signal was wideband making
prediction difficult. For the narrowband signal, we see that the
-LMS filter had much better performance. In Fig. 4, we find

that the NMSD of the -LMS filter is about 8 dB lower than
that of the -LMS filter. Note that the weight vector of the
LMS filter converged to a biased solution; hence, it had poor
performance in both cases.

As we know, the steady-state MSD is proportional to the
step size, but the convergence rate is inversely proportional
to the step size. To simultaneously include both into perfor-
mance evaluation, we then define a comprehensive measure
as follows:

Steady state MSD

Number of iterations to achieve convergence. (93)

Thus, the smaller the is, the better performance a filter has.
We used the narrowband signal to perform simulations, and list
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Fig. 4. Learning curve of NMSD for narrow-band signal.

TABLE I

’S FOR THE
-LMS and �-LMS FILTERS

TABLE II
EXPERIMENTAL AND THEORETICAL MSD’s FOR THE
-LMS FILTER

’s for the -LMS and -LMS filters in Table I. Each value
was obtained from an average of 50 runs. We can see that’s
for the -LMS filter are significantly smaller than those of the

-LMS filter in all cases. It is also worth mentioning that there
is an optimal step size corresponding to the smallest. For the
simulations conducted here, the optimal step size is 0.0005.

The theoretical and the experimental MSD values of the
-LMS and -LMS filters are shown in Tables II and III,

respectively. To evaluate the accuracy of the theoretical values,
we define the error ratio , which is

experimental value theoretical value
theoretical value

%

(94)
For all cases, the step size used was 0.0002. The theoretical
MSD values were computed by using (41) and (84) for the

-LMS and the -LMS filters, respectively. From these tables,
we can see that the theoretical MSD values are close to the
experimental ones. All ’s are below 10%.

VI. CONCLUSION

In AR modeling, if the input signal is corrupted by white
Gaussian noise, the LMS prediction error filter will give

TABLE III
EXPERIMENTAL AND THEORETICAL MSD’s FOR THE�-LMS FILTER

biased coefficients. Treichler has suggested the-LMS filter
to obtain unbiased solutions. In this paper, we applied the
-LMS filter proposed in [10] and [11] to the AR modeling

problem. We first derived the second-order statistic of the-
LMS filter, which is often used to measure the performance of
adaptive filters. Then, using estimation theory, we derived the
-LMS filter and showed that the filter is linear when noise

is Gaussian. We analyzed the first- and second-order statistics
of the linear -LMS filter and proved that it performs better
than the -LMS filter. Experimental results demonstrate that
our theoretical analysis is adequate.

Conventional approaches to the filtering problems involve
two-stage operations. First, an algorithm is used to identify the
signal model. Then, a filter is applied to perform the filtering
operation. As a byproduct, the-LMS filter can output filtered
results for signals corrupted by white Gaussian noise. This
is a significant advantage since identification and filtering are
combined into a single filter. The-LMS filter can be applied
in many areas such as speech filtering, line enhancement, and
active noise cancellation. Research in these directions is now
underway.
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