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自我類化訊流的合成及分散式辨識 

 
學生：姚 建 

 

指導教授：蔣迪豪 

陳伯寧 

國立交通大學電子工程學系 

摘 要       

 
在本論文的第一部分，我們提出了一個濾波器型式的自我類化訊流合成器。此合

成器能生成可調控變異性及相關性的長程相依訊流，同時也只需很少的輸入參

數。與既有的其它自我類化訊流合成器﹙如 RMD 方法和 Paxson 的 IFFT 方法﹚相

比，我們提出的濾波器型式的自我類化訊流合成器具有能即時生成訊流以及生成

之訊流恆不為負值之優點。我們接著研究了相關係數﹙只能反映線性的相依關係﹚

和交互訊息﹙能測量一般的相依關係﹚兩者之間的蘊含關係。本研究的結果建議，

對於弱相關的隨機變數，如一個自我類化過程中具有長的時間差的不同二個時刻

的值，相關係數的平方值的一半似可作為交互訊息的一個合理的近似。 

 

基於長尾分佈和自我類化訊流之間的存在的基本關係，我們進而研究了此類訊流

的分散式辨識問題。我們發現若干有趣的結果。首先，我們確證了全同感測器系

統在指數分佈族的參數辨識問題上的最佳性。在此研究方向上的一個相關的結果

是，在指數分佈族辨識問題上，串接式兩感測器系統和平行式兩感測器系統具有

相同的最佳性能。這多少是令人感到意外的，因為一般認為串接式兩感測器系統

比平行式兩感測器系統有更好的性能。 

 

其次，對於更一般類別分佈族的參數辨識問題，我們提出數個命題可用來檢證全

同感測器系統的最佳性。如採取直捷的手法來檢證全同感測器系統，通常將導致

在被一組非線性聯立方程所定義的解空間之中搜尋所有的局域最小值。然而這種

方法在一些情況下會是不可行的，而我們提出的命題可作為一個較佳的替代方

案。此外，我們的研究也可應用到其它的分散式檢測問題上，如在倖存分析及損

壞時間分析的壽命問題上，或是如在利用在地理上分散設備，對不同連結上的封

包到達時間間隔加以量測，來決定整個網路的自我類化參數的問題上。 
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最後，藉由對函數及方程式的數值計算結果，我們確認了，在加法性高斯雜訊下

二元信號的檢測問題上全同感測器系統的最佳性。 
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ABSTRACT 
In the first part of this dissertation, we propose a filter-based generator for the 

synthesization of self-similar traffics. It can produce long range dependent traffics 
with adjustable levels of bustiness and correlation, and is parsimonious in the number 
of model parameters. By comparing it with existing self-similar traffic synthesizers, 
e.g., the RMD and the Paxson IFFT algorithms, the proposed filter-based synthesizer 
has the advantages that the synthetic traffic can be generated on the fly, and always 
produces non-negative-valued traffic. The implications between the correlation 
coefficient (a quantity that only measures the linear dependence) and mutual 
information (a quantity that can represent the general dependence) is subsequently 
investigated. The obtained results suggest that for weakly correlated random variables 
such as two instances of a self-similar process with a long time lag, half the square of 
the correlation coefficients might be a reasonable approximation to the mutual 
information. 
 

Continuing from the synthesization of processes with heavy tails, we turn to 
study the impact of such processes on decentralized detection. Several interesting 
results are found. Firstly, the optimality of identical sensor system for the exponential 
distribution family has been verified. A side result along this research line is that 
the optimal performance of the serial two-sensor system is the same as that of the 
parallel two-sensor system for exponential sources. This is somewhat surprising 
because it is generally considered that the serial two-sensor system has better 
performance than the parallel two-sensor system. 
 

Secondly, for a more general class of distribution families, we propose several 
propositions on the optimality of the identical system. A straightforward approach to 
test the optimality of identical sensor system often results in searching all local 
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minimums in the solution space that is defined through a set of nonlinear equations. 
However, this approach is not tractable in certain situations. Our propositions then 
provide an alternative for optimality test of identical sensor system. Besides, they can 
be applied to other decentralized detection problems like the detection of lifetime 
encountered in survival analysis and failure time analysis or the determination of the 
degree of self-similarity of the whole network system based on geographically 
dispersed measurements of the packet inter-arrival times on different links. 
 

Finally, with the help of numerical study on functions and equations, we 
analytically confirm the optimality of identical sensor system over Gaussian sources. 
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Chapter 1

Introduction

Stationary random processes, according to their autocorrelation functions, can be classified

as either short-range or long-range dependence. The former have summable autocorrelation

functions, while the latter have non-summable autocorrelation functions. The simulations

of the short-range dependent random processes have attracted attention for years, and have

found many applications such as the traffic model of telecommunication systems [6]. How-

ever, researchers had recently found that the traffic in many modern communications, such

as the world wide web [4, 8, 14, 18, 20] and variable-bit-rate (VBR) video transmission [10],

is significantly different from the conventional short-range dependent traffic models, and ex-

hibit the renowned self-similar nature. This arouse the demand for the synthesization of

processes with long-range dependence.

In literature, there have been several approaches proposed for the synthesization of long-

range-dependent self-similar traffics. They include methods based on fractional Gaussian

noise [14], M/G/∞ queue model [12], autoregressive processes [3], wavelet [2], . . ., etc. These

synthesizers can be roughly divided into two categories: approaches derived from “time-

domain” aspect and ones developed from “frequency-domain” standpoint. An example for

the former is the random-midpoint displacement (RMD) algorithm proposed by Lau et al.

[13], while the spectrum fitting to the fractional Gaussian noise, as proposed by Paxson [19],
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can be a typical synthesizer for the latter.

The procedures of the RMD algorithm is to recursively subdivide the present time in-

tervals, and generate in each subdivision a new mid-point traffic data based on the end-

point data obtained in the previous subdivision. This method can efficiently generate a

well-approximated fractal Brownian motion (FBM) sequence. It however comes with the

drawbacks that only the FBM traffics can be synthesized, and the desired amount of traffic

has to be specified in advance.

Based on the power spectrum fitting to the fractional Gaussian noise (FGN), Paxson

proposed a fast self-similar traffic generator using the inverse discrete-time Fourier transform

(IDTFT), which is usually referred as the FFT method. By using an approximate form

of the spectrum density of fractal Gaussian noises (FGN), a random sequence is formed in

frequency domain. An inverse Fourier transformation (IFFT) is then performed to transform

the sequence from the frequency domain to the time domain. The FFT algorithm improves

the RMD algorithm in speed. In particular, the FFT algorithm only takes half time of the

RMD algorithm for the same sequence length. Again, its drawback is that the traffic sequence

cannot be generated on the fly. In addition, the simplified form of the FGN spectrum causes

the resultant degree of self-similarity deviated from the target one.

In applying the aforementioned approaches to the generation of self-similar traces, several

problems can be encountered. Firstly, the required length (i.e., amount) of traffic data must

be priorly determined; hence, when a longer traffic sequence is required, one has to drop

the existing data, and re-generate a completely new trace of the required length. Secondly,

the required traffic data must be generated in an off-line fashion before they can be put to

use. This somewhat restricts their usage in situation where on-the-fly traffic synthesizers

are needed. Thirdly, these traffic generators may produce negative number, which is an

undesired value for, say, packet-train arrivals. The direct elimination of these negative-

2



valued data however may make the degree of self-similarity of the generated trace deviating

from the target one.

In this work, we propose a model that can produce long-range dependent sequences with

adjustable levels of bustiness and correlation. When it is compared to the two known self-

similar traffic generators—the RMD and the Paxson FFT, our model provides additional

advantages that the synthetic traffic can be generated on the fly, and is always non-negative.

Although the variance-time analysis shows that the filter length W limits the valid aggre-

gation size of self-similarity, this phenomenon turns out to match the measured behavior of

true network traffic, where the self-similar nature only lasts beyond a practically manageable

range, but disappears as the considered aggregated window is much further extended, e.g.,

Beran et al. [4, Fig. 2].

The relationship between the second-order statistics (which are used in the measurement

of the self-similarity in the network traffic) and the quantities in the information theory is

also an interesting topic. Since one might expect that the self-similar traffic has some special

characteristics that can be easily identified in the information processing of the measured

data, we discuss the relationship between the correlation coefficients and mutual information

in Chapter 3.

For the practical control of network traffic, one might need to test whether its self-

similarity is weak or strong enough that the long-range dependence could or could not be

ignored. To reduce the response time and to alleviate the load of network, a decentralized

scheme for the detection of the self-similarity might be useful. In this work, we consider the

decentralized detection, especially on the optimal design of the local decision rules and the

fusion rule for the classification of exponential sources. It turns out that the optimal strategy

is to use identical sensors and k-out-of-n fusion rule. We also show for such classification

problem that the optimal performance of the serial two-sensor system is the same as the
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optimal parallel two-sensor system. In addition, we address a set of propositions on the

optimality of the identical sensor system, which can be verified without much difficulty.

Some generalizations are further established and remarked for the decentralized detection

of Gaussian sources, and for the determination of degree of self-similarity via the local

measurements of packet inter-arrival durations.

1.1 Definitions of Self-Similar Processes

Self-similar processes were first introduced by Mandelbrot and his co-workers in 1968 [15, 16,

17]. These processes were thereafter found applications to many fields such as astronomy,

chemistry, economics, engineering, mathematics, physics, statistics, etc. Recently, mea-

surement studies have shown that the actual traffic from computer networks is long-range

dependent [14, 18, 8, 4, 20], and thus another new application of self-similar processes was

initiated.

Assume a second-order stationary real-valued stochastic process Y , {Yi}i∈I1 with finite

marginal mean µ and marginal variance σ2, where Ij , {j, j + 1, j + 2, . . .}. Denote by

Y (m) , {Y (m)
i }i∈I1 the m-averaged process of Y , where for m, i ∈ I1,

Y
(m)
i , 1

m

m∑
j=1

Ym(i−1)+j.

Let the autocovariance and autocorrelation coefficient function of the m-averaged process

Y (m) be denoted by Cm(k) , Cov{Y (m)
i , Y

(m)
i+k } and ρm(k) , Cm(k)/Cm(0), respectively. For

notational convenience, the subscript of ρm(·) will be dropped when m = 1. Then, several

variants of self-similarities can be defined as follows.

Definition 1.1. [24] A strictly stationary process Y is called strictly self-similar with pa-

rameter H = 1− (β/2), where 0 < β < 1, if

m1−HY(m) d
= Y for m ∈ I1 (1.1)
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where “
d
=” means that the equality is taken in the sense of finite-dimensional distributions.

Definition 1.2. [24] A second-order stationary process Y is called exactly second-order self-

similar with parameter H = 1− (β/2), where 0 < β < 1, if either of the following conditions

holds:

ρ(k) =
1

2
[|k + 1|2H − 2|k|2H + |k − 1|2H ], k ∈ I1 (1.2)

Cm(k) = C1(k)m−β, k ∈ I0,m ∈ I1 (1.3)

Notably, (1.2) and (1.3) are indeed equivalent. Also note that (1.2) implies that ρm(k) =

ρ1(k) for m ∈ I1.

Definition 1.3. [24] A second-order stationary process Y is called asymptotically second-

order self-similar with parameter H = 1− (β/2), where 0 < β < 1, if

lim
k→∞

ρm(k) =
1

2
[|k + 1|2H − 2|k|2H + |k − 1|2H ], m ∈ I1. (1.4)

The parameter H in the above definitions is usually referred to as the Hurst parameter.

For other variant definitions of self-similar processes, see [24] and [25].

1.2 Properties of Self-Similar Processes

In this section, we summarize the statistical properties of self-similar processes that are of

use in this work.

1.2.1 Range of Dependence

Random processes can be classified into two groups: short-range dependence (SRD) and long-

range dependence (LRD). Their formal definitions that have been appeared in the literature

are given below.

5



Definition 1.4. [24] [7] A process Y is said to be short-range dependent, if

∞∑

k=−∞
|ρ(k)| < ∞ (1.5)

Definition 1.5. [24] [7] A process Y is said to be long-range dependent, if

∞∑

k=−∞
|ρ(k)| = ∞ (1.6)

A variant definition of long-range dependence is defined as follows.

Definition 1.6. [22] A process Y is said to be long-range dependent, if

lim
k→∞

ρ(k)

L(k)k2H−2
= 1, (1.7)

where L(k) is a slowly varying function at infinity, defined by

lim
k→∞

L(kx)

L(k)
= 1 for all x > 0. (1.8)

For an exact second-order self-similar process Y, its autocorrelation coefficient function

is given by equation (1.2), i.e.,

ρ(k) =
1

2
[|k + 1|2H − 2|k|2H + |k − 1|2H ], k ∈ I1.

Using Taylor expansion, we obtain

ρ(k) = H(2H − 1)k2H−2 + o(k2H−2), k ∈ I1, 0.5 < H < 1.

Therefore, an exact second-order self-similar process is indeed long-range dependent in the

sense of Definition 1.6.

1.2.2 1/f-Noise

1/f -noise is the term used to present a sharp divergence in the power spectral density around

the origin. The exact definition of 1/f -noise is in the following.
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Definition 1.7. [22] A stationary process Y is said to present 1/f -noise, if its power spectral

density S(ω) satisfies:

lim
ω→0

S(ω)

L(1/ω)ω1−2H
= 0, (1.9)

where L(k) is a slowly varying function at infinity (cf. (1.8)), and Hurst parameter H is in

the range of (0.5, 1).

It has been proven that the long-range dependence in the sense of Definition 1.6 is

equivalent to 1/f -noise [3, pp. 53].

1.2.3 Slowly Decaying Variance of Self-Similar Processes

In the case of short-range dependence or independence, the variance of m-averaged process

decreases as the reciprocal of the average size, m. However, by equation (1.3),

Var{X(m)} = Cm(0) = C1(0)m−β = Var{X}/m2−2H , (1.10)

and the variance of m-averaged processes decreases more slowly than the reciprocal of the

average size, m, for long-range dependent processes. In fact, (1.10) indicates that Var{X(m)}
decreases as a slop of (2H − 2) in log-log plot against m.

1.2.4 Heavy-Tailed Distribution

Definition 1.8. A random variable Y is said to be heavy-tailed with parameter α ≥ 0, if

lim
y→∞

Pr{Y > y}
L(y)y−α

= 1, (1.11)

where L(x) is a slowly varying function at infinity (cf. (1.8)).

Here, we only concern the cases of 1 < α < 2, i.e., the mean of random variable Y is

finite, and its variance is infinite. The infinite variance can be regarded as an extremely

7



variable phenomenon. This kind of heavy-tailed random variable has been used to model

the inter-arrival time of network packets. It has been shown [11] that if the packet inter-

arrival process is modelled as i.i.d. Pareto random variables,1 the packet counting process is

asymptotically second-order self-similar process with H = (3 − α)/2, where parameter α is

in the range of (0, 1) and (1, 2).

1.2.5 Hurst Effect

Historically, self-similar processes are marked because these processes provide an elegant

interpretation of the empirical phenomenon, usually referred to as the Hurst Effect.

Given a series of observations Y1, Y2, Y3, · · · with sample mean µ(n) = (1/n)
∑n

j=1 Yj and

sample variance

S(n) =
1

n

n∑
j=1

[Yj − µ(n)]2,

the re-scaled adjusted range (or conventionally, the R/S statistics) is defined as

R(n)

S(n)
=

max1≤k≤n

[∑k
j=1 Yj − kµ(n)

]
−min1≤k≤n

[∑k
j=1 Yj − kµ(n)

]

S(n)
. (1.12)

Hurst [5] found that many naturally occurring time sequences could be well characterized

by

lim
n→∞

E[R(n)/S(n)]

cnH
= 1 (1.13)

with c being a finite positive constant and Hurst parameter in the range of (0.5, 1). This is

therefore termed the Hurst Effect.

Additionally, Mandelbrot and Van Ness [16] showed that if the observation sequences are

short range dependent, then

lim
n→∞

E[R(n)/S(n)

cn0.5
= 1. (1.14)

1Pareto distribution is a heavy-tailed distribution with probability density function f(x) = aka/ya+1 for
a > 0, k > 0 and y ≥ k. The cumulative distribution function of Pareto is 1− (k/y)a.
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1.3 Decentralized Detection

A decentralized detection system consists of n sensors, sometimes geographically dispersed,

and a remote fusion center. Each of the sensor observes a phenomenon (often modeled as a

random variable Xi), summarizes it into a single bit ui, and then transmits ui to the fusion

center uncooperatively. Based on received {ui}n
i=1, the fusion center determines whether

these {Xi}n
i=1 are drawn from null distribution P (·|H0) or alternative distribution P (·|H1).

Tenney and Sandell [35] are the first to bring attention to such a detection framework.

Despite that it has an apparent handicap on the performance, the decentralized detection

system requires much smaller bandwidth between the observers and the global decision maker

than its centralized counterpart. This is a significant benefit when the system is required to

operate in a harsh environment. The workload of information processing is also distributed

from the decision-making center to the local observers; therefore the overall complexity of

the classification system can be reduced. Furthermore, allotting many measurement devices

and local data processers instead of one central unit can also partly ensure the reliability,

even when some of the sensors malfunctions. All of these motivate distributed detection

systems to rival with conventional centralized detection systems, especially for applications

where the measurements have to be geographically dispersed, and have to be collected by

remote sensors.

Contrast to the advantages from the operational aspects above, the optimal design of

distributed detection systems is, however, far more difficult than centralized ones. This

comes from the decisions of local processers entangle with each other for the contributions

to the correctness of overall decision. Accordingly, the optimal design involves the joint

optimization of local processers and fusion center. Such optimization problem has been

studied for its different facets in the literature. Hereafter, we only mention those most

9



related to the theme in this dissertation.

Tsitsiklis [37] investigated the error performance of decentralized systems with a large

number of sensors in terms of error exponents. He showed that a system design with iden-

tical sensors are asymptotically optimal. This result was further extended by Chen and

Papamarcou [36] by showing that the ratios of error probabilities between the best identical

sensor system and the absolutely optimal system are bounded from both above and below.

Irving and Tsitsiklis [34] found that for the detection of signals in Gaussian noises, the abso-

lutely optimal two-sensor system should equip identical sensors. Zhang et al. [38] concerned

the performance of identical sensor systems, and showed that the probability of error is a

quasi-convex function of the likelihood ratio test thresholds of local sensors.

1.4 Synopsis of the Dissertation

The materials in this dissertation are arranged into two parts. The first part consisting

of Chapters 2 and 3 focuses on the self-similar traffic synthesizer, while the second part

extends the focus to decentralized detection in Chapter 4. The general facts about self-

similar processes, heavy-tailed distributions, and long-range dependence have already been

covered in Section 1.1. The background of decentralized detection required for Chapter 4 is

contained in Section 1.4. In Chapter 2, a filter-based self-similar trace synthesizer is proposed,

and the degree of its self-similarity is examined in terms of variance-time analysis. The effect

due to filter truncation and filter output rounding is subsequently investigated. Comparison

between the use of the forward filter and that of the reverse filter is also provided in Chapter

2. The relationship between the second-order statistics and the correlation coefficients is

investigated in Chapter 3. The optimal design of the decentralized detection system is the

focus of Chapter 4, where the optimality of identical sensor systems is built in an analytical

way for exponential distributed hypotheses, and the extension to Gaussian sources follows.

10



For the general detection problem, a set of propositions on the optimality of the identical

sensor system is addressed. Finally, in the same chapter, we indicate at the end that the

decentralized detection framework we considered can be applied to other situations such

as the detection of lifetime encountered in survival analysis and failure time analysis or

the determination of the degree of self-similarity of the whole network system based on

geographically dispersed measurements of the packet inter-arrival times on different links.

The final comments appear in Chapter 5.

11



Chapter 2

A FILTER-BASED SELF-SIMILAR
TRACE SYNTHESIZER

Recent empirical studies have shown that the modern computer network traffic is much

more appropriately modelled by long-range dependent self-similar processes than traditional

short-range dependent processes such as Poisson. Thus, if self-similar nature is not considered

in the synthesization of experimental network data, incorrect performance assessments for

network system may be resulted. This arises the need of a well self-similar trace synthesizing

algorithm with long-range dependence. In this chapter, we proposed and examined the

feasibility of a filter-based method for the synthesization of self-similar network traces. The

proposed approach can alleviate the problems encountered by the conventional synthesizers,

such as random midpoint displacement and Paxson’s spectrum fitting, which cannot generate

self-similar traces on the fly and may give negative numbers. Additionally, the extended

range of self-similarity of the filtered approach can be well manageable by the filter truncation

window; therefore, a trace that faithfully matches the measured behavior of true network

traffic, where the self-similar nature only lasts beyond a certain range but disappears as the

considered aggregated window is much further extended, can be generated.

12
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. . . , X3, X2, X1 . . . , Y3, Y2, Y1

Sx(ω) Sy(ω) = |H(ω)|2Sx(ω)

Figure 2.1: Relation between the power spectral densities of the filter input and filter output
random processes.

2.1 Filter-Based Asymptotic Self-Similar Traffic Syn-

thesizer

In this section, we proposed and proved that an asymptotic self-similar traffic can be theo-

retically synthesized through filter technique with prohibitively simple transfer function of

infinite order. In its feasible realization, the filter of infinite order has to be truncated to

a finite impulse response (FIR) filter. The resultant degradation due to filter truncation in

asymptotic self-similar degree is subsequently examined.

2.1.1 Transfer Function In Self-Similar Traffic Synthesizer

Let Sy(ω) denote the power spectrum of discrete random process Y obtained by passing

the random process X with power spectrum Sx(ω) through a filter with transfer function

H(ω) as shown in Fig. 2.1. An elementary filtering theory immediately gives that Sy(ω) =

|H(ω)|2Sx(ω). Accordingly, if X is i.i.d., and |H(ω)|2 well-approximates the power spectrum

of an asymptotic self-similar traffic, then the filter output straightforwardly become self-

similar, and can be obtained through Yn = Xn ∗ h[n], where “∗” denotes the convolution

operator.

By Definition 1.3, the ultimate autocorrelation coefficient function of an asymptotic

second-order self-similar process with parameter H equals 1
2
[|k+1|2H−2|k|2H + |k−1|2H ] for

k ∈ I1, which gives a power spectrum sin(πH) ·Γ(2H +1) · |1−e−jω|2 ∑∞
k=−∞ |ω +2πk|−1−2H
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for −π ≤ ω < π. Since the asymptotic self-similar behavior of a process is only sensitive to

the vicinity of those ω values around the origin [19], we can replace the above infinite sum by

its main term at k = 0, and yield sin(πH) ·Γ(2H +1) · |1− e−jω|2 · |ω|−1−2H for −π ≤ w < π.

We then observe that |ω| can be well-approximated by |1 − e−jω| when |ω| is small. As

a consequence, our proposed filter output spectrum becomes Sy(ω) = |1 − e−jw|1−2H for

−π ≤ w < π, where the coefficients, sin(πH) · Γ(2H + 1), is removed for analytical simplic-

ity.

One may question that such an extensive simplification to the target second-order self-

similar spectrum may already remove its self-similar nature. However, it can be derived from

Theorem 2.1(ii) in [3] and from the below equation,

lim
|ω|↓0

Sy(ω)

|ω|1−2H
= lim

|ω|↓0
|1− e−jw|1−2H

|ω|1−2H
= lim

|ω|↓0
(2 |sin (w/2)|)1−2H

|ω|1−2H
= 1,

that the autocorrelation function C1(k) of the filter output process Y with power spectrum

Sy(ω) = |1− e−jw|1−2H satisfies

lim
k→∞

C1(k)

2 Γ(2− 2H) sin(πH − π/2)k2H−2
= 1.

Thus, from [24, Thm. 3(2)], the marginal variance Cm(0) of the m-averaged process of the

filter output process satisfies

lim
m→∞

Cm(0)

C1(0)m2H−2
=

2 Γ(2− 2H) sin(πH − π/2)

H(2H − 1)
.

This implies that for m large, log[Cm(0)/C1(0)] behaves asymptotically as (2H−2) log(m)+

log[2Γ(2−2H) sin(πH−π/2)/(H(2H−1))]. Therefore, the filter output process is asymptotic

self-similar with parameter H from the aspect of variance-time analysis, when the average

window m is large.

A somewhat surprising result is that the designed filter output process Y is also quite

“self-similar” for small m. In other words, Y, in spite of its simple power spectrum formula,

14
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. . . , Y3, Y2, Y1 . . . , Ȳ

(m)
3 , Ȳ

(m)
2 , Ȳ

(m)
1

Figure 2.2: The variance-equivalent m-averaged process.

behaves close to an exact self-similar process from the aspect of variance-time analysis. This

can be numerically verified as follows.

The self-similar nature of the filter output process at small m can be established by

analyzing the marginal variance of its variance-equivalent m-averaged process. A variance-

equivalent m-average process Ȳ
(m)
1 , Ȳ

(m)
2 , Ȳ

(m)
3 , . . . of a random process Y1, Y2, Y3, . . . is its

output process through the filter g[n; m]
.
= (1/m) · l{0 ≤ n < m}, where l{·} is the set

indicator function (cf. Fig. 2.2). It is named the variance-equivalent m-averaged process

because its marginal variance is equal to that of the m-average process Y(m).

The autocovariance function C̄m(k) of the variance-equivalent m-averaged process can be

given by:

C̄m(k) = E
[
Ȳ

(m)
i+k Ȳ

(m)
i

]

= E

[(
Y(i+k)+1 · · ·Y(i+k)+m

m

)(
Yi+1 · · ·Yi+m

m

)]

=
∞∑

i=−∞
C̄1(i) · π(k − i),

where

π(i)
.
=

m− |i|
m2

· l{|i| ≤ m}.

Thus, the power spectrum of the variance-equivalent m-averaged process is equal to

Sy(ω)
sin2(mω/2)

m2 sin2(ω/2)
,
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and the variance of the m-averaged process of Y is given by:

Cm(0) =
1

2π

∫ π

−π

Sy(ω)
sin2(mω/2)

m2 sin2(ω/2)
dω =

22−2H

π

∫ π/2

0

sin2(mω)

m2 sin2H+1(ω)
dω,

which immediately gives:

log
Cm(0)

C1(0)
= log

∫ π/2

0

sin2(mω)

m2 sin2H+1(ω)
dω

∫ π/2

0

sin1−2H(ω)dω

= log

2Γ(1.5−H)

∫ π/2

0

sin2(mω)

m2 sin2H+1(ω)
dω

Γ(1−H)
√

π
,

where Γ(·) is the Euler gamma function defined as Γ(n)
.
=

∫∞
0

tn−1e−tdt. Based on the above

formula, we depict the relation between log[Cm(0)/C1(0)] and log(m) in Fig. 2.3, and observe

a perfect self-similarity from the aspect of variance-time analysis even for very small m.

In fact, we can analytically obtain a lower and an upper bounds that hold for every m

for log[Cm(0)/C1(0)] through two inequalities:

∫ π/2

0

sin2(mω)

m2 sin2H+1(ω)
dω ≥ m2H−2 (2/π)2H

2(1−H)

and

∫ π/2

0

sin2(mω)

m2 sin2H+1(ω)
dω ≤ m2H−2 (1 + 2Hπ)[2−2H − (1−H)]π2

8H2(2H − 1)(1−H)
,

and they again confirm the almost perfect self-similarity of the filter output process (cf. Fig. 2.4).

After the verification of self-similarity of the filter output process, it remains to design a

filter whose output spectrum due to an i.i.d. input of unity power spectrum equals Sy(ω),

or specifically, |H(ω)|2 = |1 − e−jw|1−2H . We note that the z-transforms, X(z) and Y (z),

of the filter input and output can be characterized by (1 − z−1)−a X(z) = Y (z), where

a
.
= (2H − 1)/2. By Taylor’s expansion, we obtain:

(1− z)−a = 1 +
a

1!
z +

a(a + 1)

2!
z2 + · · · =

∞∑
n=0

Γ(n + a)

Γ(n + 1)Γ(a)
zn.
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Figure 2.3: The variance-time analysis of the filter output process.

Therefore, the outputs y[1], y[2], y[3] . . . can be obtained through

y[n] =
∞∑

k=0

Γ(k + a)

Γ(k + 1)Γ(a)
x[n− k] =

∞∑

k=0

h[k] · x[n− k],

where

h[n]
.
=

Γ(n + a)

Γ(n + 1)Γ(a)
=

Γ(n + H − 0.5)

Γ(n + 1)Γ(H − 0.5)
for k ≥ 0.

Two problems will be encountered when one wishes to synthesize a self-similar network

packet-arrival traffic in terms of the proposed filter system. Firstly, it is of infeasibly infinite

length. Secondly, the filter outputs are in general non-integer-values even if the filter inputs

are integer-values. Modifications such as filter truncation to finite length and rounding to
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Figure 2.4: The lower and the upper bounds of log[Cm(0)/C1(0)].

the nearest integers are therefore necessary. We will numerically examine the impact on

self-similarity due to filter truncation and output rounding in later subsections.

2.1.2 Impact On Self-Similarity Due To Filter Truncation

Define h[k; W ]
.
= h[k] · l{0 ≤ k < W}. Then, the impact of the truncation window size

W on the degree of self-similarity of the filter output process can be characterized through

the derivation of the marginal variance Cm(0; W ) of the respective m-averaged filter output

process. Again, we derive Cm(0; W ) through the help of the technique of the variance-

equivalent m-average process.
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Figure 2.5: The variance-equivalent m-averaged process of the truncated filter output process.

Let G(ω; m) be the transfer function of the filter g[n; m], and let L(ω; W,m)
.
= H(w; W )G(w; m).

Then,

`[n; W,m] =
n∑

i=0

g[i; m]× h[n− i; W ] =
1

m

min{n,m−1}∑

i=max{0,n−W+1}
h[n− i].

By letting Sy(w; W ) be the truncated counterpart of Sy(ω), we obtain:

Cm(0; W ) =
1

2π

∫ π

−π

Sy(w; W )dω

=
1

2π

∫ π

−π

[ ∞∑
n=0

`[n]e−jnw

][ ∞∑
n=0

`[n]ejnw

]
dω

=
∞∑

n=0

|`[n]|2

=
1

m2





W−m∑

l=0

(
l+m−1∑

n=l

h[n]

)2

+
m−2∑

l=0




(
l∑

n=0

h[n]

)2

+

(
W−1∑

n=W−1−l

h[n]

)2





 .

Based on the above formula, we numerically depict log10[Cm(0; W )/C1(0; W )] versus log10(m)

in Fig. 2.6, and observe that there are two apparent different self-similar behaviors for differ-

ent m values. The resultant degree of self-similarity is close to the target one when m ≤ W ,

but the slope of the variance-time curve quickly turns to a non-self-similar value, −1, once

m > W .

2.1.3 Impact On Self-Similarity Due To Output Rounding

In this subsection, we further empirically examine the output rounding effect on self-similarity.

Table 2.1 lists the resultant Hurst parameter of the trace synthesized according to the sys-
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Figure 2.6: Variance-time analysis (log10 scale) for the truncated-filter output with
truncation window W = 103. The slope of the solid line is equal to 2H−2 for m ≤ W ,
and −1 for m > W .

tem in Fig. 2.7. It indicates that the rounding-to-the-nearest-integer operation on the filter

output will have “unstable” impact on the degree of self-similarity of the output trace. Our

simulations suggests that such an unstable impact can be neglected if the ratio of the maxi-

mal rounding error (i.e., 0.5) against the input mean λ is made less than 5%.
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Figure 2.7: The proposed asymptotic self-similar traffic synthesizer. H(w; W ) represents a
truncated version of H(ω) with truncation window W . The quantity bYi + 0.5c equals the
closest integer to Yi.

Table 2.1: Comparison between the resultant Hurst parameters of the traces synthesized by
the filter-based algorithm and the targeted ideal Hurst parameters.

Window size= 10000
Ideal H V-T(λ = 1) V-T(λ = 10)
0.5001 0.4898783 0.5064982
0.55 0.5504289 0.5344366
0.6 0.6413529 0.5641452
0.7 0.4775099 0.7013537
0.8 0.5399816 0.7799114
0.9 0.5958403 0.8716414

2.2 The Reverse Filter Versus The Forward Filter

It can be easily seen that the z-transforms, X(z) and Y (z), of the filter input and output

can be re-characterized by (1− z−1)a Y (z) = X(z). Again, by Taylor’s expansion,

(1− z−1)a = 1 +
−a

1!
z−1 +

−a(1− a)

2!
z−2 + · · · = 1− a

∞∑
n=1

Γ(n− a)

Γ(n + 1)Γ(1− a)
z−n.

Hence, the outputs y[1], y[2], y[3] . . . can be also obtained through an infinite impulse response

(IIR) filter as:

y[n] = x[n] + a

∞∑

k=1

Γ(k − a)

Γ(k + 1)Γ(1− a)
y[n− k] = x[n] +

∞∑

k=1

h′[k] · y[n− k],

where

h′[n]
.
=

a · Γ(n− a)

Γ(n + 1)Γ(1− a)
=

(H − 0.5) · Γ(n−H + 0.5)

Γ(1.5−H)Γ(n + 1)
for k ≥ 1.
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We refer h[·] as the forward filter and h′[·] as the reverse filter, since the latter has a

feedback or reverse path. Both h[·] system and h′[·] system can generate a true self-similar

process in response to, say, an i.i.d. Poisson input; however, unlike the forward filter, the

reverse filter gives an infinite impulse response filter (IIR) even if a finite truncation on

h′[·] is applied. This may give a false impression that the reverse system equipped with an

infinite impulse response (IIR) filter of finite number of coefficients can synthesize a more self-

similar trace than the forward system with truncated forward filter of the same computational

complexity (or more specifically, the same truncation window). Our simulations, however,

indicate that the effective range of both filters are actually similar (cf. Fig. 2.8).

2.3 Concluding Remarks

In this chapter, a new model is proposed for the synthesization of self-similar traffics based on

the filter technique. The synthesized trace can be made long-range dependent with adjustable

levels of bustiness and correlation. Only three parameters need to be specified in our model:

H is the targeted self-similar parameter that controls the bustiness and correlation of the

synthetic traffic, λ defines the mean of the synthesized traffic, and W determines not only

the length of the filter (which in turns determines the algorithmic complexity) but also the

valid aggregation size of self-similar nature from the aspect of variance-time analysis.

When being compared to the two known self-similar traffic synthesizers—random mid-

point displacement and Paxson’s spectrum fitting, our model provides advantages that the

synthetic traffic can be generated on the fly, and is always non-negative. The algorithmic

complexity of Paxon’s spectrum fitting was shown to be less than the random midpoint dis-

placement, and is given by (n/2) log2(n+2), where n is the length of the synthetic trace. The

complexity of our model, however, is dependent on W , and is equal to n×W . Hence, when

the valid aggregation size of self-similar nature is specified, the complexity of our model only
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Figure 2.8: Variance-time plots (log10 scale) for the two filter-based synthetic arrivals
with truncation window 104 and mean rate 1.

grows linearly with the trace size.
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Chapter 3

Correlation Approximation to the
Mutual Information of Self-Similar
Processes

3.1 Introduction

Mutual information and correlation coefficient are both used as measures of dependance

between random sources [27]. Generally speaking, the correlation coefficient only measures

the linear dependance, while mutual information can represent the general dependance [28].

Thus, in the sense of generality, mutual information is a somewhat better quantity to measure

the dependance than the correlation coefficient. However, estimating the mutual information

function is much more difficult than estimating the correlation coefficient, as it requires a

complete knowledge about the distributions.

In this chapter, we focus on the following question: Given the correlation coefficients

of random sources, what is the minimum possible value of mutual information? An upper

bound and a lower bound of this minimum possible value were established in situation where

the correlation coefficients are small. It was subsequently shown that both bounds can be

approximated by half the square of the correlation coefficient when the two random sources

are both one dimensional. When the random sources are multidimensional, we found that
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this minimum mutual information function can be approximated by half the square of the

Frobenius norm of the cross correlation coefficient matrix. We also address some examples

to show the accuracy of these approximative bounds.

3.2 Definitions and Notations

Definition 3.1. Given two random sources X and Y (not necessarily random variables or

random vectors), the mutual information function is defined as:

I (PX,Y ) or I(X; Y )
4
=

∑
x,y

PX,Y (x, y) log
PX,Y (x, y)(∑

z

PX,Y (z, y)

)(∑
w

PX,Y (x,w)

) ,

where PX,Y (x, y) is the probability of the event (X, Y ) = (x, y).

Definition 3.2. The divergence function of PX against QX is defined as:

D (PX‖QX)
4
=

∑
x

PX(x) log
PX(x)

QX(x)
,

where PX(x) and QX(x) are two probability mass functions, and the support of PX is con-

tained in the support of QX .

A straightforward consequence of the above definitions is that:

I (PX,Y ) = D (PX,Y ‖PX × PY ) ,

where PX(x)
4
=

∑
w PX,Y (x,w) and PY (y)

4
=

∑
z PX,Y (z, y).

Definition 3.3. (Minimum mutual information of a probability set) The minimum

mutual information function with respect to a set S of probabilities is defined as:

Imin (S)
4
= min

PX,Y ∈S
I (PX,Y ) ,

where PX,Y is the probability mass function of X and Y chosen from the set S.
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Definition 3.4. (Minimum divergence function of a probability set and two marginal

distributions) The minimum divergence function with respect to a set S of probabilities

and two marginal distributions, PX and PY , is defined as:

Dmin (S, PX , PY )
4
= min

QX,Y ∈S
D (QX,Y ‖PX × PY ) ,

where QX,Y is the probability mass function of X and Y chosen from the set S.

Definition 3.5. (Correlation coefficient matrix) Given two random vectors, ~X =

(X1, ..., Xn) and ~Y = (Y1, ..., Ym), the (i, j)-component of the correlation coefficient matrix

of ~X and ~Y is defined as:

C ~X,~Y (i, j)
4
= E[X̂iŶj],

where (X̂1, ..., X̂n) is the Karhunen-Loeve transformation of ~X, and each of (X̂1, ..., X̂n) has

zero mean and unity variance and is uncorrelated to the others, and (Ŷ1, ..., Ŷn) is defined

similarly with respect to ~Y .

Since Karhunen-Loeve transformation is invertible,

I (X1, ..., Xn; Y1, ..., Ym) = I(X̂1, ..., X̂n; Ŷ1, ..., Ŷn).

To simplify the proof in later section, we will assume that the considered ~X and ~Y are

already their Karhunen-Loeve transformation counterparts that satisfy the conditions of

uncorrelatedness, zero-mean and unity variance.

Definition 3.6. (Frobenius norm) The Frobenius norm of a matrix C is defined as:

‖C‖ 4
=

(∑
i,j

C2(i, j)

)1/2

,

where C(i, j) is the (i, j)-component of the matrix C.
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3.3 Main Theorems

Theorem 3.1. For two bounded1 random variables X and Y respectively with marginal

distributions PX and PY ,

Imin (Sρ) =
ρ2

2
+ o(ρ2), as ρ → 0,

where

Sρ
4
= {QX,Y : QX = PX , QY = PY and EQ[XY ] = ρ},

QX and QY are the marginal distributions of QX,Y , EQ[·] denotes that the expectation value

is calculated according to distribution QX,Y , and o(·) is the little-o notation [29, pp. 286].

Note that Sρ = Sρ(PX , PY ) is actually a function of the marginal distributions of PX and

PY . For convenience, we drop “(PX , PY )” in the notation, and reserve PX and PY to always

denote given marginals.

It can be shown that Imin (Sρ) is a convex function of ρ [26]. Specifically,

Imin

(Sλρ1+(1−λ)ρ2

) ≤ Imin (λSρ1 + (1− λ)Sρ2)

= Dmin (λSρ1 + (1− λ)Sρ2 , PX , PY )

= min
Q

(1)
X,Y

∈Sρ1

Q
(2)
X,Y

∈Sρ2

D
(

λQ
(1)
X,Y + (1− λ)Q

(2)
X,Y

∥∥∥ PX × PY

)

≤ min
Q

(1)
X,Y ∈Sρ1 ,Q

(2)
X,Y ∈Sρ2

[
λD

(
Q

(1)
X,Y

∥∥∥ PX × PY

)

+(1− λ)D
(

Q
(2)
X,Y

∥∥∥ PX × PY

)]

= λImin (Sρ1) + (1− λ)Imin (Sρ2) .

We now proceed to prove the theorem.

1 By ”boundedness”, we mean that there exists B > 0 such that PX [x ∈ < : |x| < B] =
PY [y ∈ < : |y| < B] = 1.
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Proof. In this proof, we first find a lower bound of Imin (Sρ). Then we use a specific distribu-

tion contained in Sρ to form an upper bound of Imin (Sρ). The theorem is then proved since

both bounds have the form ρ2/2 + o(ρ2) as ρ → 0.

Define a set Tρ as: Tρ
4
= {QX,Y : EQ[XY ] = ρ}. From the standpoint of mutual in-

formation and Karhunen-Loeve transformation, we can assume without loss of generality

that both PX and PY have zero marginal mean and unity marginal variance, and they are

uncorrelated.

Since Sρ ⊂ Tρ, Imin (Sρ) = Dmin (Sρ, PX , PY ) ≥ Dmin (Tρ, PX , PY ). Now, we apply the

Lagrange multiplier method to evaluate Dmin (Tρ, PX , PY ), i.e., to minimize

F (QX,Y ) = D (QX,Y ‖PX × PY )− β

(∑
x,y

xyQX,Y (x, y)− ρ

)
− θ

(∑
x,y

QX,Y (x, y)− 1

)
,

subject to the following restrictive conditions:

∑
x,y

xyQX,Y (x, y) = ρ, (3.1)

and
∑
x,y

QX,Y (x, y) = 1.

We then take the derivative of F (QX,Y ) with respect to QX,Y (x, y), and obtain

∂F (QX,Y )

∂QX,Y (x, y)
= 1 + log

QX,Y (x, y)

PX(x)PY (y)
− βxy − θ.

Letting the above derivative be zero, we have that the optimal QX,Y must satisfy:

QX,Y (x, y) =
PX(x)PY (y) exp{βxy}∑
u,v PX(u)PY (v) exp{βuv} =

PX(x)PY (y) exp{βxy}
M(β)

,

where

M (β) =
∑
u,v

PX(u)PY (v) exp{βuv}.
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Taking the above result into Dmin (Tρ, PX , PY ) yields

Dmin (Tρ, PX , PY ) = βρ− C (β) ,

where C (β) = log M (β). Denote f(β) = ∂C(β)/∂β, and observe that

f (β) =
∑
x,y

xyQX,Y (x, y) = EQ[XY ].

Hence, the restrictive condition in (3.1) can be written as f (β) = ρ.

Since X and Y are bounded with respect to distributions PX and PY , respectively, the

moment generating function M(β) is defined throughout an interval (−β0, β0) for some β0 >

0, which implies that moments of all orders are finite (namely,
∑

x,y xiyj PX(x) PY (y) < ∞
for i ≥ 1 and j ≥ 1), and M(β) has a Taylor expansion about origin with positive radius of

convergence [30, pp. 278], and so do C(β) and f(β). Using the Taylor expansions of f (β)

and C (β), we have

f (β) = f(0) + f ′(0)β +
f ′′(0)

2!
β2 + o(β2)

= β +
γ

2
β2 + o(β2),

and

C (β) = C(0) + C ′(0)β +
C ′′(0)

2!
β2 +

C ′′′(0)

3!
β3 + o(β3)

=
β2

2
+

γ

6
β3 + o(β3),

where γ =
∑

x,y x3y3PX(x)PY (y). Accordingly, β = ρ + o(ρ2), and C (β) = ρ2/2 + o(ρ3).

This immediately concludes Dmin (Tρ, PX , PY ) = βρ− C (β) = ρ2/2 + o(ρ3).

Now, we turn to the task of finding an upper bound. It suffices to use a trial distribution

in Sρ to form an upper bound. Define this trial distribution as:

JX,Y (x, y)
4
= PX(x)PY (y)(1 + ρxy),
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and examine2 that
∑

x,y JX,Y (x, y) = 1,
∑

y JX,Y (x, y) = PX(x),
∑

x JX,Y (x, y) = PY (y), and
∑

x,y xyJX,Y (x, y) = ρ. Using the inequality

x− x2

2
+

x3

3
≥ log (1 + x),

for |x| < 1, we have

I (JX,Y ) =
∑
x,y

PX(x)PY (y)(1 + ρxy) log(1 + ρxy)

≤ ρ2

2
− γ

6
ρ3 +

η

3
ρ4,

where η =
∑

x,y x4y4PX(x)PY (y). Since I (JX,Y ) ≥ Imin (Sρ) ≥ Dmin (Tρ, PX , PY ), we have

Imin (Sρ) =
ρ2

2
+ o(ρ2).

Theorem 3.2. Consider two bounded random vectors ~X = (X1, ..., Xn) and ~Y = (Y1, ..., Ym).

If the correlation coefficient matrix C satisfies |C(i, j)| < ρ for each 1 ≤ i ≤ n and 1 ≤ j ≤ m,

then

Imin (SC) =
1

2
‖C‖2 + o(ρ2), as ρ → 0,

where

SC
4
= {Q ~X,~Y : Q ~X = P ~X , Q~Y = P~Y and EQ[XiYj] = C(i, j)},

Q ~X and Q~Y are the marginal distributions of Q ~X,~Y , EQ[·] denotes that the expectation value

is calculated according to distribution Q ~X,~Y , and o(·) is the little-o notation [29, pp. 286].

Proof. The proof is similar to the previous theorem; hence, it is omitted.

2Notably, following footnote 1, we can guarantee that 0 ≤ JX,Y (x, y) ≤ 1 when |ρ| ≤ 1/B2,
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3.4 Examples

To discuss the accuracy of the upper and lower bounds of the minimum mutual information

function, we first consider the simple case that both random variables X and Y are binary

random variables, each taking values from {0, 1}. In this case, given the correlation coefficient

ρ and marginal mean, a = E[X] and b = E[Y ], one can determine the joint distribution of

X and Y , i.e.,

PX,Y (0, 0) = (1− a)(1− b) + r

PX,Y (0, 1) = (1− a)b− r

PX,Y (1, 0) = a(1− b)− r

PX,Y (1, 1) = ab + r

where r = E[XY ] − E[X]E[Y ] = ρ[a(1 − a)b(1 − b)]1/2. The mutual information I(X; Y )

can be written as

I(X; Y ) = Hb(b)− aHb

(
b +

r

a

)
− (1− a)Hb

(
1− b +

r

1− a

)
,

where Hb(b) = −b log (b)− (1− b) log (1− b) is the binary entropy function. Thus, in binary

case, Imin (Sρ) = I(X; Y ). We then take the uniform marginal distributions as an example,

i.e., a = 1
2

and b = 1
2
, and obtain Dmin (Tρ, PX , PY ) = ρ tanh−1(ρ)+ 1

2
log (1− ρ2) = I(X; Y ).

Therefore, the lower bound used in the proof coincides with the minimum mutual information

function. Notably, the simple binary case has already been examined in [28].

A good example that meets the boundedness assumption of our theorem is the Morgen-

stern distribution [31] that has the density of

p(x, y) = 1 + α(2x + 1)(2y + 1),

where 0 ≤ x, y ≤ 1, and its correlation coefficient equals Cx,y = α/3. Its asymptotic mutual
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information with respect to the correlation coefficient can be obtained easily as:

I(X; Y ) =
α2

18
+

α4

300
+ o(α5) =

ρ2

2
+ o(ρ2).

An example that can be used to show that Imin(Sρ) is indeed a lower bound to the mutual

information of PX,Y ∈ Sρ is the bivariate density p(x, y) = pY |X(y|x)pX(x), where pX(x) =

1
2a
· l[|X| ≤ a] and pY |X(y|x) = 1

2b
· l[|Y − αX| ≤ b], which exactly define a uniform diagonal

strip. The asymptotic mutual information of the uniform diagonal strip can be derived easily

from [31] as |ρ|
2
− |ρ|3

4
+ o(|ρ|4). This indicates that in some situations, I(X; Y ) > Imin (Sρ).

The validity of the theorem statement can be extended to the (unbounded) case that

PX and PY are both Gaussian distributed. In this case, the minimum value of mutual

information can be achieved by a jointly Gaussian distributed QX,Y . One can derive that for

Gaussian PX and PY , Imin (Sρ) = −1
2
log (1− ρ2). The lower bound, however, is given by:

Dmin(Tρ, PX , PY ) = −1

2
+

(
1

4
+ ρ2

) 1
2

+
1

2
log

(
−1

2
+ (1

4
+ ρ2)

1
2

ρ2

)
,

and is smaller than the simple hyperbolic approximation of Imin(Sρ) ≈ ρ2

2
. In addition, the

“upper bound” used in the proof ρ2

2
+ ρ4 may become smaller than Imin (Sρ) at large |ρ|.

Since we only use the upper bound under |ρ| ¿ 1, we would not expect it to be useful outside

the concerned range.
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Figure 3.1: The bounds and minimum mutual information for Gaussian distributed PX and
PY .
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Chapter 4

Bayesian Decentralized Detection for
Exponential Distributions

A decentralized detection system consists of n sensors, sometimes geographically dispersed,

and a remote fusion center. Each of the sensor observes a phenomenon (often modeled as a

random variable Xi), summarizes it into a single bit ui, and then transmits ui to the fusion

center uncooperatively. Based on received {ui}n
i=1, the fusion center determines whether

{Xi}n
i=1 are drawn from the null distribution P (·|H0) or the alternative distribution P (·|H1).

Decentralized detection, despite that it has a simple scenario, and has been studied

extensively for more than two decades, still has many unsolved issues in the fundamental

level. One of these unsolved issues concerns the global optimal strategy for the design of

sensors and the fusion center. The difficulties comes from several points. Firstly, only

the necessary conditions for the optimal strategy are known; hence, one have to search all

the solutions to the equations of the necessary conditions in order to determine the global

optimum. Moreover, these equations are coupled and nonlinear, and hence, to solve them

is proved to be a hard mission [32]. The knowledge about the global optimal strategy is so

little that there are almost no analytical results for the system with more than two sensors.

The asymptotic results, however, had been found more pleasantly: the system with identical

34



sensors has the same exponents of error probabilities as the optimal system [37]; the ratio

of error probabilities between these two systems are shown bounded from above and from

below [36]. Yet the exact and analytical results for the system with some finite n > 2 are

still absent, although such results will give us more insight about the global optimum than

the asymptotic results.

In this chapter, we analyze the decentralized classification problem for exponential sources

for n > 2, and validate an intuition that the optimal system is the system with identical

sensors. To our knowledge, there is no similar analytical result for the global optimum for

the system with more than two sensors.

4.1 Preliminaries

Definition 4.1. If X is a random variable with an exponential distribution, then the prob-

ability that X is greater than some number x is given by

1− FX(x) = Pr(X > x) = e−αx

for x ≥ 0, where α is a positive parameter, and FX(x) is the cumulative distribution function

(CDF) of X.

It follows that the probability density function (PDF) of an exponential distribution has

the form

fX(x) = αe−αx,

for x ≥ 0.

In this chapter, we concern the following binary hypothesis testing problem for exponen-

tial distributions:

H1 : fX(xi) = βe−βxi
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versus

H0 : gX(xi) = γe−γxi ,

or equivalently,

H1 : FX(xi) = 1− e−βxi

versus

H0 : GX(xi) = 1− e−γxi ,

for i = 1, 2, . . . , n, β < γ, and for xi ≥ 0, where xi is the observed value of the random

variable Xi at the i-th sensor. We assume that {Xi}n
i=1 form a set of independent and

identically distributed (i.i.d.) random variables. The prior probabilities of H1 and H0 are

denoted as r1 and r0 or simply r and 1− r, respectively. For a fixed fusion rule, it is known

that the optimal local decision rule for each sensor is the local likelihood ratio test (LLRT),

i.e.,

fX(xi)

gX(xi)
=

βe−βxi

γe−γxi

ui=1

R
ui=0

λi

or equivalently,

xi

ui=1

R
ui=0

ti

for i = 1, 2, . . . , n, where ui is the decision of i-th sensor, ti = 1
γ−β

log(λi

ξ
) is some constant

threshold to be decided, and ξ = β
γ
. Let PD(λi) and PF (λi) denote respectively the detection

probability and the false alarm probability for the i-th sensor, where

PD(λi) = Prob(ui = 1|H1) =
1

λ̃i
β̃

and

PF (λi) = Prob(ui = 1|H0) =
1

λ̃i
γ̃
.

Both are functions of the LLRT threshold λi as λ̃i = λi

ξ
, β̃ = β

γ−β
and γ̃ = γ

γ−β
. Notably,

1 ≤ λ̂ ≤ ∞, γ̂ = β̂ + 1 and dPD

dPF
= ξλ̂. Moreover, we can rewrite PD and λi as functions of
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PF , i.e.,

PD(PF (i)) = PF (i)ξ

and

λi =
dPD(PF (i))

dPF (i)
= ξ

PD(PF (i))

PF (i)
,

where we abuse the notations to let PF (i) and PD(PF (i)) represent the false alarm probability

and the detection probability of the i-th sensor, respectively. The graph consists of all

(PF , PD) pairs is referred to as Receiver Operating Characteristics (ROC curve), which is

identical for all sensors since the statistics of their observations are all the same.

The sensors transmit their decisions {ui}n
i=1 to the fusion center that makes the final

decision u0, which equals ` when the fusion center favors H`. Once the fusion rule is fixed,

we can then evaluate the system detection probability QD(λ1, · · · , λn) = Prob(u0 = 1|H1),

the system false alarm probability QF (λ1, · · · , λn) = Prob(u0 = 1|H0) and the probability of

error P
(n)
e (λ1, · · · , λn) = r(1−QD(λ1, · · · , λn)) + (1− r)QF (λ1, · · · , λn) as functions of the

local thresholds λ1, · · · , λn.

It is known from classical detection theory that the fusion center should make the overall

decision u0 based on the likelihood ratio test of received u1, , u2 . . . , un. Therefore, the error

probability can be expressed as

P (n)
e (λ1, · · · , λn) =

∑

un∈{0,1}n

min

[
r

(
1−

n∏
i=1

PD(λi)
ui(1− PD(λi))

1−ui

)
,

(1− r)
n∏

i=1

PF (λi)
ui(1− PF (λi))

1−ui

]
.

The above formula, however, is in general not differentiable, and could give us little insight

into the optimal choice of LLRT thresholds (λ1, · · · , λn).

For identical sensor system design, it is known that the optimal fusion rule should be a
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k-out-of-n rule,

u0 =

{
1, if u1 + · · ·+ un ≥ k
0, if u1 + · · ·+ un < k,

where k is some positive integer smaller or equal to n. However, to our knowledge, the

validity of the converse statement, i.e., for any k-out-of-n fusion rule, the optimal strategy

is to apply identical local decision rules for all sensors, is still unknown.

Now, let us define a function A(λ), and prove a relevant lemma that is useful in the

subsequent sections. Define a function A(λ) as

A(λ) = log
Pr(u = 1|H1)

Pr(u = 1|H0)
− log

Pr(u = 0|H1)

Pr(u = 0|H0)
.

Then we have the following result.

Lemma 4.1. A(λ) is a positive and monotonically increasing function of λ.

Proof. Firstly,

A(λ) = log

(
PD(λ)

PF (λ)

)
− log

(
1− PD(λ)

1− PF (λ)

)
,

is positive because for the ROC curve,

PD(λ)

PF (λ)
>

1− PD(λ)

1− PF (λ)
.

Taking derivative of A(λ) with respect to λ, we obtain

A′(λ) = (−P ′
F (λ))

(
−∂A(λ)

∂PF

)

= (−P ′
F (λ))

(
−

(
λ

PD

− 1

PF

)
+

( −λ

1− PD

− −1

1− PF

))

=
−P ′

F (λ)

PD(1− PD)

(
PD(1− PD)

PF (1− PF )
− λ

)

=
−P ′

F (λ)

PF (1− PD)

(
1− PD

1− PF

− ξ

)

≥ 0,

where in the above derivation, we use λ = ξ PD

PF
, 1−PD

1−PF
≥ ξ, and PF (λ) is a monotonically

decreasing function of λ.
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In terms of A(λ) defined above, it can be shown that the likelihood ratio test of u1, , u2 . . . , un

at the fusion center is equivalent to
n∑

i=1

A(λi)ui

u0=1

R
u0=0

log

(
1− r

r

)
−

n∑
i=1

1− PD(λi)

1− PF (λi)
. (4.1)

4.2 System with one sensor

We start our analysis from the simplest case: A system with only one sensor. In such case, the

only possible fusion rule is u0 = u1. This leads to that the system detection probability and

the system false alarm probability are QD(λ1) = PD(λ1) = ( ξ
λ1

)β and QF (λ1) = PF (λ1) =

( ξ
λ1

)γ. As a result, the system probability of error is given by

P (1)
e (λ1) = r(1− PD(λ1)) + (1− r)PF (λ1)

= r

(
1−

(
ξ

λ1

) β
γ−β

)
+ (1− r)

(
ξ

λ1

) γ
γ−β

,

where λ1 ≥ ξ is the LLRT threshold of the first (and only) sensor. Taking the derivative of

both sides of the above formula with respect to λ1 and using dPD

dPF
= λ1, we obtain

dP
(1)
e

dλ1

= (rλ1 − (1− r))(−P ′
F (λ1))

= r(−P ′
F (λ1))

(
λ1 − 1− r

r

)
.

Notably, the false alarm probability PF decreases as the LLRT threshold λ1 increases, i.e.,

P ′
F (λ1) = dPF

dλ1
≤ 0. We then have

dP
(1)
e

dλ1





≤ 0, for
1− r

r
≥ λmax

≥ 0, for
1− r

r
≤ λmin

= 0, for some λ∗ =
1− r

r
where λmax and λmin is the maximum and minimum values of the threshold λ1. Consequently,

P
(1)
e has an interior minimum only when

λmin ≤ 1− r

r
≤ λmax.
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For 1−r
r
≤ λmin and 1−r

r
≥ λmax, we respectively obtain P

(1)
e (λmin) = 1−r and P

(1)
e (λmax) = r.

For the specific hypothesis distributions of exponential, we have λmin = ξ and λmax = +∞.

Hence, the optimal probability of error for the single sensor system becomes

P (1)
e =





P
(1)
e (λ∗) , if r ≤ 1

1 + ξ

1− r, if r >
1

1 + ξ
,

where λ∗ = 1−r
r

satisfies

rPD(λ∗)
(1− r)PF (λ∗)

=
1

ξ
.

4.3 Parallel Two-sensor System

We now turn to a true decentralized system, i.e., a system with two sensors. Hence, there

will be two sensors’ decisions, u1 and u2, available at the fusion center.

The two-sensor system has been discussed extensively in literature, since for systems with

more than two sensors, it seems to be hard in the investigation of the optimal performance.

For a two-sensor system, only three fusion rules are available: OR, AND, and XOR. Since

we assume that the sensors’ observations are conditionally independent given the hypothesis,

the XOR fusion rule can not be a likelihood ratio test of u1 and u2 at the fusion center; thus,

it should be excluded in the optimal design. Since AND and OR fusions are symmetric in

the sense that u1 and u2 can be complemented before transmission, we will focus only on

the OR fusion in the next subsection. Specifically, we will show that the identical sensor

system is optimal for the exponential hypothesis distributions considered.

For a two-sensor system with LLRT thresholds λ1 and λ2 under the OR fusion rule, the
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formula of error probability is given by

P
(2)
e,OR (λ1, λ2) = r(1− PD(λ1))(1− PD(λ2)) + (1− r)(1− (1− PF (λ1))(1− PF (λ2)))

= r

(
1−

(
ξ

λ1

) β
γ−β

)(
1−

(
ξ

λ2

) β
γ−β

)

+(1− r)

(
1−

(
1−

(
ξ

λ1

) γ
γ−β

)(
1−

(
ξ

λ2

) γ
γ−β

))
.

We then have the next lemma.

Theorem 4.1. For the decentralized detection of exponential sources, the optimal strategy

of a two-sensor system given the OR fusion rule is to have two identical sensors.

Proof. Taking the derivative of P
(2)
e,OR with respect to λi, we have

∂P
(2)
e,OR

∂λi

= (−P ′
F (λi))

(
−∂P

(2)
e,OR

∂PF (i)

)

= (−P ′
F (λi))(rλi(1− PD(λ3−i))− (1− r)(1− PF (λ3−i)))

= (−P ′
F (λi))r(1− PD(λ3−i))

(
λi − 1− r

r

1− PF (λ3−i)

1− PD(λ3−i)

)

= (−P ′
F (λi))r(1− PD(λ3−i))

(
ξ
PD(λi)

PF (λi)
− 1− r

r

1− PF (λ3−i)

1− PD(λ3−i)

)
,

for i = 1, 2. Thus, if there exists a (λ1, λ2) such that
∂P

(2)
e,OR

∂λ1
= 0 and

∂P
(2)
e,OR

∂λ2
= 0, then this

(λ1, λ2) must also satisfies

A(λ1) = A(λ2),

which from Lemma 4.1, can be valid only when λ1 = λ2.

It remains to validate the existence of such (λ1, λ2). From the above derivation, their

existence relies on the claim that

λ =
1− r

r

1− PF (λ)

1− PD(λ)
(4.2)
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has solutions for λ ≥ ξ. Since 1−PF (λ)
1−PD(λ)

decreases monotonically, and λ increases monoton-

ically, (4.2) has an unique root if 1−r
r
≥ ξ2, or equivalently, r ≤ 1

1+ξ2 . For the case that

r > 1
1+ξ2 , we derive

λi ≥ ξ >
1− r

r

1

ξ
≥ 1− r

r

1− PF (λi)

1− PD(λi)
,

i.e.,
∂P

(2)
e,OR

∂λ1
> 0 and

∂P
(2)
e,OR

∂λ2
> 0. Thus, the optimal strategy is still to adopt the identical

LLRT thresholds, i.e., λ1 = λ2 = ξ. Hence, for both r ≤ 1
1+ξ2 and r > 1

1+ξ2 , the optimal

strategy is to adopt identical sensors.

In summary of the above theorem, the optimal error probability for the OR fusion rule

is given by

P (2)
e =





P
(2)
e,OR(λ∗, λ∗) = (1− r)

(
1−

(
1− (

ξ
λ∗

) γ
γ−β

)2
)

+ r

(
1− (

ξ
λ∗

) β
γ−β

)2

, if r ≤ 1
1+ξ2

1− r, if r > 1
1+ξ2 ,

where λ∗ is the solution of the equation

λ∗ =
1− r

r

1− PF (λ∗)
1− PD(λ∗)

,

or equivalently, is the solution of

r

1− r

PD(λ∗)(1− PD(λ∗))
PF (λ∗)(1− PF (λ∗))

=
1

ξ
.

We end the above discussion by noting that the OR fusion is simply the 1-out-of-2 fusion

rule, for which it is possible that for systems with more sensors, k-out-of-n fusion rule may

be an optimal choice.

4.4 The Parallel Sensor System with an Additional

Broadcast Sensor

Now, we temporarily turn our attention to a system with a different configuration from the

parallel system in the previous sections, that is, a parallel sensor system with n−1 “ordinary”

42



sensors and an additional special sensor. For convenience, we will index the special sensor

as the n-th sensor. In operation, the broadcast sensor will broadcast its local decision to

all other sensors and the fusion center before each of them makes its own decision. More

precisely, the broadcast sensor makes its decision un based on its own observation Xn first,

and then sends un to the fusion center and the remaining n − 1 ordinary sensors. The i-th

(ordinary) sensor afterwards makes its decision ui based on its own observation Xi and the

received un, and then conveys ui to the fusion center individually. Once all of {ui}n
i=1 are

received, the fusion center performs a likelihood ratio test of (u1, . . . , un−1, un), and decide

whether the hypothesis H1 or the hypothesis H0 is true. In subsequent discussions, we

restrict ourselves to the special case that the n− 1 “ordinary” sensors are all identical, and

only the broadcast sensor can have a different local decision rule.

It can be shown that the likelihood ratio test of received (u1, . . . , un−1, un) at the fusion

center still results in a majority voting fusion rule, i.e., a k-out-of-(n − 1 + m) fusion rule

with the broadcast sensor has m ballots, while each of other “ordinary” sensors has only one

ballot. For conciseness, we will refer the conventional parallel n-sensor system as system Γn

and the system described above (with the identical ordinary sensors) as system Ξn hereafter.

Before we research on the general Ξn system, let us take a look at the simplest kind of

it, i.e., system Ξ2. It turns out that system Ξ2 is equivalent to the decentralized 2-sensor

tandem (serial) system in literature. Since the only non-broadcast sensor in system Ξ2 has

acquired all necessary information in making its own decision, we can just let the first sensor

in Ξ2 be integrated with the fusion center, and take u0 = u1.

In the following, we shows that for the classification of exponential sources problems, the

optimal serial two-sensor strategy is to adopt identical local decision rules for both sensors,

and an OR fusion rule at the first sensor.
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4.4.1 The Serial Two-sensor System

A serial two-sensor system operates equivalently as system Ξ2. The second sensor makes its

decision u2 according to its observation X2, and then conveys u2 to the first sensor. The first

sensor then makes the overall decision based on the received u2 and its own observation X1. It

is known that for the tandem configuration of two-sensor network, the optimal local decision

rules are [32] that for the first sensor, two local likelihood ratio thresholds are required (one

for u2 = 0 and the other for u2 = 1), while for the second sensor, only one the local likelihood

ratio threshold is sufficient.

Denote the LLRT threshold of the second sensor by η. Let the LLRT threshold of the

first sensor for u2 = 0 as θ0, and that for u2 = 1 as θ1. Then, the probability of error can be

written straightforwardly as

Pe(η, θ1, θ0) = rPD(η)(1− PD(θ1)) + (1− r)PF (η)PF (θ1)

+ r(1− PD(η))(1− PD(θ0)) + (1− r)(1− PF (η))PF (θ0).

Taking the derivatives of Pe with respect to η, θ1, and θ0, we have

∂Pe

∂η
= (−P ′

F (η))

(
− ∂Pe

∂PF (η)

)

= (−P ′
F (η))(rη(PD(θ1)− PD(θ0))− (1− r)(PF (θ1)− PF (θ0))),

∂Pe

∂θ1

= (−P ′
F (θ1))

(
− ∂Pe

∂PF (θ1)

)
= (−P ′

F (θ1))(rθ1PD(η)− (1− r)PF (η)),

and

∂Pe

∂θ0

= (−P ′
F (θ0))

(
− ∂Pe

∂PF (θ0)

)
= (−P ′

F (θ0))(rθ0(1− PD(η))− (1− r)(1− PF (η))).

Equating the above derivatives with zero, we obtain the necessary conditions for the

optimal error probability as

η
PD(θ1)− PD(θ0)

PF (θ1)− PF (θ0)
=

1− r

r
, (4.3)
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θ1
PD(η)

PF (η)
=

1− r

r
, (4.4)

and

θ0
1− PD(η)

1− PF (η)
=

1− r

r
. (4.5)

Since for the ROC curve, PD(η)
PF (η)

> η > 1−PD(η)
1−PF (η)

, we have θ1 < PD(θ1)−PD(θ0)
PF (θ1)−PF (θ0)

< θ0.

Let us take a look at two extreme cases, namely, θ0 = ∞ and θ1 = 0. It turns out that1

the cases of θ0 = ∞ and θ1 = 0 are equivalent to that the first sensor makes a local decision

u1 according to its own observation X1 only, and then applies the AND and OR fusion

rules, respectively, to decide the overall output u0.

Lemma 4.2. For the serial two-sensor system with θ0 = ∞, the optimal strategy is to let

the first and the second sensors make their local decisions u1 and u2 according to the LLRTs

of their own observations X1 and X2, respectively, and then apply the AND fusion rule at

the output of the first sensor, i.e., u0 = u1 ⊗ u2.

Proof.

Pe(η, θ1,∞) = rPD(η)(1− PD(θ1)) + (1− r)PF (η)PF (θ1)

+ r(1− PD(η))(1− PD(∞)) + (1− r)(1− PF (η))PF (∞)

= rPD(η)(1− PD(θ1)) + (1− r)PF (η)PF (θ1) + r(1− PD(η))

= r(1− PD(η)PD(θ1)) + (1− r)PF (η)PF (θ1),

where we have used a property of the ROC: PD(∞) = PF (∞) = 0.

Lemma 4.3. For the serial two-sensor system with θ1 = 0, the optimal strategy is to let the

first and the second sensors make their local decisions u1 and u2 according to the LLRTs of

their own observations X1 and X2, respectively, and then apply the OR fusion rule at the

output of the first sensor, i.e., u0 = u1 ⊕ u2.

1Here, with a slight abuse of notations, we let the intermediate product, i.e., the result of the LLRT at
the first sensor, be denoted by u1, and let the ultimate output of the first sensor be denoted by u0).
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Proof.

Pe(η, 0, θ0) = rPD(η)(1− PD(0)) + (1− r)PF (η)PF (0)

+ r(1− PD(η))(1− PD(θ0)) + (1− r)(1− PF (η))PF (θ0)

= (1− r)PF (η) + r(1− PD(η))(1− PD(θ0)) + (1− r)(1− PF (η))PF (θ0)

= r(1− PD(η))(1− PD(θ0)) + (1− r)(1− (1− PF (η))(1− PF (θ0))),

where we have used a property of the ROC: PD(0) = PF (0) = 1.

In both of the above cases, the serial two-sensor systems function exactly like the parallel

two-sensor system with corresponding fusion rules. In general, the optimal serial two-sensor

system uses two finite and nonzero LLRT thresholds at the first sensor, and therefore does

not necessarily reduce to some equivalent parallel two-sensor system. In the next theorem,

we show that for the considered classification problem of exponential sources, the optimal

serial two-sensor system is one of the above extreme cases. More precisely, the optimal serial

two-sensor system is equivalent to the optimal parallel two-sensor system.

Theorem 4.2. For the classification problem of exponential sources, the optimal strategy

for the serial two-sensor system is to let the first and the second sensors make their local

decisions u1 and u2 according to the LLRTs of their own observations X1 and X2 with the

two equal thresholds θ0 and η, respectively, and then apply either AND or OR fusion rules

at the output of the first sensor.

Proof. Firstly, define a function B(λ) = λ
PD(λ)

PF (λ)

. Then, (4.3) becomes

B(η)
PD(η)

PF (η)

PD(θ1)− PD(θ0)

PF (θ1)− PF (θ0)
=

1− r

r
.

Combining the above equation with the (4.4), we establish

θ1 = B(η)
PD(θ1)− PD(θ0)

PF (θ1)− PF (θ0)
.
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By using the identity θ1 = B(θ1)
PD(θ1)
PF (θ1)

, the above equation can be written as

PD(θ1)
PD(θ0)

PF (θ1)
PF (θ0)

=
B(η)

B(θ1)

PD(θ1)
PD(θ0)

− 1

PF (θ1)
PF (θ0)

− 1
. (4.6)

In (4.6), if B(η)
B(θ1)

≥ 1, then we immediately have

PD(θ1)
PD(θ0)

PF (θ1)
PF (θ0)

≥
PD(θ1)
PD(θ0)

− 1

PF (θ1)
PF (θ0)

− 1
,

which leads to

PD(θ1)

PF (θ1)
≥ PD(θ0)

PF (θ0)
.

Since PD(λ)
PF (λ)

increases monotonically with respect to λ, we have

θ1 ≥ θ0,

which contradicts the aforementioned proposition: θ0 ≥ θ1. Hence, B(η)
B(θ1)

< 1. Yet, for the

classification of exponential sources problem, we have B(η) = B(θ1) = ξ; thus, the optimal

(η, θ1, θ0) must lie on the boundary, i.e., the two extreme cases.

Remark 4.1. For the classification problem of the additive Gaussian sources, B(λ) is a

monotonically increasing function of λ; thus, η < θ1 < θ0.

Corollary 4.1. For the classification problem of exponential sources, the optimal perfor-

mance of the serial two-sensor system is equal to the optimal performance of the parallel

two-sensor system.

4.5 The Ξn System

We now turn to the Ξn system, that is, the system with n−1 ordinary sensors, one broadcast

sensor, and a fusion center with n ≥ 3. It is easy to see that for the optimal system, each

of the ordinary sensors still uses the joint LLRT of its own low observation and the received
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un to determine its output ui; however, it is not clear whether the optimal local decision

rule of the broadcast sensor is still a LLRT on its own observation. Nonetheless, we will

only discuss the case that the broadcast sensor adopts the LLRT as its local decision rule in

this dissertation. Note that the extension of the result in this section to the optimal parallel

system in the following sections is not affected by this restriction.

Denote the LLRT threshold of the n-th sensor as η. Denote the common LLRT thresholds

of the (n − 1) ordinary sensors as θ0 for un = 0, and θ1 for un = 1. Put the fusion rule as

u0 = Υ(u1, . . . , un), or simply Υ. One can then decompose the fusion rule Υ as

Υ(u1, . . . , un) = unΥ1(u1, . . . , un−1) + (1− un)Υ0(u1, . . . , un−1),

where Υ1(u1, . . . , un−1) = Υ(u1, . . . , un−1, 1) and Υ0(u1, . . . , un−1) = Υ(u1, . . . , un−1, 0) corre-

spond to the “conditional” fusion rules on (u1, . . . , un−1) conditioning on un = 1 and un = 0,

respectively.

The probability of error then can be expressed as

P̃ (n)
e = r(1− PD(η))(1−R<0>

D (θ0)) + (1− r)(1− PF (η))R<0>
F (θ0)

+ rPD(η)(1−R<1>
D (θ1)) + (1− r)PF (η)R<1>

F (θ1),

where P<0>
D (θ0) and P<0>

F (θ0) are the detection probability and the false alarm probability

of the parallel (n − 1)-sensor system with the common LLRT threshold θ0 and fusion rule

Υ0(u1, . . . , un−1), respectively. P<1>
D (θ1) and P<1>

F (θ1) are defined similarly.

Despite of some normalization constants, one can easily verify that in the formula of P̃
(n)
e ,

the first two terms can be regarded as the probabilities of error of the parallel (n− 1)-sensor

system with the common LLRT threshold θ0, the fusion rule Υ0(u1, . . . , un−1) and the prior

probability Pr{H1} = r(1 − PD(η)). Likewise, the last two terms can be treated as the

probability of error of the parallel (n− 1)-sensor system with the common LLRT threshold
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θ1, the fusion rule Υ1(u1, . . . , un−1), and the prior probability Pr{H1} = rPD(η). These two

probabilities of errors will be referred as R<0>
e (θ0) and R<1>

e (θ1), respectively.

Now, since we assume that the ordinary sensors are all identical, the fusion rules Υ1(u1, . . . , un−1)

and Υ0(u1, . . . , un−1) must have the forms of the k-out-of-(n− 1 + m) rules. For 1 < k < n,

the probability of error can then be expressed as

P̃
(n)
e,k (η, θ0, θ1) = r(1− PD(η))(1−Q

(n−1)
D,k (θ0)) + (1− r)(1− PF (η))Q

(n−1)
F,k (θ0)

+ rPD(η)(1−Q
(n−1)
D,k−m(θ1)) + (1− r)PF (η)Q

(n−1)
F,k−m(θ1),

where

Q
(n−1)
D,k (θ0) =

n−1∑

l=k

Cn−1
l PD(θ0)

l(1− PD(θ0))
n−1−l,

Q
(n−1)
F,k (θ0) =

n−1∑

l=k

Cn−1
l PF (θ0)

l(1− PF (θ0))
n−1−l,

Q
(n−1)
D,k−m(θ1) =

n−1∑

l=k−m

Cn−1
l PD(θ1)

l(1− PD(θ1))
n−1−l,

and

Q
(n−1)
F,k−m(θ1) =

n−1∑

l=k−m

Cn−1
l PF (θ1)

l(1− PF (θ1))
n−1−l.

For k = 1 and k ≥ n, the probabilities of errors are given by

P̃
(n)
e,1 (η, θ0) = r(1−PD(η))(1−PD(θ0))

n−l+(1−r)(1−PF (η))(1−(1−PF (θ0))
n−l)+(1−r)PF (η),

and

P̃
(n)
e,k (η, θ0, θ1) = r(1− PD(η)) + rPD(η)(1−Q

(n−1)
D,k−m(θ1)) + (1− r)PF (η)Q

(n−1)
F,k−m(θ1).

Let us take a look at a special case of P̃
(n)
e,k , i.e., m = 1. For this case, the overall fusion

rule becomes

Υ(u1, . . . , un) =

{
1, if u1 + · · ·+ un ≥ k
0, if u1 + · · ·+ un < k,
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i.e., the k-out-of-n fusion rule. The necessary conditions for the achievement of the optimal

error are given by

log

(
r

1− r

)
+ log

(
1− PD(η)

1− PF (η)

)
+ log(θ0)

+(k − 1) log

(
PD(θ0)

PF (θ0)

)
+ (n− 1− k) log

(
1− PD(θ0)

1− PF (θ0)

)
= 0, (4.7)

log

(
r

1− r

)
+ log

(
PD(η)

PF (η)
) + log(θ1

)

+(k − 2) log(
PD(θ1)

PF (θ1)
) + (n− k) log(

1− PD(θ1)

1− PF (θ1)
) = 0, (4.8)

log

(
r

1− r

)
+ log(η) + log

(
Q

(n−1)
D,k (θ0)−Q

(n−1)
D,k−1(θ1)

Q
(n−1)
F,k (θ0)−Q

(n−1)
F,k−1(θ1)

)
= 0 for 1 < k < n, (4.9)

η

(
1− PD(θ0)

1− PF (θ0)

)n−1

=
1− r

r
, (4.10)

θ0
1− PD(η)

1− PF (η)

(
1− PD(θ0)

1− PF (θ0)

)n−2

=
1− r

r
for k = 1, (4.11)

η(
PD(θ1)

PF (θ1)
)n−1 =

1− r

r
, (4.12)

and

θ1
PD(η)

PF (η)

(
PD(θ1)

PF (θ1)

)n−2

=
1− r

r
for k = n. (4.13)

Remark 4.2. The above equations are coupled and nonlinear. Therefore, it is difficult to

trace all possible solutions. It is however easy to show a property of the solutions, i.e., either

θi ≥ η for i = 0, 1 or θi ≤ η for m = 1, i = 0, 1 and 1 < k < n. This can be proved as follows.

Proof. Assume θ0 > η > θ1. Since both PD(λ)
PF (λ)

and 1−PD(λ)
1−PF (λ)

increase monotonically with

respect to λ, we have from (4.7) and (4.8) that

log

(
r

1− r

)
+ log

(
1− PD(θ1)

1− PF (θ1)

)
+ log(θ0)

+(k − 1) log

(
PD(θ0)

PF (θ0)

)
+ (n− 1− k) log

(
1− PD(θ0)

1− PF (θ0)

)
< 0, (4.14)
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and

log

(
r

1− r

)
+ log

(
PD(θ0)

PF (θ0)

)
+ log(θ1)

+(k − 2) log(
PD(θ1)

PF (θ1)
) + (n− k) log(

1− PD(θ1)

1− PF (θ1)
) > 0. (4.15)

Combining the above two inequalities yields

log(θ1) + (k − 2) log

(
PD(θ1)

PF (θ1)

)
+ (n− 1− k) log

(
1− PD(θ1)

1− PF (θ1)

)

≥ log(θ0) + (k − 2) log

(
PD(θ0)

PF (θ0)

)
+ (n− 1− k) log

(
1− PD(θ0)

1− PF (θ0)

)
.

Since both sides of the above inequality are monotonically increasing functions of θ1 and θ0,

we have θ1 > θ0, which results in a contradict. Similarly, one can show that the alternative

assumption θ1 > η > θ0 also results in a contradiction. Hence, η has to be either no less or

no greater than both θ0 and θ1.

In light of the above necessary conditions, one can obtain the following two lemmas.

Lemma 4.4. If λ
1−PD(λ)

1−PF (λ)

is monotonic with respect to λ, then the necessary conditions for

k = 1 and m = 1, i.e., (4.10) and (4.11), have nontrivial solutions only when θ0 = η.

Lemma 4.5. If λ
PD(λ)

PF (λ)

is monotonic with respect to λ, then the necessary conditions for k = n

and m = 1, i.e., (4.12) and (4.13), have nontrivial solutions only when θ1 = η.

The proofs of the above two lemmas are straightforward, and hence, we omit it.

4.6 Optimal Parallel Systems

In this section, we discuss the relationship between optimal parallel Γn system and the

optimal Ξn system through the following propositions S(n), T (n), and V(n).
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Proposition 4.1. S(n) : For the parallel n-sensor system Γn and for arbitrary prior P (H1) =

r, the optimal error probability is achieved by identical sensors and k-out-of-n fusion rules.

Proposition 4.2. T (n) : For the n-sensor Ξn system, if the broadcast sensor has m ≥ 1

ballots in the voting fusion, then the optimal fusion rules are k-out-of-n fusion rules.

Proposition 4.3. V(n) : For the n-sensor Ξn system with a fixed k-out-of-n fusion rule and

for arbitrary prior P (H1) = r, the optimal error probability is achieved by identical sensors,

i.e., the (n− 1) ordinary sensors ignore the received decision of the broadcast sensor and use

local decision rules that are the same as the broadcast sensor one, and that are based on

their own observations only.

Lemma 4.6. If the proposition S(2) holds, then the proposition T (3) holds.

Proof. As discussed in the preceding section, the optimal fusion rule for the Ξn system is

k-out-of-(n− 1 + m) fusion rules for some m ≥ 0; hence, it suffices to show that for m ≥ 1,

the optimal m = 1.

Assume that S(2) holds. Let us consider the case of m = 1 and 1 ≤ k ≤ 3. These are

obviously k-out-of-3 fusion rules. Now we consider the case of m = 2 and 1 ≤ k ≤ 4, for

which the fusion rule can be expressed as

u0 =

{
1, if u1 + u2 + 2u3 ≥ k
0, if u1 + u2 + 2u3 < k.

Observe from the above discussion that for the case of m = 2 and k = 1 and the case

of m = 2 and k = 4, the fusion rules are equivalent to the 1-out-of-3 fusion rule and the
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3-out-of-3 fusion rule, respectively. For the case of m = 2 and k = 2, we have

min
η,θ0,θ1

(P̃ (3)
e ) = min

η,θ0

(r(1− PD(η))(1−Q
(2)
D,2(θ0)) + (1− r)(1− PF (η))Q

(2)
F,2(θ0)

+ (1− r)PF (η))

≥ min
η,θ0

(r(1− PD(η))(1−Q
(2)
D,2(θ0)) + (1− r)(1− PF (η))Q

(2)
F,2(θ0)

+ min
η,θ1

(rPD(η)(1−Q
(2)
D,1(θ1)) + (1− r)PF (η)Q

(2)
F,1(θ1)))

= min
η,θ0,θ1

(r(1− PD(η))(1−Q
(2)
D,2(θ0)) + (1− r)(1− PF (η))Q

(2)
F,2(θ0)

+ rPD(η)(1−Q
(2)
D,1(θ1)) + (1− r)PF (η)Q

(2)
F,1(θ1))

= min
η,θ0,θ1

(P̃
(3)
e,2 (η, θ0, θ1)).

Thus, the minimum error probability corresponding to the 2-out-of-3 fusion rule is no greater

than that for the case of m = 2 and k = 2.

For the case m = 2 and k = 3, we have

min
η,θ0,θ1

(P̃ (3)
e ) = min

η,θ1

(r(1− PD(η))

+ rPD(η)(1−Q
(2)
D,1(θ1)) + (1− r)PF (η)Q

(2)
F,1(θ1))

≥ min
η,θ1

(min
η,θ0

(r(1− PD(η))(1−Q
(2)
D,2(θ0)) + (1− r)(1− PF (η))Q

(2)
F,2(θ0))

+ rPD(η)(1−Q
(2)
D,1(θ1)) + (1− r)PF (η)Q

(2)
F,1(θ1))

= min
η,θ0,θ1

(r(1− PD(η))(1−Q
(2)
D,2(θ0)) + (1− r)(1− PF (η))Q

(2)
F,2(θ0)

+ rPD(η)(1−Q
(2)
D,1(θ1)) + (1− r)PF (η)Q

(2)
F,1(θ1))

= min
η,θ0,θ1

(P̃
(3)
e,2 (η, θ0, θ1)),

Thus, the minimum error probability of the 2-out-of-3 fusion rule is no greater than that for

the case of m = 2 and k = 3.

Note that the fusion rule for the case of m = 3 and k ≤ 2 is equivalent to the fusion rule

for the case of m = 2 and k ≤ 2. For the case of m = 3 and k = 3, the fusion rule is u0 = u3,
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and its minimum error probability is equal to P
(1)
e,min, i.e., the minimum error probability of

the single sensor; hence, it can not be the optimal fusion rule. The fusion rule for the case

of m = 3 and k = 4, 5 is equivalent to the fusion rule for the case of m = 2 and k = 3, 4.

Finally, it is easy to see that the analysis for the case of m ≥ 3 is identical to the analysis

for the case of m = 3.

The lemma is then substantiated since we have shown that for all m > 0 fusion rules, there

are some k-out-of-n fusion rules that have error probabilities no greater than the original

ones.

Lemma 4.7. For n ≥ 3, if

1. conditions (4.7), (4.8) and (4.9) are satisfied with θ0 = θ1 = η for 1 < k < n;

2. either λ
PD(λ)

PF (λ)

is monotonic, or P̃
(n)
e,n > min

λ1,...,λn

(P
(n)
e );

3. either λ
1−PD(λ)

1−PF (λ)

is monotonic, or P̃
(n)
e,1 > min

λ1,...,λn

(P
(n)
e ),

then proposition V(n) holds.

Proof. The proof is straightforward; hence, we omit it.

Lemma 4.8. If propositions S(2) and V(3) hold, then proposition S(3) holds.

Proof. For a fixed fusion rule, we have from the formula of the error probability of the parallel
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system

min
λ1,λ2,λ3

(P (3)
e ) = min

λ1,λ2,λ3

(r(1− PD(λ3))(1−R<0>
D (λ1, λ2)) + (1− r)(1− PF (λ3))R

<0>
F (λ1, λ2)

+ rPD(λ3)(1−R<1>
D (λ1, λ2)) + (1− r)PF (λ3)R

<1>
F (λ1, λ2))

≥ min
λ3

(min
λ1,λ2

(r(1− PD(λ3))(1−R<0>
D (λ1, λ2)) + (1− r)(1− PF (λ3))R

<0>
F (λ1, λ2))

+ min
λ1,λ2

(rPD(λ3)(1−R<1>
D (λ1, λ2)) + (1− r)PF (λ3)R

<1>
F (λ1, λ2)))

= min
λ3

( min
θ01,θ02

(r(1− PD(λ3))(1−R<0>
D (θ01, θ02)) + (1− r)(1− PF (λ3))R

<0>
F (θ01, θ02))

+ min
θ11,θ12

(rPD(λ3)(1−R<1>
D (θ11, θ12)) + (1− r)PF (λ3)R

<1>
F (θ11, θ12)))

≥ min
η,θ0,θ1

(r(1− PD(η))(1−Q
(3−1)
D,k (θ0)) + (1− r)(1− PF (η))Q

(3−1)
F,k (θ0)

+ rPD(η)(1−Q
(3−1)
D,k−m(θ1)) + (1− r)PF (η)Q

(3−1)
F,k−m(θ1))

≥ min
η,θ0,θ1

(r(1− PD(η))(1−Q
(3−1)
D,k (θ0)) + (1− r)(1− PF (η))Q

(3−1)
F,k (θ0)

+ rPD(η)(1−Q
(3−1)
D,k−1(θ1)) + (1− r)PF (η)Q

(3−1)
F,k−1(θ1))

= min
η,θ0,θ1

(P̃
(3)
e,k )

= min
λ1=λ2=λ3

(P (3)
e )

≥ min
λ1,λ2,λ3

(P (3)
e )

where P<0>
D (λ1, λ2) and P<0>

F (λ1, λ2) are the detection probability and the false alarm prob-

ability of the parallel 2-sensor system with the LLRT thresholds λ1 and λ2 and the fusion rule

Υ0(u1, u2), respectively. P<1>
D (λ1, λ2) and P<1>

F (λ1, λ2) are defined similarly. Note that in

the above derivation, the second inequality comes from proposition S(2), the third inequality

follows from proposition T (3), and the last equality comes from proposition V(3).

Hence, we have min
λ1,λ2,λ3

(P
(3)
e ) = min

λ1=λ2=λ3

(P
(3)
e ), and the lemma is proved.

Theorem 4.3. If proposition S(2) holds, and if for n = 3 the conditions in Lemma (4.7)

hold, then proposition S(3) holds.
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Proof. The theorem can be easily obtained from the above lemmas.

Theorem 4.4. If propositions S(2), T (l) and V (l) hold for n ≥ l ≥ 3, then proposition S(l)

holds for n ≥ l ≥ 1.

Proof. The theorem can be easily obtained from the above lemmas.

4.7 The Parallel Three-sensor System

Now we turn to the classification of exponential sources problem. Although we only discuss

the optimal performance of the parallel three-sensor system, similar approach can be applied

for the analysis of the system with more than three sensors.

For the classification problem of exponential sources, we can rewrite (4.8) as

log

(
r

1− r

)
+ log

(
PD(θ1)

PF (θ1)

)
+ log(η)

+(k − 2) log

(
PD(θ1)

PF (θ1)

)
+ (n− k) log

(
1− PD(θ1)

1− PF (θ1)

)
= 0. (4.16)

Combining (4.16) and (4.9), we obtain

Q
(n−1)
D,k (θ0)−Q

(n−1)
D,k−1(θ1)

PD(θ1)k−1(1− PD(θ1))n−k
=

Q
(n−1)
F,k (θ0)−Q

(n−1)
F,k−1(θ1)

PF (θ1)k−1(1− PF (θ1))n−k
, (4.17)

which is equivalent to

Q
(n−1)
D,k (θ0)−Q

(n−1)
D,k (θ1)

PD(θ1)k(1− PD(θ1))n−k
=

Q
(n−1)
F,k (θ0)−Q

(n−1)
F,k (θ1)

PF (θ1)k(1− PF (θ1))n−k
. (4.18)

Denoting a = PF (θ0) and b = PF (θ1), and putting PD(θi) = PF (θi)
ξ for i = 0, 1, we can

rewrite the above equation as

J
(n)
k (ξ) = J

(n)
k (1), (4.19)

where

J
(n)
k (ξ) =

∑n−1
l=k Cn−1

l alξ(1− aξ)n−1−l −∑n−1
l=k Cn−1

l blξ(1− bξ)n−1−l

b(k−1)ξ(1− bξ)n−k
.
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Some examples of J
(n)
k (ξ)s are listed here for reference.

J
(3)
2 (ξ) =

a2ξ − b2ξ

bξ(1− bξ)
,

J
(4)
2 (ξ) =

2(a2ξ − b2ξ)− 3(a3ξ − b3ξ)

bξ(1− bξ)2
,

and

J
(4)
3 (ξ) =

a3ξ − b3ξ

b2ξ(1− bξ)
.

Taking the derivative of J
(n)
k (ξ) with respect to ξ, we can show numerically that for a 6= b,

J
(n)
k (ξ) is either monotonically increasing or monotonically decreasing for 0 < ξ < 1 and

1 < k < n; hence, for 1 < k < n, (4.19) is satisfied if, and only if, a = b, i.e., θ0 = θ1. In

other words, conditions (4.7), (4.8) and (4.9) are satisfied, only if θ0 = θ1. Moreover, from

Lemma 4.1, (4.7) and (4.8), we learn that θ0 = θ1 results in θ0 = θ1 = η, i.e., conditions

(4.7), (4.8) and (4.9) are satisfied, only when θ0 = θ1 = η for 1 < k < n.

In the above discussion, we know numerically that the first condition in the Lemma 4.7

holds. In addition, the third condition holds since

λ
1−PD(λ)
1−PF (λ)

= ξ

PD(λ)
PF (λ)

1−PD(λ)
1−PF (λ)

= exp(A(λ))

is monotonic. As for the second condition in Lemma 4.7, since λ
PD(λ)

PF (λ)

= ξ is not monotonic,

we need to verify

min
η,θ0,θ1

(P̃ (n)
e,n ) > min

λ1,...,λn

(P (n)
e ).

From the formula of P̃
(n)
e,n , we have

P̃ (n)
e,n (η, θ0, θ1) = r(1− PD(η)) + rPD(η)(1− PD(θ1)

n−1) + (1− r)PF (η)PF (θ1)
n−1

= r(1− PD(η)PD(θ1)
n−1) + (1− r)PF (η)PF (θ1)

n−1

= r

(
1− PD

(
η

(
θ1

ξ

)n−1
))

+ (1− r)PF

(
η

(
θ1

ξ

)n−1
)

.
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Hence,

min
η,θ0,θ1

(P̃ (n)
e,n ) = min

λ1

(P (1)
e ) > min

λ1,...,λn

(P (n)
e ),

Now, from Lemma 4.7, we notice that proposition V(n) holds. Moreover, if proposition

T (l) holds for n ≥ l ≥ 3, then proposition S(l) also holds for n ≥ l ≥ 1, i.e., the optimal

performance is achieved by the parallel systems with identical sensors.

The above arguments are, however, built partly based on numerical results. Nonetheless,

for the relatively small numbers of sensors, we can show the same results analytically. In

the following, we show the optimality of identical sensors on the classification of exponential

sources for the parallel three-sensor system. Firstly, we will show the monotonicity of J
(3)
2 (ξ).

One can show the monotonicity of other J
(n)
k (ξ) for relatively small n in the same way.

Lemma 4.9. J
(3)
2 (ξ) is a monotonic function for a 6= b.

Proof. Denote the ratio between a and b as ρ = a
b
. Then J

(3)
2 (ξ) can be expressed as

J
(3)
2 (ξ) =

a2ξ − bξ

bξ(1− bξ)
+ 1 = 1− a−ξ − ρξ

a−ξ − ρ−ξ
.

Taking the derivative of the above formula with respect to ξ, we have

J
′(3)
2 (ξ) =

Ω(ξ)

(a−ξ − ρ−ξ)2
,

where

Ω(ξ) = (−a−ξ log(a) + ρ−ξ log(ρ))(a−ξ − ρξ)− (a−ξ − ρ−ξ)(−a−ξ log(a)− ρξ log(ρ)).

Now taking the derivative of Ω(ξ) with respect to ξ, we have

Ω
′
(ξ) = ((log(ρ))2 − (log(a))2)a−ξ(ρξ − ρ−ξ).

Thus, either Ω
′
(ξ) > 0 for ξ > 0 or Ω

′
(ξ) < 0 for ξ > 0. Moreover, Ω(0) = 0; hence,

either Ω(ξ) > 0 for ξ > 0 or Ω(ξ) < 0 for ξ > 0. Thus, we have confirmed that J
′(3)
2 (ξ) is
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either positive for all ξ > 0 or negative for all ξ > 0, i.e., J
(3)
2 (ξ) is a monotonic function for

1 > ξ > 0.

Theorem 4.5. For the classification of exponential sources in the parallel three-sensor sys-

tem, the optimal local decision rules are identical for all sensors.

Proof. From Theorem 4.3, proposition S(2) holds as shown in Section 4.3. Also, from the

above discussion, the conditions in Lemma 4.7 are satisfied. Thus, the theorem is valid.

4.8 Problems with Similar ROCs

As long as the hypothesis testing problem has similar ROCs as those discussed for expo-

nential hypothesis sources, their performances should be able to be evaluated in similar

manner. Here, we illustrate two such examples. Classification problems of this sort might

be encountered in survival analysis and failure time analysis.

The first example considers the following hypothesis testing problem:

H1 : Xi = min(Zi,1, · · · , Zi,β)

versus

H0 : Xi = min(Zi,1, · · · , Zi,γ)

for i = 1, 2, . . . , n and β < γ, where Xi is the observation of i-th sensor, and {Zi,j} are

independent and identically distributed random variables with the associated PDF wZ(z)

and CDF WZ(z). Thus, Xi has CDF FX(xi) = 1 − Pr(min(Zi,1, · · · , Zi,β) > xi) = 1 −
(1 −WZ(xi))

β and PDF fX(xi) = β(1 −WZ(xi))
β−1wZ(xi) when H1 is true, and has CDF

GX(xi) = 1 − Pr(min(Zi,1, · · · , Zi,γ) > xi) = 1 − (1 −WZ(xi))
γ and PDF gX(xi) = γ(1 −

WZ(xi))
γ−1wZ(xi) when H0 is true.
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From the discussion in the previous sections, we know that each sensor should apply local

likelihood ratio tests as the local decision rules, and the local likelihood ratio test threshold

for i-th sensor is given by

λi =
fX(xi)

gX(xi)
= ξ(1−WZ(xi))

β−γ,

where ξ = β
γ
. The detection probability PD and the false alarm probability PF for i-th sensor

are therefore

PD(λi) =

(
ξ

λi

)β̃

and

PF (λi) =

(
ξ

λi

)γ̃

,

where β̃ = β
γ−β

and γ̃ = γ
γ−β

. We also have

PD(PF (i)) = PF (i)ξ

and

λi =
dPD(PF (i))

dPF (i)
= ξ

PD(PF (i))

PF (i)
,

where by abusing the notations, PF (i) and PD(PF (i)) are the false alarm probability and the

detection probability for the i-th sensor, respectively. Hence, the ROC of this classification

problem is of the same form as the aforementioned classification of exponential sources

problem. The discussion for the classification of exponential sources can accordingly be

well-fit to this problem.

The second example is an analogue of the first example. Consider the following hypothesis

testing problem:

H1 : Xi = max(Zi,1, · · · , Zi,β)

versus

H0 : Xi = max(Zi,1, · · · , Zi,γ)
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for i = 1, 2, . . . , n and β < γ, where Xi is the observation of i-th sensor, {Zi,j} are inde-

pendent and identically distributed random variables with the associated PDF wZ(z) and

CDF WZ(z). Thus, Xi has CDF FX(xi) = Pr(max(Zi,1, · · · , Zi,β) ≤ xi) = WZ(xi)
β and PDF

fX(xi) = βWZ(xi)
β−1wZ(xi) when H1 is true, and has CDF GX(xi) = Pr(max(Zi,1, · · · , Zi,γ) ≤

xi) = WZ(xi)
γ and PDF gX(xi) = γWZ(xi)

γ−1wZ(xi) when H0 is true.

The local likelihood ratio test threshold for i-th sensor is

λi =
fX(xi)

gX(xi)
= ξWZ(xi)

β−γ,

where ξ = β
γ
. The detection probability PD and the false alarm probability PF for i-th sensor

are equal to

PD(λi) = 1−
(

ξ

λi

)β̃

and

PF (λi) = 1−
(

ξ

λi

)γ̃

,

where β̃ = β
γ−β

and γ̃ = γ
γ−β

. By the above setting, we immediately have

1− PD(PF (i)) = (1− PF (i))ξ

and

λi =
dPD(PF (i))

dPF (i)
= ξ

1− PD(PF (i))

1− PF (i)
,

where PF (i) and PD(PF (i)) are again the false alarm probability and the detection probability

for the i-th sensor, respectively. Hence, the ROC of this classification problem is also a

mirror of the ROC of the classification of exponential sources. Consequently, with slight

modification, we can have similar results as the classification of exponential sources problem.
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4.8.1 Decentralized Classification of Heavy-tailed Sources Prob-
lems

The heavy-tailed distributions, specifically the Pareto distribution, are related to the self-

similar phenomena in a way that if the packet inter-arrival process is modelled as i.i.d. Pareto

random variables, the packet counting process is asymptotically second-order self-similar

process with H = (3− α)/2, where α is the Pareto parameter.

In practical control of the network traffic, one might need to test whether its self-similarity

is weak or strong to determine whether the long-range dependence can or cannot be ignored.

To reduce the response time and to alleviate the load of network, a decentralized scheme for

the detection of the self-similarity might be useful. As a result, one might need to consider

the following binary hypothesis testing problem:

H1 : fX(xi) = β
1

xβ+1
i

versus

H0 : gX(xi) = γ
1

xγ+1
i

,

or equivalently,

H1 : FX(xi) = 1− 1

xβ
i

versus

H0 : GX(xi) = 1− 1

xγ
i

for i = 1, 2, . . . , n, β < γ and xi ≥ 1, where xi is the observed value of the random variable

Xi with the associated PDF fX(xi) and CDF FX(xi). Here, we assume that {Xi} form a

set of independent and identically distributed random variables. For a fixed fusion rule, the

local likelihood ratio tests are
β

xβ+1
i

γ

xγ+1
i

R λi,

62



or equivalently,

xi R ti

for i = 1, 2, . . . , n, where λi and ti are some constants to be decided, and ti = (λi
γ
β
)

1
γ−β .

It turns out that PD(λ) and PF (λ) of the above testing problem have the same forms as

the classification of exponential sources problem in Section 4.1; hence, the previous result

can be applied to the testing problem for the Pareto distributions directly.

4.9 Gaussian Classification Problems

All the previous parts in this chapter discuss mainly on the classification of exponential

sources problem (or problems with the same ROC). In this section, we briefly discuss another

classification problem that has drawn more attention among researchers, i.e., the classifica-

tion of Gaussian sources problem.

Let us introduce some notations first.

Definition 4.2. If X is a Gaussian random variable with mean µ and variance σ2, then it

has a probability density function

cX(x; µ, σ) =
1√
2πσ

e−
(x−µ)2

2σ2 =
φ(x−µ

σ
)

σ
,

and a distribution function

CX(x; µ, σ) =

∫ x

−∞
cX(x; µ, σ) = Φ

(
x− µ

σ

)
,

where φ(·) and Φ(·) are respectively the probability density function and cumulant distribu-

tion function of the standard normal distribution, i.e., the Gaussian distribution with µ = 0

and variance σ = 1.
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We then concern the following binary hypothesis testing problem for Gaussian distribu-

tions:

H1 : P (xi) = c(xi; µ, 1)

versus

H0 : P (xi) = c(xi;−µ, 1)

for i = 1, 2, . . . , n and β < γ, where xi is the observation of i-th sensor, and without loss

of generality, we assume σ = 1. For a fixed fusion rule, it is known that the optimal local

decision rules are local likelihood ratio tests, namely,

1√
2πσ

e−
(x−µ)2

2σ2

1√
2πσ

e−
(x+µ)2

2σ2

R λi

or equivalently,

xi R ηi

for i = 1, 2, . . . , n, where λi and ηi are some constants to be decided.

The optimal strategy of the two-sensor system under this setting has been solved in

[34], in which they showed analytically that the identical local decision rules are optimal.

However, for the system with more than two sensors, the desired result that identical sensor

system is optimal is still absent. Here, we offer an alternative argument that is partly built

on numerical results. Firstly, let us examine the conditions in Lemma 4.7. For Gaussian

classification problem, it is easy to show analytically that the second and third conditions

are satisfied. As for the first condition, we can show numerically that it is valid for relatively

small n. Thus, we can conclude from Theorem 4.3 that the optimal three-sensor system still

employ identical sensors.
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Chapter 5

Conclusions

5.1 Self-Similar Traffic Generators

In the first part of this dissertation, we propose a filter-based generator for the synthesization

of self-similar traffics. It can produce long range dependent traffics with adjustable levels of

bustiness and correlation, and is parsimonious in the number of model parameters. Precisely,

only three input parameters are required, i.e., the self-similar parameter H (which controls

the bustiness and autocorrelation of the synthesized traffic), the mean of the traffic λ, and the

length of the filter W (which also determines the effective aggregation size in the variance-

time analysis). Despite the finite time scales of the self-similar phenomenon in the synthesized

traffic, it actually agrees with the measured behavior of true network traffic, i.e., the self-

similar nature only lasts beyond a practically manageable range, but disappears as the

considered aggregated window is much further extended [4, Fig. 2]. When it is compared

with exiting self-similar traffic synthesizers, e.g., the RMD and the Paxson IFFT algorithm,

the proposed filter-based synthesizer has the advantages that the synthetic traffic can be

generated on the fly, and always produces non-negative valued traffic.

Comparisons of the complexities of self-similar traffic generators are as follows. Given

that the length of the synthesized traffic is n, the number of complex multiplications required
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for the Paxson IFFT method [19] is about (n/2)(log2 n + 2). Our filter-based approach, on

the other hand, requires n×W complex multiplications, where W represents the truncation

window size. After analytically analyzing our approach based on variance-time test, we

conclude that our synthesizer guarantees the generation of a traffic with desired degree of

self-similarity beyond the intended range.

5.2 Correlation Approximation to the Mutual Infor-

mation of Self-Similar Processes

We discuss the implications between the correlation coefficient (a quantity that only mea-

sures the linear dependance) and mutual information (a quantity that can represent the

general dependance) in Chapter 3. We focus on the question that given the correlation

coefficients of random sources, what is the minimum possible value of mutual information?

Theorem 3.1 then suggests that for weakly correlated random variables, such as two instances

of a self-similar process with a long time lag, half the square of the correlation coefficients

is a reasonable approximation to the mutual information, provided they are also weakly

dependent in a general sense.

5.3 Bayesian Decentralized Detection

Our investigation of the optimal decentralized system has yielded some interesting results.

Firstly, for the classification of exponential sources problem, the optimality of identical sensor

system has been proved for n = 2 and n = 3. For n > 3, we have to rely partly on numerical

examination. A byproduct is that for the classification of exponential sources problem, the

optimal performance of the optimal serial two-sensor system is the same as the optimal

parallel two-sensor system. It is somewhat surprising since it is known that the serial two-

sensor system in general has better performance than the parallel two-sensor system [32].
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For the general classification problem, we propose a set of propositions on the optimality

of the identical system. These propositions can be verified without much difficulty. Moreover,

we point out that some classification problems encountered in the survival analysis and

failure time analysis, as well as the decentralized detection for the self-similarity via the

local measurements of the packet inter arrival times, can be manipulated in the same way.

Finally, for the Gaussian classification problem, we conclude the optimality of identical

sensors partly numerically.
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