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Department of Electronics Engineering and Institute of Electronics
National Chiao Tung University

ABSTRACT

In the first part of this dissertation, we propose a filter-based generator for the
synthesization of self-similar traffics..{t’can preduce long range dependent traffics
with adjustable levels of bustiness and correlation, and is parsimonious in the number
of model parameters. By comparing it with existing: self-similar traffic synthesizers,
e.g., the RMD and the Paxson IFET algorithms, the proposed filter-based synthesizer
has the advantages that the synthetic traffic,€an;be generated on the fly, and always
produces non-negative-valued traffic. The implications between the correlation
coefficient (a quantity that only measures: the linear dependence) and mutual
information (a quantity that can represent the general dependence) is subsequently
investigated. The obtained results suggest that for weakly correlated random variables
such as two instances of a self-similar process with a long time lag, half the square of
the correlation coefficients might be a reasonable approximation to the mutual
information.

Continuing from the synthesization of processes with heavy tails, we turn to
study the impact of such processes on decentralized detection. Several interesting
results are found. Firstly, the optimality of identical sensor system for the exponential
distribution family has been verified. A side result along this research line is that
the optimal performance of the serial two-sensor system is the same as that of the
parallel two-sensor system for exponential sources. This is somewhat surprising
because it is generally considered that the serial two-sensor system has better
performance than the parallel two-sensor system.

Secondly, for a more general class of distribution families, we propose several
propositions on the optimality of the identical system. A straightforward approach to
test the optimality of identical sensor system often results in searching all local

8



minimums in the solution space that is defined through a set of nonlinear equations.
However, this approach is not tractable in certain situations. Our propositions then
provide an alternative for optimality test of identical sensor system. Besides, they can
be applied to other decentralized detection problems like the detection of lifetime
encountered in survival analysis and failure time analysis or the determination of the
degree of self-similarity of the whole network system based on geographically
dispersed measurements of the packet inter-arrival times on different links.

Finally, with the help of numerical study on functions and equations, we
analytically confirm the optimality of identical sensor system over Gaussian sources.



M S ERHE

FAAL A i ERRFY FREIM OB REEL T ABFIHL o HHET £ KK
Mgy F Ao AR B enfT e S aate s BF 2 HE A MR EE R
AGBE R B LA N B TR AR L B et 3 i ¥k~ 2 Syracuse University
hVarshney &#e$ enf 8b o RIFCPUr 2 e htadh~ 5 - N aE & ?}?L o R F 4

T KA R 2 g AT -

Bt > ABRBAPFABASE B AR GPEA DRSS o



Contents

Abstract i
Acknowledgements iii
List of Tables vii
List of Figures viii
1 Introduction 1
1.1 Definitions of Self-Similar*Processes . ..o . . . . . . .. .. ... 4

1.2 Properties of Self-Similar Processes . . . . . . . ... .. ... ... 5
1.2.1 Range of Dependence . . . . . . . . .. ... 5

1.22 1/f-Noise . . . . . .. 6

1.2.3  Slowly Decaying Variance of Self-Similar Processes . . . . . ... .. 7

1.2.4 Heavy-Tailed Distribution . . . . . ... .. .. ... ... ...... 7

1.2.5 Hurst Effect . . . . . . . .. . 8

1.3 Decentralized Detection . . . . . . . . ... ... L 9
1.4 Synopsis of the Dissertation . . . . . .. .. ... .. ... .. 10

v



2 A FILTER-BASED SELF-SIMILAR TRACE SYNTHESIZER 12

2.1 Filter-Based Asymptotic Self-Similar Traffic Synthesizer . . . . . . . . . . .. 13
2.1.1 Transfer Function In Self-Similar Traffic Synthesizer . . . . . . . . .. 13
2.1.2  Impact On Self-Similarity Due To Filter Truncation . . . . . . . . .. 18
2.1.3 Impact On Self-Similarity Due To Output Rounding . . . . . . . .. 19

2.2 The Reverse Filter Versus The Forward Filter . . . . . . ... .. ... ... 21

2.3 Concluding Remarks . . . . . . .. ... 22

3 Correlation Approximation to the Mutual Information of Self-Similar Pro-

cesses 24
3.1 Introduction . . . . . . L e e e e e e 24
3.2  Definitions and Notations:® ;¢ S0 e o o oL 25
3.3 Main Theorems . . . .5 . 0 o o0 U0 o 27
3.4 Examples . . . ... ot 31
4 Bayesian Decentralized Detection for Exponential Distributions 34
4.1 Preliminaries . . . . . . .. L 35
4.2 System with one sensor . . . . . . . . ... Lo 39
4.3 Parallel Two-sensor System . . . . . . . . . .. ... 40
4.4 The Parallel Sensor System with an Additional Broadcast Sensor . . . . . . 42
4.4.1 The Serial Two-sensor System . . . . . . . . . .. .. ... ...... 44

4.5 The =, System . . . . . . . .. 47
4.6 Optimal Parallel Systems . . . . . . . .. .. ... oL 51



4.7 The Parallel Three-sensor System . . . . . . . ... .. ... ... ...... 56

4.8 Problems with Similar ROCs . . . . . . . . . . . . .. 59
4.8.1 Decentralized Classification of Heavy-tailed Sources Problems . . . . 62

4.9 Gaussian Classification Problems . . . . . . . . . . ... ... 63

5 Conclusions 65
5.1 Self-Similar Traffic Generators . . . . . . . . . . . . . . ... 65

5.2  Correlation Approximation to the Mutual Information of Self-Similar Processes 66

5.3 Bayesian Decentralized Detection . . . . . .. ... . ... .. ... ..... 66
References 68
Vita 73

vi



List of Tables

2.1 Comparison between the resultant Hurst parameters of the traces synthesized

by the filter-based algorithm and the targeted ideal Hurst parameters. . . . .

Vil

21



List of Figures

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

3.1

Relation between the power spectral densities of the filter input and filter

output random processes. . . . . . . ... 13
The variance-equivalent m-averaged process. . . . . . . . . .. .. ... .. 15
The variance-time analysis of the filter output process. . . . . . .. ... .. 17
The lower and the upper bounds of log[C,,,(0)/C1(0)]. . . . . . . .. ... .. 18

The variance-equivalent ni=averaged process.of the truncated filter output pro-

Variance-time analysis (logy,seale)-for the truncated-filter output with trun-
cation window W = 103. The slope of the solid line is equal to 2H — 2 for

m<W,and —1form>W.. ... ... .. ... ... ... ... 20

The proposed asymptotic self-similar traffic synthesizer. H (w; W) represents a
truncated version of H (w) with truncation window W. The quantity |Y;+0.5|

equals the closest integer to Y;. . . . . . . ... oL 21

Variance-time plots (log,, scale) for the two filter-based synthetic arrivals with

truncation window 10* and mean rate 1. . . . . . . . . . ... ... ... .. 23

The bounds and minimum mutual information for Gaussian distributed Px

viil



Chapter 1

Introduction

Stationary random processes, according to their autocorrelation functions, can be classified
as either short-range or long-range dependence. The former have summable autocorrelation
functions, while the latter have non-summable autocorrelation functions. The simulations
of the short-range dependent randoniiprocesses have attracted attention for years, and have
found many applications such as:the traffi¢ inodel of telecommunication systems [6]. How-
ever, researchers had recently found that the traffic in many modern communications, such
as the world wide web [4, 8, 14, 18;20] and variable-bit-rate (VBR) video transmission [10],
is significantly different from the conventional short-range dependent traffic models, and ex-
hibit the renowned self-similar nature. This arouse the demand for the synthesization of

processes with long-range dependence.

In literature, there have been several approaches proposed for the synthesization of long-
range-dependent self-similar traffics. They include methods based on fractional Gaussian
noise [14], M /G /oo queue model [12], autoregressive processes [3], wavelet [2], .. ., etc. These
synthesizers can be roughly divided into two categories: approaches derived from “time-
domain” aspect and ones developed from “frequency-domain” standpoint. An example for
the former is the random-midpoint displacement (RMD) algorithm proposed by Lau et al.

[13], while the spectrum fitting to the fractional Gaussian noise, as proposed by Paxson [19],



can be a typical synthesizer for the latter.

The procedures of the RMD algorithm is to recursively subdivide the present time in-
tervals, and generate in each subdivision a new mid-point traffic data based on the end-
point data obtained in the previous subdivision. This method can efficiently generate a
well-approximated fractal Brownian motion (FBM) sequence. It however comes with the
drawbacks that only the FBM traffics can be synthesized, and the desired amount of traffic

has to be specified in advance.

Based on the power spectrum fitting to the fractional Gaussian noise (FGN), Paxson
proposed a fast self-similar traffic generator using the inverse discrete-time Fourier transform
(IDTFT), which is usually referred as the FFT method. By using an approximate form
of the spectrum density of fractal Gaussian noises (FGN), a random sequence is formed in
frequency domain. An inverse Fourier transformation (IFFT) is then performed to transform
the sequence from the frequency domainite the time’domain. The FFT algorithm improves
the RMD algorithm in speed. In-particular, the FFT: algorithm only takes half time of the
RMD algorithm for the same sequence length. Again, its drawback is that the traffic sequence
cannot be generated on the fly. In addition; the simplified form of the FGN spectrum causes

the resultant degree of self-similarity deviated from the target one.

In applying the aforementioned approaches to the generation of self-similar traces, several
problems can be encountered. Firstly, the required length (i.e., amount) of traffic data must
be priorly determined; hence, when a longer traffic sequence is required, one has to drop
the existing data, and re-generate a completely new trace of the required length. Secondly,
the required traffic data must be generated in an off-line fashion before they can be put to
use. This somewhat restricts their usage in situation where on-the-fly traffic synthesizers
are needed. Thirdly, these traffic generators may produce negative number, which is an

undesired value for, say, packet-train arrivals. The direct elimination of these negative-



valued data however may make the degree of self-similarity of the generated trace deviating

from the target one.

In this work, we propose a model that can produce long-range dependent sequences with
adjustable levels of bustiness and correlation. When it is compared to the two known self-
similar traffic generators—the RMD and the Paxson FFT, our model provides additional
advantages that the synthetic traffic can be generated on the fly, and is always non-negative.
Although the variance-time analysis shows that the filter length W limits the valid aggre-
gation size of self-similarity, this phenomenon turns out to match the measured behavior of
true network traffic, where the self-similar nature only lasts beyond a practically manageable
range, but disappears as the considered aggregated window is much further extended, e.g.,

Beran et al. [4, Fig. 2].

The relationship between the second=drder statistics (which are used in the measurement
of the self-similarity in the network traffic) and:the‘quantities in the information theory is
also an interesting topic. Since one might expect that the self-similar traffic has some special
characteristics that can be easily“ideuntified ini‘the information processing of the measured
data, we discuss the relationship betweenithe correlation coefficients and mutual information

in Chapter 3.

For the practical control of network traffic, one might need to test whether its self-
similarity is weak or strong enough that the long-range dependence could or could not be
ignored. To reduce the response time and to alleviate the load of network, a decentralized
scheme for the detection of the self-similarity might be useful. In this work, we consider the
decentralized detection, especially on the optimal design of the local decision rules and the
fusion rule for the classification of exponential sources. It turns out that the optimal strategy
is to use identical sensors and k-out-of-n fusion rule. We also show for such classification

problem that the optimal performance of the serial two-sensor system is the same as the



optimal parallel two-sensor system. In addition, we address a set of propositions on the
optimality of the identical sensor system, which can be verified without much difficulty.
Some generalizations are further established and remarked for the decentralized detection
of Gaussian sources, and for the determination of degree of self-similarity via the local

measurements of packet inter-arrival durations.

1.1 Definitions of Self-Similar Processes

Self-similar processes were first introduced by Mandelbrot and his co-workers in 1968 [15, 16,
17]. These processes were thereafter found applications to many fields such as astronomy,
chemistry, economics, engineering, mathematics, physics, statistics, etc. Recently, mea-
surement studies have shown that the actual traffic from computer networks is long-range
dependent [14, 18, 8, 4, 20], and thussanether fiew application of self-similar processes was
initiated.

Assume a second-order stationary real-valued stochastic process Y 2 {Y;}ic;, with finite
marginal mean p and marginal variance o2, where I; 2 {j,i+1,7+2,...}. Denote by

y(m & {Y;(m)}ie 1, the m-averaged process 'of'Y, where for m,i € I,

m o 1
Y —EZYm(z’—lm-
j=1

Let the autocovariance and autocorrelation coefficient function of the m-averaged process
Y ™ be denoted by C,, (k) £ COV{Y;-(m)7 Y;SZ?} and p,, (k) £ C,,(k)/C,,(0), respectively. For
notational convenience, the subscript of p,,,(-) will be dropped when m = 1. Then, several

variants of self-similarities can be defined as follows.

Definition 1.1. [24] A strictly stationary process Y is called strictly self-similar with pa-
rameter H =1 — (3/2), where 0 < 3 < 1, if

mHY™ LY form e I (1.1)



where “Z” means that the equality is taken in the sense of finite-dimensional distributions.

Definition 1.2. [24] A second-order stationary process Y is called ezactly second-order self-

similar with parameter H = 1 — ((3/2), where 0 < 8 < 1, if either of the following conditions
holds:

1
p(k):§[|k+1]2H—2|k|2H+|/<:—1|2H], kel (1.2)

Cm(k) = Ci(k)ym™, k € Iy,m € I, (1.3)

Notably, (1.2) and (1.3) are indeed equivalent. Also note that (1.2) implies that p,,(k) =
p1(k) for m € I.

Definition 1.3. [24] A second-order stationary process Y is called asymptotically second-

order self-similar with parameter H =1 =(8/2), where 0 < § < 1, if
1
Jim. p, (k) = 5[|l~c HHHE RS |k — 127], me L. (1.4)

The parameter H in the above definifions-is usually referred to as the Hurst parameter.

For other variant definitions of self-similar-processes, see [24] and [25].

1.2 Properties of Self-Similar Processes

In this section, we summarize the statistical properties of self-similar processes that are of

use in this work.

1.2.1 Range of Dependence

Random processes can be classified into two groups: short-range dependence (SRD) and long-

range dependence (LRD). Their formal definitions that have been appeared in the literature

are given below.

ot



Definition 1.4. [24] [7] A process Y is said to be short-range dependent, if

S ok < oc

k=—o00

Definition 1.5. [24] [7] A process Y is said to be long-range dependent, if

> lp(k)| =

k=—00

A variant definition of long-range dependence is defined as follows.

Definition 1.6. [22] A process Y is said to be long-range dependent, if

lim p(k)

O TR

where L(k) is a slowly varying function at infinity, defined by

L
lim ()

PRy 08 =1for.all z > 0.

(1.6)

(1.8)

For an exact second-order self-similar process Y, 1ts autocorrelation coefficient function

is given by equation (1.2), i.e.,
1
p(k) = §[|k + 12T 4 |k — 12, ke L.
Using Taylor expansion, we obtain

pk) = HQ2H — D)E*2 4 o(k* %), ke I, 05 < H < 1.

Therefore, an exact second-order self-similar process is indeed long-range dependent in the

sense of Definition 1.6.

1.2.2 1/f-Noise

1/ f-noise is the term used to present a sharp divergence in the power spectral density around

the origin. The exact definition of 1/ f-noise is in the following.
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Definition 1.7. [22] A stationary process Y is said to present 1/ f-noise, if its power spectral

density S(w) satisfies:

lim S(w)

O T w2 (1.9)

where L(k) is a slowly varying function at infinity (cf. (1.8)), and Hurst parameter H is in

the range of (0.5,1).

It has been proven that the long-range dependence in the sense of Definition 1.6 is

equivalent to 1/ f-noise [3, pp. 53].

1.2.3 Slowly Decaying Variance of Self-Similar Processes

In the case of short-range dependence or independence, the variance of m-averaged process

decreases as the reciprocal of the average size, m. However, by equation (1.3),
Var{ X"} = @, (0) =1 (0)m = Var{ X} /m* (1.10)

and the variance of m-averaged processes decreases more slowly than the reciprocal of the
average size, m, for long-range dependent processes. In fact, (1.10) indicates that Var{X (™}

decreases as a slop of (2H — 2) in log-log plot against m.

1.2.4 Heavy-Tailed Distribution

Definition 1.8. A random variable Y is said to be heavy-tailed with parameter a > 0, if

lim Pr{Y > y} _

o Llyly —

where L(z) is a slowly varying function at infinity (cf. (1.8)).

Here, we only concern the cases of 1 < a < 2, i.e., the mean of random variable Y is

finite, and its variance is infinite. The infinite variance can be regarded as an extremely



variable phenomenon. This kind of heavy-tailed random variable has been used to model
the inter-arrival time of network packets. It has been shown [11] that if the packet inter-
arrival process is modelled as i.i.d. Pareto random variables,! the packet counting process is
asymptotically second-order self-similar process with H = (3 — «)/2, where parameter « is

in the range of (0,1) and (1,2).
1.2.5 Hurst Effect

Historically, self-similar processes are marked because these processes provide an elegant

interpretation of the empirical phenomenon, usually referred to as the Hurst Effect.

Given a series of observations Y3, Y3, V3, - - with sample mean p(n) = (1/n) >_7_, ¥; and

sample variance
1 n
S(n) = = Z[Y] — p(n))?,
j=1
the re-scaled adjusted range (or conventionally, the R/S statistics) is defined as

R(n) MaXi<k<n Z?Zl X ku(n)] —ming<i<p, [Z;?:l Y; — ku(n)
S(n) S(n) : (1.12)

Hurst [5] found that many naturally occurring time sequences could be well characterized

by
tim 2 [R(n)/S(n)]

=1 1.13
Jim ——— (1.13)
with ¢ being a finite positive constant and Hurst parameter in the range of (0.5,1). This is

therefore termed the Hurst Effect.

Additionally, Mandelbrot and Van Ness [16] showed that if the observation sequences are

short range dependent, then
ElR
lim [R(n)/S(n)

i =S <1 (1.14)

Pareto distribution is a heavy-tailed distribution with probability density function f(z) = ak®/y**! for
a>0,k>0andy> k. The cumulative distribution function of Pareto is 1 — (k/y)®.



1.3 Decentralized Detection

A decentralized detection system consists of n sensors, sometimes geographically dispersed,
and a remote fusion center. Each of the sensor observes a phenomenon (often modeled as a
random variable X;), summarizes it into a single bit u;, and then transmits u; to the fusion
center uncooperatively. Based on received {u;} ;, the fusion center determines whether

these {X;}"; are drawn from null distribution P(:|Hy) or alternative distribution P(-|H;).

Tenney and Sandell [35] are the first to bring attention to such a detection framework.
Despite that it has an apparent handicap on the performance, the decentralized detection
system requires much smaller bandwidth between the observers and the global decision maker
than its centralized counterpart. This is a significant benefit when the system is required to
operate in a harsh environment. The workload of information processing is also distributed
from the decision-making center to.the local observers; therefore the overall complexity of
the classification system can be réduced. Furthermore, allotting many measurement devices
and local data processers instead of one-central unit-can also partly ensure the reliability,
even when some of the sensors malfunctions. Adl*of these motivate distributed detection
systems to rival with conventional centralized detection systems, especially for applications
where the measurements have to be geographically dispersed, and have to be collected by

remote sensors.

Contrast to the advantages from the operational aspects above, the optimal design of
distributed detection systems is, however, far more difficult than centralized ones. This
comes from the decisions of local processers entangle with each other for the contributions
to the correctness of overall decision. Accordingly, the optimal design involves the joint
optimization of local processers and fusion center. Such optimization problem has been

studied for its different facets in the literature. Hereafter, we only mention those most



related to the theme in this dissertation.

Tsitsiklis [37] investigated the error performance of decentralized systems with a large
number of sensors in terms of error exponents. He showed that a system design with iden-
tical sensors are asymptotically optimal. This result was further extended by Chen and
Papamarcou [36] by showing that the ratios of error probabilities between the best identical
sensor system and the absolutely optimal system are bounded from both above and below.
Irving and Tsitsiklis [34] found that for the detection of signals in Gaussian noises, the abso-
lutely optimal two-sensor system should equip identical sensors. Zhang et al. [38] concerned
the performance of identical sensor systems, and showed that the probability of error is a

quasi-convex function of the likelihood ratio test thresholds of local sensors.

1.4 Synopsis of the Dissertation

The materials in this dissertation are arranged into two parts. The first part consisting
of Chapters 2 and 3 focuses onithe self-similar traffic synthesizer, while the second part
extends the focus to decentralized detection in Chapter 4. The general facts about self-
similar processes, heavy-tailed distributions, and long-range dependence have already been
covered in Section 1.1. The background of decentralized detection required for Chapter 4 is
contained in Section 1.4. In Chapter 2, a filter-based self-similar trace synthesizer is proposed,
and the degree of its self-similarity is examined in terms of variance-time analysis. The effect
due to filter truncation and filter output rounding is subsequently investigated. Comparison
between the use of the forward filter and that of the reverse filter is also provided in Chapter
2. The relationship between the second-order statistics and the correlation coefficients is
investigated in Chapter 3. The optimal design of the decentralized detection system is the
focus of Chapter 4, where the optimality of identical sensor systems is built in an analytical

way for exponential distributed hypotheses, and the extension to Gaussian sources follows.

10



For the general detection problem, a set of propositions on the optimality of the identical
sensor system is addressed. Finally, in the same chapter, we indicate at the end that the
decentralized detection framework we considered can be applied to other situations such
as the detection of lifetime encountered in survival analysis and failure time analysis or
the determination of the degree of self-similarity of the whole network system based on
geographically dispersed measurements of the packet inter-arrival times on different links.

The final comments appear in Chapter 5.

11



Chapter 2

A FILTER-BASED SELF-SIMILAR
TRACE SYNTHESIZER

Recent empirical studies have shown that the modern computer network traffic is much
more appropriately modelled by long-range dependent self-similar processes than traditional
short-range dependent processes suchras Poisson. Thus, if self-similar nature is not considered
in the synthesization of experimental network.data; incorrect performance assessments for
network system may be resulted. “This arises the need of a well self-similar trace synthesizing
algorithm with long-range dependence. In this‘chapter, we proposed and examined the
feasibility of a filter-based method for the synthesization of self-similar network traces. The
proposed approach can alleviate the problems encountered by the conventional synthesizers,
such as random madpoint displacement and Paxson’s spectrum fitting, which cannot generate
self-similar traces on the fly and may give negative numbers. Additionally, the extended
range of self-similarity of the filtered approach can be well manageable by the filter truncation
window; therefore, a trace that faithfully matches the measured behavior of true network
traffic, where the self-similar nature only lasts beyond a certain range but disappears as the

considered aggregated window is much further extended, can be generated.

12
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Figure 2.1: Relation between the power spectral densities of the filter input and filter output
random processes.

2.1 Filter-Based Asymptotic Self-Similar Traffic Syn-
thesizer

In this section, we proposed and proved that an asymptotic self-similar traffic can be theo-
retically synthesized through filter technique with prohibitively simple transfer function of
infinite order. In its feasible realization, the filter of infinite order has to be truncated to
a finite impulse response (FIR) filters*The resultant degradation due to filter truncation in

asymptotic self-similar degree is subsequently examined.

2.1.1 Transfer Function In:Self=Similar Traffic Synthesizer

Let S,(w) denote the power spectrum of"discrete random process Y obtained by passing
the random process X with power spectrum S,(w) through a filter with transfer function
H(w) as shown in Fig. 2.1. An elementary filtering theory immediately gives that S,(w) =
|H(w)[*S:(w). Accordingly, if X is i.i.d., and |H(w)|?* well-approximates the power spectrum
of an asymptotic self-similar traffic, then the filter output straightforwardly become self-

similar, and can be obtained through Y,, = X,, % h[n], where “«” denotes the convolution

operator.

By Definition 1.3, the ultimate autocorrelation coefficient function of an asymptotic
second-order self-similar process with parameter H equals 1{|k+ 112 — 2|k[* + |k — 1|*#] for

k € I, which gives a power spectrum sin(rH) -I'(2H +1)-[1—e 2> |w+2rk|~1 72

13



for —m < w < 7. Since the asymptotic self-similar behavior of a process is only sensitive to
the vicinity of those w values around the origin [19], we can replace the above infinite sum by
its main term at k = 0, and yield sin(7H) -T'(2H +1) - [1 —e %2+ |w| 7172 for —7 < w < 7.
We then observe that |w| can be well-approximated by |1 — e | when |w| is small. As
a consequence, our proposed filter output spectrum becomes S,(w) = |1 — e *|172H for
—m < w < 7, where the coefficients, sin(7H) - I'(2H + 1), is removed for analytical simplic-
ity.

One may question that such an extensive simplification to the target second-order self-
similar spectrum may already remove its self-similar nature. However, it can be derived from

Theorem 2.1(ii) in [3] and from the below equation,

w1 . 1-2H
LS) [l (2fsin (w)2)))

w10 w|1—2H w10 |w|1—2H | 10 |w|1—2H

=1,

that the autocorrelation function C§(k) of-the filtet:output process Y with power spectrum

Sy(w) = |1 — e 9|1 72H gatisfies

lim S =
k—oo 21'(2 —2H) sin(m H —ar/2)k?1—2

Thus, from [24, Thm. 3(2)], the marginal variance C,,(0) of the m-averaged process of the

filter output process satisfies

. Cn(0)  2I'(2—2H)sin(rH —7/2)
oo C(0ym2H—2 H(2H — 1)

This implies that for m large, log[C,,,(0)/C1(0)] behaves asymptotically as (2H —2) log(m) +
log[2T'(2—2H) sin(nH—m/2)/(H(2H—1))]. Therefore, the filter output process is asymptotic
self-similar with parameter H from the aspect of variance-time analysis, when the average

window m is large.

A somewhat surprising result is that the designed filter output process Y is also quite

“self-similar” for small m. In other words, Y, in spite of its simple power spectrum formula,

14



Y5, Y, 1 Ly ym) pim)
g[n;m] -

Figure 2.2: The variance-equivalent m-averaged process.

behaves close to an ezact self-similar process from the aspect of variance-time analysis. This

can be numerically verified as follows.

The self-similar nature of the filter output process at small m can be established by
analyzing the marginal variance of its variance-equivalent m-averaged process. A wvariance-
equivalent m-average process ﬁ(m),%(m),%(m), ... of a random process Y7,Ys, Y5, ... is its
output process through the filter g[n;m] = (1/m) - {0 < n < m}, where 1{-} is the set
indicator function (cf. Fig. 2.2). It«is named the variance-equivalent m-averaged process

because its marginal variance is equal to thaf of the m-average process Y (™).

The autocovariance function Gy, (k) of the varianceequivalent m-averaged process can be

given by:
Cm(k) - B [‘iﬁ)?i(m)}
_ 5 Yo+ Yirmm Yiei Yiem
m m

= > Ci(i) - w(k—),

where
~ . om— i .
m(i) = — -N{i] < m}.

Thus, the power spectrum of the variance-equivalent m-averaged process is equal to

sin?(mw/2)

Su(w) m?sin?(w/2)’

15



and the variance of the m-averaged process of Y is given by:

1 ™ s 2 ) 92—2H /2 s 2
€, (0) = _/ 3,(w) sin”(mw/2) o — / sin®(mw) o,
- 0

27 m?sin?(w/2) T m? sin?71 (w)

which immediately gives:

/2 sin®(mw) ™2 sin?(mw)
——— 2I(15 - H ———
- C(0) log/o m2sin2 () w g ( )/0 m2 sin2 () w
Ci(0) /2 a r(l—H ’
1(0) / sinl_zH(w)dw ( T
0
where I'(+) is the Euler gamma function defined as I'(n fo t"te'dt. Based on the above

formula, we depict the relation between log[C;,,(0)/ C’l( )] and log(m) in Fig. 2.3, and observe

a perfect self-similarity from the aspect of variance-time analysis even for very small m.

In fact, we can analytically obtain a lower and an upper bounds that hold for every m

for log[C,,,(0)/C1(0)] through two inegualities:

/”/2 sin?(mw) IS (2/m)*H
0

m? S - 2(1-H)

and

/”/2 sin?(mw) d < ob” y(1+2Hm)[272 — (1 — H)]x?
o mZsin?T(w) T T 8H2(2H —1)(1—-H)

and they again confirm the almost perfect self-similarity of the filter output process (cf. Fig. 2.4).
After the verification of self-similarity of the filter output process, it remains to design a
filter whose output spectrum due to an i.i.d. input of unity power spectrum equals S, (w),
or specifically, |H(w)|> = |1 — e 7%|'72H. We note that the z-transforms, X(z) and Y'(2),
of the filter input and output can be characterized by (1 — 271)7* X(z) = Y(z), where

a = (2H — 1)/2. By Taylor’s expansion, we obtain:

ala+1) 2 = T(n+a)
1-— =1+ — _ ",
(1=2) +1'Z+ 2l nZFn+1 a)°
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The variance of m—averaged output

Log,[C, (0)/C(O)

H=0.9
H=0.75
H=0.6
Ideal H=0.9
Ideal H=0.75
Ideal H=0.6
-3 I | |
0 0.5 1 15 2 2.5 3

S

[8)]

|
\\omo

Figure 2.3: The Varlance—tlme analys1s of the filter output process.

Therefore, the outputs y[1],y[2],y[3] ... can be obtained through

Zrifia et~ H = Ak i — K,

where
. TI'n+a)  T'(n+H-05)
Ml = S @ ~ Tmr @ —os) k20

Two problems will be encountered when one wishes to synthesize a self-similar network
packet-arrival traffic in terms of the proposed filter system. Firstly, it is of infeasibly infinite
length. Secondly, the filter outputs are in general non-integer-values even if the filter inputs

are integer-values. Modifications such as filter truncation to finite length and rounding to

17
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Log, [C, (0)/C(0)]

O H=0.75
=51 - Ideal H=0.75
Upper—-Bound
— — Lower-Bound
I

|
0 0.5 1 15 2 2.5 3
Log, ,(m)

Figure 2.4: The lowet.andthe upper.-bounds of log[C,,,(0)/C1(0)].

the nearest integers are therefore necessary. We will numerically examine the impact on

self-similarity due to filter truncation and output rounding in later subsections.

2.1.2 Impact On Self-Similarity Due To Filter Truncation

Define hlk; W] = hlk] - {0 < k < W}. Then, the impact of the truncation window size
W on the degree of self-similarity of the filter output process can be characterized through
the derivation of the marginal variance C,,(0; W) of the respective m-averaged filter output
process. Again, we derive C,,(0; W) through the help of the technique of the variance-

equivalent m-average process.

18
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Figure 2.5: The variance-equivalent m-averaged process of the truncated filter output process.

Let G(w;m) be the transfer function of the filter g[n; m|, and let L(w; W, m) = H(w; W)G(w;m).

Then,

min{n,m—1}

ln; W,m] = Zg[i;m] X hin —i; W] = % Z hln — 1].

i=max{0,n—W+1}

By letting S, (w; W) be the truncated counterpart of S, (w), we obtain:

1 s
Cou(0: W) = —/ S, (ws W)
2r J_,
1 " = —jnw = jnw
= 5 B [Z l[n)ed } [Z Cinje’ ] dw
n=0 n=0
= > ltn)P
n=0
| W praiz 22 ! 2 w-1 2
- 2 (S e | () + (X )
=0 n=I = n=0 n=W-—-1-1
Based on the above formula, we numerically depict log,,[C,(0; W)/C1(0; W)] versus log,,(m)
in Fig. 2.6, and observe that there are two apparent different self-similar behaviors for differ-
ent m values. The resultant degree of self-similarity is close to the target one when m < W,

but the slope of the variance-time curve quickly turns to a non-self-similar value, —1, once

m>W.

2.1.3 Impact On Self-Similarity Due To Output Rounding

In this subsection, we further empirically examine the output rounding effect on self-similarity.

Table 2.1 lists the resultant Hurst parameter of the trace synthesized according to the sys-
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Figure 2.6: Variance-time analysis (logy; seale).for the truncated-filter output with
truncation window W = 103. The'slope of the solid line is equal to 2H —2 for m < W,
and —1 for m > W. ‘

tem in Fig. 2.7. It indicates that the rounding-to-the-nearest-integer operation on the filter
output will have “unstable” impact on the degree of self-similarity of the output trace. Our
simulations suggests that such an unstable impact can be neglected if the ratio of the maxi-

mal rounding error (i.e., 0.5) against the input mean A is made less than 5%.

20
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Figure 2.7: The proposed asymptotic self-similar traffic synthesizer. H(w; W) represents a
truncated version of H(w) with truncation window W. The quantity [Y; + 0.5] equals the
closest integer to Y;.

Table 2.1: Comparison between the resultant Hurst parameters of the traces synthesized by
the filter-based algorithm and the targeted ideal Hurst parameters.

Window size= 10000
Ideal H | V-T(A=1) | V-T(A = 10)
0.5001 | 0.4898783 0.5064982
0.55 0.5504289 0.5344366
0.6 0.6413529 0.5641452
0.7 0.4775099 0.7013537
0.8 05399816, 0.7799114
0.9 0.5958403 0.8716414

2.2 The Reverse Filter Versus The Forward Filter

It can be easily seen that the z-transforms, X (z) and Y (z), of the filter input and output

can be re-characterized by (1 — 271)*Y(2) = X(2). Again, by Taylor’s expansion,

N —a , —a(l—a) _ - I'(n—a) N
1, MNe_q,o%4 1 70074 o _q_ n
R e TH i R “Z;rm+1ﬁu—af

Hence, the outputs y[1], y[2], y[3] . .. can be also obtained through an infinite impulse response
(IIR) filter as:

yin) = ol + 03 gyt — 4 = alal + KT oo~ 8]

where
1. a-T'(n—a)
M= S i —a) -

(H—05)-T(n— H +0.5)
T(15— H)(n+1)

for k > 1.
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We refer h[-] as the forward filter and h'[-] as the reverse filter, since the latter has a
feedback or reverse path. Both h[-] system and A'[-] system can generate a true self-similar
process in response to, say, an i.i.d. Poisson input; however, unlike the forward filter, the
reverse filter gives an infinite impulse response filter (IIR) even if a finite truncation on
R'[-] is applied. This may give a false impression that the reverse system equipped with an
infinite impulse response (IIR) filter of finite number of coefficients can synthesize a more self-
similar trace than the forward system with truncated forward filter of the same computational
complexity (or more specifically, the same truncation window). Our simulations, however,

indicate that the effective range of both filters are actually similar (cf. Fig. 2.8).

2.3 Concluding Remarks

In this chapter, a new model is proposed for the synthesization of self-similar traffics based on
the filter technique. The synthesized trace can be made long-range dependent with adjustable
levels of bustiness and correlation. Only threée parameters need to be specified in our model:
H is the targeted self-similar parameter that eontrols the bustiness and correlation of the
synthetic traffic, A defines the mean of the synthesized traffic, and W determines not only
the length of the filter (which in turns determines the algorithmic complexity) but also the

valid aggregation size of self-similar nature from the aspect of variance-time analysis.

When being compared to the two known self-similar traffic synthesizers—random mid-
point displacement and Paxson’s spectrum fitting, our model provides advantages that the
synthetic traffic can be generated on the fly, and is always non-negative. The algorithmic
complexity of Pazon’s spectrum fitting was shown to be less than the random midpoint dis-
placement, and is given by (n/2)log,(n+2), where n is the length of the synthetic trace. The
complexity of our model, however, is dependent on W, and is equal to n x W. Hence, when

the valid aggregation size of self-similar nature is specified, the complexity of our model only
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Figure 2.8: Variance-time plots (log,, scale) for the two filter-based synthetic arrivals

with truncation window 10* and mean-tate 1.

grows linearly with the trace size.
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Chapter 3

Correlation Approximation to the
Mutual Information of Self-Similar
Processes

3.1 Introduction

Mutual information and correlation coefficient ‘are hoth used as measures of dependance
between random sources [27]. Génerally speaking, thé correlation coefficient only measures
the linear dependance, while mutual information ¢an represent the general dependance [28].
Thus, in the sense of generality, mutual information is a somewhat better quantity to measure
the dependance than the correlation coefficient. However, estimating the mutual information
function is much more difficult than estimating the correlation coefficient, as it requires a

complete knowledge about the distributions.

In this chapter, we focus on the following question: Given the correlation coefficients
of random sources, what is the minimum possible value of mutual information? An upper
bound and a lower bound of this minimum possible value were established in situation where
the correlation coefficients are small. It was subsequently shown that both bounds can be
approximated by half the square of the correlation coefficient when the two random sources

are both one dimensional. When the random sources are multidimensional, we found that
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this minimum mutual information function can be approximated by half the square of the
Frobenius norm of the cross correlation coefficient matrix. We also address some examples

to show the accuracy of these approximative bounds.

3.2 Definitions and Notations

Definition 3.1. Given two random sources X and Y (not necessarily random variables or

random vectors), the mutual information function is defined as:

PX,Y(‘T7 y)

I(Pyy) or I[(X;Y) 2 ZPX,Y(%?J) log

oy (Z PX,Y<Zvy)> (Z P)Qy(ﬂf,'ll)))
where Py y(x,y) is the probability of the event (X,Y) = (z,vy).

Definition 3.2. The divergence funetion of Py lagainst () x is defined as:

Px(z)
Qx(x)’

where Px(z) and Qx(z) are two probability-mass functions, and the support of Py is con-

D (PxllQx) = ZPX

tained in the support of Qx.

A straightforward consequence of the above definitions is that:
I(Pxy)=D (Pxyl||[Px x Py),

where Px(z) 2 > w Pxy(z,w) and Py (y) 2 .. Pxy(z,y).

Definition 3.3. (Minimum mutual information of a probability set) The minimum

mutual information function with respect to a set S of probabilities is defined as:

II>

Linin (S) min I (Pxy),

PX vES

where Py y is the probability mass function of X and Y chosen from the set S.
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Definition 3.4. (Minimum divergence function of a probability set and two marginal
distributions) The minimum divergence function with respect to a set S of probabilities

and two marginal distributions, Py and Py, is defined as:

2

Dyin (S, Px, Py) min D (Qxy||Px X Py),

Qx,yes

where ()x y is the probability mass function of X and Y chosen from the set S.

—

Definition 3.5. (Correlation coefficient matrix) Given two random vectors, X =
(X1,...,X,) and Y = (Y1,...,Y,,), the (i, j)-component of the correlation coefficient matrix
of X and Y is defined as:

where (Xl, s Xn) is the Karhunen-Loeve transformation of X, and each of ()2'1, s Xn) has
zero mean and unity variance and igiuncorrelated to the others, and (571, . }A/n) is defined

similarly with respect to Y.

Since Karhunen-Loeve transformationis invertible,
I(Xy, ., X Ye, V)N ET(X, L, XY, ).

To simplify the proof in later section, we will assume that the considered X and Y are
already their Karhunen-Loeve transformation counterparts that satisfy the conditions of

uncorrelatedness, zero-mean and unity variance.

Definition 3.6. (Frobenius norm) The Frobenius norm of a matrix C' is defined as:

1/2
lc| = (Z C%,j)) ,

where C(i, §) is the (i, j)-component of the matrix C'.
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3.3 Main Theorems

Theorem 3.1. For two bounded! random variables X and Y respectively with marginal

distributions Py and Py,
0
[min (SP) = ? + 0(102)7 as p — 07
where

Sp = {QX,Y ' QRQx = Px,Qy = Py and EQ[XY] = p},

(Qx and Qy are the marginal distributions of Qxy, Eg|:] denotes that the expectation value

is calculated according to distribution @ xy, and of(+) is the little-o notation [29, pp. 286].

Note that S, = S,(Px, Py) is actually a function of the marginal distributions of Px and
Py. For convenience, we drop “(Px, Py)" in thémotation, and reserve Px and Py to always

denote given marginals.

It can be shown that I, (S,) is a convex function of p [26]. Specifically,
Inin (S/\P1+(1—>\)p2) < Infd (/\Spl g (1 - )\)SPQ)

= Dpin (AS,, + (1 = N)S,,, Px, Py)

= min D(AQEy +(1-1QY H Py x Py)

IA
=
=

[)\D (@ngH Py x Py)
Qg?yesm: g?,)yespz 7

+(1—\)D (Q&?}YH Py x Py
= Muin (Sp,) + (1= N oin (S,y)

We now proceed to prove the theorem.

! By ”boundedness”, we mean that there exists B > 0 such that Py[z € R:|z|<B] =
PylyeR: |yl <B]=1.
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Proof. In this proof, we first find a lower bound of I, (S,). Then we use a specific distribu-
tion contained in S, to form an upper bound of I, (S,). The theorem is then proved since

both bounds have the form p*/2 + o(p?) as p — 0.

A ) .
Define a set 7, as: 7, = {Qxy : Eg|XY] = p}. From the standpoint of mutual in-
formation and Karhunen-Loeve transformation, we can assume without loss of generality
that both Py and Py have zero marginal mean and unity marginal variance, and they are

uncorrelated.

Since Sp - 7—p7 Imin (Sp> = Dmin (SpupXqu) Z Dmin (7;7PX7PY)' NOW7 we apply the

Lagrange multiplier method to evaluate Dy, (7, Px, Py), i.e., to minimize

F(Qxy) =D (@Qxyl|Px x Py) = f (Z ryQxy (T,y) — P) -0 (Z Qxy(z,y) — 1) ;

subject to the following restrictive conditions:

ZwaX,Y(xay) =P (31)
Y
and
ZQX,Y(‘T7Q) =L
Y
We then take the derivative of F'(Q)x,y) with respect to Qxy(x,y), and obtain

OF (Qxy) — 1+ log QX,Y(CC’:U)

9Qxr (1) Pe(@)Pr(y) YT

Letting the above derivative be zero, we have that the optimal ()x y must satisfy:

Px(x)Py(y) exp{fry} _ Px(x)Py(y) exp{fy)
> v Pr(@) Py (v) exp{ Buv} M(5) ’

QX,Y(x7 y) =

where

M () = 37 Prlu)Pr(v) exp{fun}.
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Taking the above result into Dy, (7, Px, Py) yields
Dmin(lz;NPXwPY) :5P_O(5>7

where C () =log M (). Denote f(8) = 0C()/0/, and observe that
f(B) = Ziﬂny,Y(xa?J) = Eo[XY].

Hence, the restrictive condition in (3.1) can be written as f (3) = p.

Since X and Y are bounded with respect to distributions Py and Py, respectively, the
moment generating function M () is defined throughout an interval (— [, fy) for some Gy >
0, which implies that moments of all orders are finite (namely, -, 'y’ Px(z) Py(y) < oo
fori > 1 and j > 1), and M(3) has a Taylor expansion about origin with positive radius of
convergence [30, pp. 278], and so do C(f)and f(3). Using the Taylor expansions of f (5)
and C (), we have

J40)

£8) SO0+ =25 + o
= B 50 T ol
and
c@) = co+cop+ G+ Ty o)
= D28 o)

where v = Y #%y*Px(x) Py (y). Accordingly, 8 = p + o(p®), and C'(3) = p*/2 + o(p?).
This immediately concludes Dy, (7,, Px, Py) = Bp — C (8) = p*/2 4 o(p?).

Now, we turn to the task of finding an upper bound. It suffices to use a trial distribution

in S, to form an upper bound. Define this trial distribution as:

Txy(x,y) 2 Px(2)Py(y)(1 + pry),
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and examine® that 35 Jxy(z,y) =1, >, Jxy(z,y) = Px(x), 3, Jxy(2,y) = Py(y), and
> ey TYJIxy(z,y) = p. Using the inequality

2 3

T 7 (1 )
——+ = >log(1+
T3 5 2 g x),

for |z| < 1, we have

I(Jxy) = Y Px(z)Py(y)(1+ pry)log(l + pry)

2
p 73 N 4
< — L +_

where n =3 z*y* Py (2) Py (y). Since I (Jxy) > Inin (S,) > Dumin (7,, Px, Py), we have
P2 2
o (5) = 2+ ol
]

Theorem 3.2. Consider two bounded random véctors X = (X1, ..., Xp) and Y = (Yq,..,Yy,).
If the correlation coefficient matrix C' satisfies |O(i, j)< pforeach 1 <i <nand1 < j <m,
then

1
Toin (S0) = I + 0(p?), a5 p =0,

where

[I>

Sc {Qgy: Qg = Py, Qy = Py and Eg[X;Yj] = C(i,7)},

Q¢ and @y are the marginal distributions of @ ¢ 3+, Eg[-] denotes that the expectation value

is calculated according to distribution Q¢ y, and o(+) is the little-o notation [29, pp. 286].

Proof. The proof is similar to the previous theorem; hence, it is omitted. l

ZNotably, following footnote 1, we can guarantee that 0 < Jx y(z,y) <1 when |p| < 1/B?,
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3.4 Examples

To discuss the accuracy of the upper and lower bounds of the minimum mutual information
function, we first consider the simple case that both random variables X and Y are binary
random variables, each taking values from {0, 1}. In this case, given the correlation coefficient
p and marginal mean, a = F[X] and b = E[Y], one can determine the joint distribution of

X andVY,ie.,

PX7y(O,O) = (1—&)(1—b)+’l“
PX7y(O, 1) = (1 — a)b —-T
PX7y<1,O) = a(l — b) —T

PX7y<1,1) = ab—i—r

where r = E[XY] — E[X]|E[Y] = pla(1 —a)b(1 =b)]*/2. The mutual information I(X;Y)

can be written as

I(X;Y) = Hb(b)—aHb(bJrg)—(1—a)Hb(1—b+1ia>,

where Hy(b) = —blog (b) — (1 —b)log (1 — b) is the binary entropy function. Thus, in binary
case, Imin (S,) = I(X;Y). We then take the uniform marginal distributions as an example,
ie,a=3andb=1 and obtain Dy, (7,, Px, Py) = ptanh ™' (p) + 2 log (1 — p?) = I(X;Y).
Therefore, the lower bound used in the proof coincides with the minimum mutual information

function. Notably, the simple binary case has already been examined in [28].

A good example that meets the boundedness assumption of our theorem is the Morgen-

stern distribution [31] that has the density of
p(z,y) =1+ a2z +1)(2y + 1),

where 0 < z,y < 1, and its correlation coefficient equals C,, = /3. Its asymptotic mutual

31



information with respect to the correlation coefficient can be obtained easily as:

o ot P2
I(X;)Y)=—+— ="
(X5Y) =15+ 350 T 0l) =3

+o(p?).

An example that can be used to show that I,;,(S,) is indeed a lower bound to the mutual
information of Pyxy € S, is the bivariate density p(z,y) = py|x (y|z)px(x), where px(z) =
o 1| X| < a] and py|x(y|z) = 5 - 1[|]Y — aX| < b], which exactly define a uniform diagonal

strip. The asymptotic mutual information of the uniform diagonal strip can be derived easily

from [31] as Bﬂ — % + o(|p|*). This indicates that in some situations, I(X;Y) > Iy (S,).
The validity of the theorem statement can be extended to the (unbounded) case that
Px and Py are both Gaussian distributed. In this case, the minimum value of mutual
information can be achieved by a jointly Gaussian distributed ()xy. One can derive that for
Gaussian Px and Py, L (S,) = —3 log(1=s?). The lower bound, however, is given by:

i 1
1 1 2 1 _l+ l+ 2\ 2
Duin(7,, Px, Py) = —§+<1+p2> +—log< : (;2 l :

and is smaller than the simple hyperbolie approximation of I,i,(S,) ~ 2 In addition, the

2
“upper bound” used in the proof ”—22 4 p* may become smaller than I, (S,) at large |pl.
Since we only use the upper bound under |p| < 1, we would not expect it to be useful outside

the concerned range.
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Figure 3.1: The bounds and minimum mutual information for Gaussian distributed Px and
Py.
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Chapter 4

Bayesian Decentralized Detection for
Exponential Distributions

A decentralized detection system consists of n sensors, sometimes geographically dispersed,
and a remote fusion center. Each of the sensor observes a phenomenon (often modeled as a
random variable X;), summarizes it:into a single Bit u;, and then transmits u; to the fusion
center uncooperatively. Based on received {u;}% } the fusion center determines whether

{X;}, are drawn from the null distribution P(-|H,) or the alternative distribution P(-|H).

Decentralized detection, despite that it has & simple scenario, and has been studied
extensively for more than two decades, still has many unsolved issues in the fundamental
level. One of these unsolved issues concerns the global optimal strategy for the design of
sensors and the fusion center. The difficulties comes from several points. Firstly, only
the necessary conditions for the optimal strategy are known; hence, one have to search all
the solutions to the equations of the necessary conditions in order to determine the global
optimum. Moreover, these equations are coupled and nonlinear, and hence, to solve them
is proved to be a hard mission [32]. The knowledge about the global optimal strategy is so
little that there are almost no analytical results for the system with more than two sensors.

The asymptotic results, however, had been found more pleasantly: the system with identical
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sensors has the same exponents of error probabilities as the optimal system [37]; the ratio
of error probabilities between these two systems are shown bounded from above and from
below [36]. Yet the exact and analytical results for the system with some finite n > 2 are
still absent, although such results will give us more insight about the global optimum than

the asymptotic results.

In this chapter, we analyze the decentralized classification problem for exponential sources
for n > 2, and validate an intuition that the optimal system is the system with identical
sensors. To our knowledge, there is no similar analytical result for the global optimum for

the system with more than two sensors.

4.1 Preliminaries

Definition 4.1. If X is a random variable with'an exponential distribution, then the prob-

ability that X is greater than some number z is given by
1 — Pl REQBRWITE offe ¢ °°

for x > 0, where « is a positive parameter, and Fx(z) is the cumulative distribution function

(CDF) of X.

It follows that the probability density function (PDF) of an exponential distribution has
the form

—Qax

fx(z) = ae™",
for x > 0.

In this chapter, we concern the following binary hypothesis testing problem for exponen-

tial distributions:

Hy : fx(z;) = [Be P
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versus
Hy : gx(z;) = vye 7™,

or equivalently,

Hy: Fx(x;) =1 — e P

versus

Hy:Gx(z;) =1—e7%,

for i = 1,2,...,n, 8 < v, and for z; > 0, where z; is the observed value of the random
variable X; at the i-th sensor. We assume that {X;}, form a set of independent and
identically distributed (i.i.d.) random variables. The prior probabilities of H; and Hj are
denoted as r; and ry or simply r and 1 — r, respectively. For a fixed fusion rule, it is known
that the optimal local decision rule for each sensor is the local likelihood ratio test (LLRT),

ie.,

W oL

() e u¢<:0

Ai

or equivalently,

=’
>
ZT; = tz
u;=0
for i = 1,2,...,n, where u; is the decision of i-th sensor, t; = ’Y—Lﬁ log(%) is some constant

threshold to be decided, and & = g Let Pp()\;) and Pr();) denote respectively the detection

probability and the false alarm probability for the i-th sensor, where

1
PD(Az) = PI‘Ob(Uz‘ = 1|H1) = —
-8
Ai
and
1
Ai
Both are functions of the LLRT threshold ); as \; = %, B = rﬁﬁ and 7 = v%ﬂ Notably,

1<A< 00, ¥ = B + 1 and % = 55\. Moreover, we can rewrite Pp and \; as functions of
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PF, i.e.,
Pp(Pp(i)) = Pp(i)*
and

\ - dPp(Pr(i)) _ , Pp(Pr(i))
‘ dPp(i) Pp(i)

where we abuse the notations to let Pp(7) and Pp(Prg(i)) represent the false alarm probability
and the detection probability of the ¢-th sensor, respectively. The graph consists of all
(P, Pp) pairs is referred to as Receiver Operating Characteristics (ROC curve), which is

identical for all sensors since the statistics of their observations are all the same.

The sensors transmit their decisions {u;}? ; to the fusion center that makes the final
decision ug, which equals ¢ when the fusion center favors H,. Once the fusion rule is fixed,
we can then evaluate the system detection probability Qp(Ai, -+, A,) = Prob(uy = 1|Hy),
the system false alarm probability Qg(A1, - - -, Ap)i= Prob(ug = 1|Hy) and the probability of
error P (AL -+ ) = (1 — Qa2 ). (1= r)Qr(A1, - -+, Ay) as functions of the
local thresholds Ay, - -+, A,.

It is known from classical detection theory that.the fusion center should make the overall
decision ug based on the likelihood ratio test of received uq,,us ..., u,. Therefore, the error
probability can be expressed as

Pe(”)()\l, e An) = Z min [T‘ (1 — ﬁPD(Ai)Uz‘<1 _ PD(/\i))luz') :

une{0,1}n i=1

L=r ] Prr)= - PF()\i))lui] .

i=1
The above formula, however, is in general not differentiable, and could give us little insight

into the optimal choice of LLRT thresholds (Ay,---, Ay).

For identical sensor system design, it is known that the optimal fusion rule should be a
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k-out-of-n rule,

L fu A Hu, >k
Yo = 0, ifuy +-++u, <k,

where k is some positive integer smaller or equal to n. However, to our knowledge, the
validity of the converse statement, i.e., for any k-out-of-n fusion rule, the optimal strategy

is to apply identical local decision rules for all sensors, is still unknown.

Now, let us define a function A(\), and prove a relevant lemma that is useful in the

subsequent sections. Define a function A(\) as

Pr(u=1|H,) log Pr(u = 0|H,)

A(A) = log Pr(u=1Ho)  ~ Pr(u=0[Hy)’

Then we have the following result.

Lemma 4.1. A()) is a positive and monotonically increasing function of A.

o - (RS

is positive because for the ROC ¢urve,

Pp(X) - T — Pp()\)
Pr(X) I=Pr(\)

Proof. Firstly,

Taking derivative of A()\) with respect to A, we obtain

AN = (—P}(A))< a;}gF))

e (G2 ()
)
)

—PL(N) (PD1— . A)

PD(l—PD) PF(l— F
 —Py(\) [(1-Pp
- PF(1—PD)(1—PF_5)
> 0,

1:P? > ¢, and Pp()\) is a monotonically

where in the above derivation, we use A = & 113—?

decreasing function of . O]
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In terms of A()\) defined above, it can be shown that the likelihood ratio test of us, ,us . .., u,
at the fusion center is equivalent to

Z;A()\i)ui s log (1 - "’) -3 %ﬁ&;. (4.1)

up=0 i=1

4.2 System with one sensor

We start our analysis from the simplest case: A system with only one sensor. In such case, the

only possible fusion rule is ug = u;. This leads to that the system detection probability and
the system false alarm probability are Qp(A1) = Pp(A\) = (/\%)5 and Qr(A1) = Pr(\) =

(/\%)” As a result, the system probability of error is given by

PO(N) = r(l=Pp(M))+ (1—r)Pp(A1)

_ r(l_(g)ﬂﬂl_m(g)w,

where \; > ¢ is the LLRT thresheold of the first (and only) sensor. Taking the derivative of

both sides of the above formula with respect to \; and using % = \{, we obtain
apt)
e — 1) (- PrOW)
1

— o (=P(\) ()\1 ! _7") |

r

Notably, the false alarm probability Pr decreases as the LLRT threshold \; increases, i.e.,

Pr(\) = % < 0. We then have

1—
<0, for — > A
aprV 1 -
Z 07 for L S )\min
d/\1 T 1 .
=0, for some \* =
’

where A\ and A, is the maximum and minimum values of the threshold \;. Consequently,

1 : . .
PY has an interior minimum only when




For 1= < A\in and =2 > A\ .«, we respectively obtain Pe(l)()\min) =1—7rand Pe(l)(/\max) =r.

For the specific hypothesis distributions of exponential, we have A;, = € and A\ = +00.

Hence, the optimal probability of error for the single sensor system becomes

1
rY (A9, ifr<——
Pe(1): 141r§
1—r, ifr>——,
1+¢&

where \* = 17%’" satisfies
TPD()\*) - 1
(L=r)Pp(X\) &

4.3 Parallel Two-sensor System

We now turn to a true decentralized system, i.e., a system with two sensors. Hence, there

will be two sensors’ decisions, u; andius, available.at the fusion center.

The two-sensor system has beén discussed extensively in literature, since for systems with
more than two sensors, it seems t0 be hardin the investigation of the optimal performance.
For a two-sensor system, only threé:-fusion rules are-available: OR, AND, and XOR. Since
we assume that the sensors’ observations are conditionally independent given the hypothesis,
the XOR fusion rule can not be a likelihood ratio test of u; and us at the fusion center; thus,
it should be excluded in the optimal design. Since AND and OR fusions are symmetric in
the sense that u; and uy can be complemented before transmission, we will focus only on
the OR fusion in the next subsection. Specifically, we will show that the identical sensor

system is optimal for the exponential hypothesis distributions considered.

For a two-sensor system with LLRT thresholds A; and Ay under the OR fusion rule, the
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formula of error probability is given by

PRy (M) = 71— Pp(M))(1— Pp(Xo))

We then have the next lemma.

Theorem 4.1. For the decentralized detection of exponential sources, the optimal strategy

of a two-sensor system given the OR fusion rule is to have two identical sensors.

Proof. Taking the derivative of Pe%R with respect to \;, we have

8P(2) ap@)
S = PO | e

= (=Pp(X)) (Al = Ep(As—i)). +{1 — 7)(1 — Pr(Xs-)))

_ / 1—r1—Ppr(As

— (PO e yE )

, PD()\z) 1—T1—PF(>\31)
= —P /\z T 1 —P )\ =
(- PO = Patageof {6 2 - L L
P(2> op@
for i = 1,2. Thus, if there exists a (A, A2) such that —52* = 0 and —;2* = 0, then this

(A1, A2) must also satisfies
A(M) = A(h),
which from Lemma 4.1, can be valid only when A; = \s.
It remains to validate the existence of such (A, A2). From the above derivation, their
existence relies on the claim that

A:
r 1—PD(/\)
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1-Pp

has solutions for A > £. Since T decreases monotonically, and A increases monoton-

ically, (4.2) has an unique root if 17%7" > €2 or equivalently, r < # For the case that
r> #, we derive
1—1r1 1—r1—Pr(\
Ngs il ords Bl
§ r 1-— PD(/\z)

. or? oP?) . L. : :
ie., (,;/\OR > 0 and 8‘1\OR > 0. Thus, the optimal strategy is still to adopt the identical
LLRT thresholds, i.e., Ay = Ay = &. Hence, for both r < 1+§2 and r > 1+1£2, the optimal
strategy is to adopt identical sensors. O]

In summary of the above theorem, the optimal error probability for the OR. fusion rule

is given by
PO () = (1 1= (1- (&) (7)<
Pe(Q) — e,OR( ) ) - ( - T) - - (F) +r - (F) , T 1_,_52
1—r, if r >

1+£2 Y
where \* is the solution of the equation

12 S P

N
r 1—PD()\*)7

or equivalently, is the solution of

r PSP 1
T 7 PeOV) (L= Pe(X)) €

We end the above discussion by noting that the OR fusion is simply the 1-out-of-2 fusion
rule, for which it is possible that for systems with more sensors, k-out-of-n fusion rule may

be an optimal choice.

4.4 The Parallel Sensor System with an Additional
Broadcast Sensor

Now, we temporarily turn our attention to a system with a different configuration from the

parallel system in the previous sections, that is, a parallel sensor system with n—1 “ordinary”
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sensors and an additional special sensor. For convenience, we will index the special sensor
as the n-th sensor. In operation, the broadcast sensor will broadcast its local decision to
all other sensors and the fusion center before each of them makes its own decision. More
precisely, the broadcast sensor makes its decision u,, based on its own observation X, first,
and then sends u, to the fusion center and the remaining n — 1 ordinary sensors. The i-th
(ordinary) sensor afterwards makes its decision u; based on its own observation X; and the
received u,, and then conveys u; to the fusion center individually. Once all of {u;}}, are
received, the fusion center performs a likelihood ratio test of (uq,...,u,_1,u,), and decide
whether the hypothesis H; or the hypothesis Hy is true. In subsequent discussions, we
restrict ourselves to the special case that the n — 1 “ordinary” sensors are all identical, and

only the broadcast sensor can have a different local decision rule.

It can be shown that the likelihood ratio: test of received (uq, ..., u,_1,u,) at the fusion
center still results in a majority voting fusion-tule;i.e., a k-out-of-(n — 1 4+ m) fusion rule
with the broadcast sensor has m ballots, while'each of-other “ordinary” sensors has only one
ballot. For conciseness, we will refer the conventional parallel n-sensor system as system I,

and the system described above (with the identical ordinary sensors) as system =,, hereafter.

Before we research on the general =, system, let us take a look at the simplest kind of
it, i.e., system =Z,. It turns out that system =, is equivalent to the decentralized 2-sensor
tandem (serial) system in literature. Since the only non-broadcast sensor in system =, has
acquired all necessary information in making its own decision, we can just let the first sensor

in Zy be integrated with the fusion center, and take uy = uy.

In the following, we shows that for the classification of exponential sources problems, the
optimal serial two-sensor strategy is to adopt identical local decision rules for both sensors,

and an OR fusion rule at the first sensor.
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4.4.1 The Serial Two-sensor System

A serial two-sensor system operates equivalently as system Z5. The second sensor makes its
decision us according to its observation X5, and then conveys us to the first sensor. The first
sensor then makes the overall decision based on the received uy and its own observation X;. It
is known that for the tandem configuration of two-sensor network, the optimal local decision
rules are [32] that for the first sensor, two local likelihood ratio thresholds are required (one
for uy = 0 and the other for us = 1), while for the second sensor, only one the local likelihood

ratio threshold is sufficient.

Denote the LLRT threshold of the second sensor by 7. Let the LLRT threshold of the
first sensor for us = 0 as 6y, and that for us = 1 as 6;. Then, the probability of error can be

written straightforwardly as

Pe(n,01,00) = rPp(n)(X— Pp{by))t (L —17)Pp(n)Pr(61)
+ (1 —=Ppm)(X =PLp(0)) + (1 —7)(1 — Pr(n))Pr(o).

Taking the derivatives of P. with respect to-n;-#;, and 6, we have

%J;e = (=PhL()) (_agﬁn))

= (=Pp(n)(rn(Pp(61) — Pp(ho)) — (1 — 7)(Pp(61) — Pr(by))),

D) (— aﬁﬁ;ﬁ) — (=PH(8:))(rf: Po(n) — (1 = 1) Pe(n))
and
o = PR (= s ) = (CPHO (01 = Polo) = (1= r)(1 = PeCo).

Equating the above derivatives with zero, we obtain the necessary conditions for the
optimal error probability as

PD(91> —PD(GQ) . 1—7r
" Bp(0)) = Prlle) 7 (43)
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Pp(n) I—r
0 = , 4.4
Peln) ~ 7 .
and
1—Pp(n) 1-—r
0 = . 4.5
’1— Pr(n) r (45)
Since for the ROC curve, 22 n > L=Po(0) e have 0, < Po(61)=Pp(bo) Bo.

> Pp(n) 1—-Pr(n)’ Pr(01)—Pr(00)
Let us take a look at two extreme cases, namely, 6y = oo and #; = 0. It turns out that!
the cases of #y = 0o and 0; = 0 are equivalent to that the first sensor makes a local decision

uy according to its own observation X; only, and then applies the AND and OR fusion

rules, respectively, to decide the overall output uyg.

Lemma 4.2. For the serial two-sensor system with 6y = oo, the optimal strategy is to let
the first and the second sensors make their local decisions u; and us according to the LLRTSs
of their own observations X; and Xs, respectively, and then apply the AND fusion rule at

the output of the first sensor, i.e., tp = U Q uo.

Proof
Pe(n,01,00) = rPpn)(F=Lp(01)) + (L= r)Pr(n)Pr(6:)
+ (1= Pp(n)(1 = Pp(c0)) + (1 = r)(1 = Pp(n))Pp(c0)
= rPp(n)(1 = Pp(61)) + (1 = r)Pp(n)Pr(61) + r(1 = Pp(n))
= r(1 = Pp(n)Pp(61)) + (1 = r)Pp(n)Pr(61),
where we have used a property of the ROC: Pp(00) = Pp(cc) = 0. 0

Lemma 4.3. For the serial two-sensor system with ¢, = 0, the optimal strategy is to let the
first and the second sensors make their local decisions u; and us according to the LLRTs of
their own observations X; and X,, respectively, and then apply the OR fusion rule at the

output of the first sensor, i.e., ug = u; P us.

Here, with a slight abuse of notations, we let the intermediate product, i.e., the result of the LLRT at
the first sensor, be denoted by w1, and let the ultimate output of the first sensor be denoted by ).
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Proof.

Pe(n,0,00) = rPp(n)(1— Pp(0))+ (1 —7r)Pp(n)Pr(0)
+ (1= Pp(n)(1 = Pp(th)) + (1 —r)(1 = Pr(n))Pr(f)
= (L=7)Pr(n) +r(1 = Ppn)(1 - Pp(bh)) + (1 —r)(1 — Pr(n))Pr(0)

= (1= Pp()(1 = Pp(bo)) + (1 = r)(1 = (1 = Pr(n))(1 = Pr(6h))),

where we have used a property of the ROC: Pp(0) = Pp(0) = 1. O

In both of the above cases, the serial two-sensor systems function exactly like the parallel
two-sensor system with corresponding fusion rules. In general, the optimal serial two-sensor
system uses two finite and nonzero LLRT thresholds at the first sensor, and therefore does
not necessarily reduce to some equivalent parallel two-sensor system. In the next theorem,
we show that for the considered clagsification preblem of exponential sources, the optimal
serial two-sensor system is one of the above extreme cases. More precisely, the optimal serial

two-sensor system is equivalent to the optimal parallel two-sensor system.

Theorem 4.2. For the classification problem of exponential sources, the optimal strategy
for the serial two-sensor system is to let the first and the second sensors make their local
decisions u; and wuy according to the LLRTSs of their own observations X; and X, with the
two equal thresholds 0, and 7, respectively, and then apply either AND or OR fusion rules
at the output of the first sensor.

Proof. Firstly, define a function B(\) = ﬁ Then, (4.3) becomes

Pp(N)

Pp(n) Pp(01)
Pr(n) Pr(01)
)7

Combining the above equation with the (4.4

B(n) —

PD(G()) B 1—r
PF(eo) N r .

we establish




By using the identity 6, = B (01) 91) , the above equation can be written as

Pp(61)

Po00) _ B(n) Py
% B(6,) Lel6y)
7 (00) Pr(6o)

Pp(61) _ 1

(4.6)

In (4.6), if 9)) > 1, then we immediately have

Pp(61) Pp(61) 1
Pp (6o) Pp (6o)
Pr(61) Pr(61) 1
Pp(0o) Pr(0o)

which leads to

Pp(61) S Pp(6p)
Pr(61) — Pr(by)
Pp(M)

Pry increases monotonically with respect to A\, we have

Since
61 Z 907

which contradicts the aforementioned proposition: 6, > ;. Hence, 5((9"1)) < 1. Yet, for the

classification of exponential sourees probleny; we haye B(n) = B(6,) = &; thus, the optimal

(n,01,00) must lie on the boundary, i.e., the two extreme cases. ]

Remark 4.1. For the classification problem of the additive Gaussian sources, B()\) is a

monotonically increasing function of A; thus, n < 6; < 6.

Corollary 4.1. For the classification problem of exponential sources, the optimal perfor-
mance of the serial two-sensor system is equal to the optimal performance of the parallel

two-sensor system.

4.5 The =, System

We now turn to the =,, system, that is, the system with n—1 ordinary sensors, one broadcast
sensor, and a fusion center with n > 3. It is easy to see that for the optimal system, each

of the ordinary sensors still uses the joint LLRT of its own low observation and the received
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u, to determine its output w,;; however, it is not clear whether the optimal local decision
rule of the broadcast sensor is still a LLRT on its own observation. Nonetheless, we will
only discuss the case that the broadcast sensor adopts the LLRT as its local decision rule in
this dissertation. Note that the extension of the result in this section to the optimal parallel

system in the following sections is not affected by this restriction.

Denote the LLRT threshold of the n-th sensor as 7. Denote the common LLRT thresholds
of the (n — 1) ordinary sensors as 6y for u,, = 0, and 6 for u,, = 1. Put the fusion rule as

uo = Y(ug,...,uy,), or simply T. One can then decompose the fusion rule T as

T(up, .. un) =u, To(ur, ooy tn—1) + (L —un)Yolug, ...y tp_1),

where Yy (uy, ..., up1) = Y(u1,...,uy_1,1) and To(u, ..., up_1) = Y(ug,...,u, 1,0) corre-
spond to the “conditional” fusion rules on (wqs, . . , u,—1) conditioning on u, = 1 and u,, = 0,
respectively.

The probability of error then-can be expressed as

P = r(L= Pp(n) = R5" (60)) (1 — r)(1 — Pr(n) " (60)

+ rPp(n)(1 — R5(61)) + (1 — ) Pr(n)RE"” (6y),

where P5° () and Pr%>(6,) are the detection probability and the false alarm probability
of the parallel (n — 1)-sensor system with the common LLRT threshold 6, and fusion rule

Yo(ui, ..., un 1), respectively. P5'>(6;) and P5'>(6,) are defined similarly.

Despite of some normalization constants, one can easily verify that in the formula of pe(n),
the first two terms can be regarded as the probabilities of error of the parallel (n — 1)-sensor
system with the common LLRT threshold 6y, the fusion rule Yo (uy, ..., u,—1) and the prior
probability Pr{H;} = r(1 — Pp(n)). Likewise, the last two terms can be treated as the

probability of error of the parallel (n — 1)-sensor system with the common LLRT threshold
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01, the fusion rule Ty (u1, ..., u,_1), and the prior probability Pr{H;} = rPp(n). These two

probabilities of errors will be referred as R (6y) and RS> (6;), respectively.

Now, since we assume that the ordinary sensors are all identical, the fusion rules Yy (uy, ..., u, 1)
and Yo(ug,...,u,_1) must have the forms of the k-out-of-(n — 1+ m) rules. For 1 < k < n,

the probability of error can then be expressed as

P (0,00,00) = r(1— Pp(n)(1 — Q% (00) + (1 —r)(1 — Pr(n))Q%, " (60)

+ rPp(n) (1 — QY1 (00) + (1 — ) Pe(n)QF ) (01),

where
n—1
(n 1)(00) Zoln_lPD(QO)l(l o PD(QO))R_I_Zy
=k
n—1
Q;kl (6y) = ch YPs(60)' (1 — Pp(6y))" 17,
=%
n—1
ng,;i)m(@l) = Z Cl”—lPD(@l)l(l _ PD(91))H7171,
l=k=m
and
n—1
glk: lm(gl) Z C’f‘lPF(el)l(l _ PF(91))"_1_Z,
I=k—m

For k =1 and k > n, the probabilities of errors are given by

P (n,60) = r(1=Pp(n))(1=Pp(60))" ' +(1=r)(1= Pr(n)) (1—(1=Pr(60))" ") +(1=r) Pr(n),

and
P (1,60,61) = (1 — Po(n)) +rPp(n)(1 — Q5 (61) + (1 — ) Pe(n) Q) (61)-

Let us take a look at a special case of pm . » 1.6, m = 1. For this case, the overall fusion

rule becomes
1, ifu+---+u, >k
T(““'“’“”)_{ 0, ifus+--+u, <Fk,
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i.e., the k-out-of-n fusion rule. The necessary conditions for the achievement of the optimal

error are given by

log (1%) +log (%ﬂzg) + log(6y)

+(k —1)log (];I;Ez;];) +(n—1—k)log (%) =0, (4.7)

log (ﬁ) + log (?;EZ;) + 10g(01>
(k- 2) 1og(§§83) +(n— k) log(1— ?;EZS ) =0, (4.8)

(n—1) (n—1)

r D.k (90) - D,kfl(el) .
log (E) + log(n) + log (ngk_l)(@o) _ QE&:%(%)) =0for 1 <k <mn, (4.9)
1_PD(90) nl - 1—7r
n (—1 — PF(90)> =— (4.10)
1— Pp(n) fd— Pp(fo)\""5 1—r B
T AR & k= @10
PD(91) ] 1 — T
PF(91)) ro (4.12)
and
Pp(n) ( Pp(6h) ol 1= rk=n

91PF(77) <PF<91)> =— for k =n. (4.13)

Remark 4.2. The above equations are coupled and nonlinear. Therefore, it is difficult to
trace all possible solutions. It is however easy to show a property of the solutions, i.e., either

; >nfori=0,1orf; <nform=1,72=0,1and 1 < k <n. This can be proved as follows.

0 1 Pp()
o and 5

Proof. Assume 6y > n > 6;. Since both f,’;’ increase monotonically with

respect to A, we have from (4.7) and (4.8) that

log (1%) +log (%) + log(6)

+(k—1)log (?;EZZ;) +(n—1-k)log (%’;Egﬁ) <0, (4.14)
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and

r PD(QU)
log (E) + log (PF(90)> + log(6,)
+(k —2) 1og(§§gzi;) +(n—k) 1og(1 — ?jézii) > 0. (4.15)
Combining the above two inequalities yields
log(61) + (k — 2) log (iﬁé?i;) +(n—1—k)log <—1 — ]]ZLF’EZB)
> log(by) + (k —2)log (ngzg) +(n—1—k)log (%ﬁgzz;) :

Since both sides of the above inequality are monotonically increasing functions of 6; and 6,
we have 0, > 0y, which results in a contradict. Similarly, one can show that the alternative
assumption #; > n > 6, also results in a contradiction. Hence, n has to be either no less or

no greater than both 6, and 6;. m

In light of the above necessary conditions; one can obtain the following two lemmas.

Lemma 4.4. If #D(A) is monotonic with respectto A\, then the necessary conditions for
T—Pp (V)

k=1and m =1, ie., (4.10) and (4.11); have' nontrivial solutions only when 6y = 7.

Lemma 4.5. If ﬁ is monotonic with respect to A, then the necessary conditions for k = n
Pp(X\)
and m =1, i.e., (4.12) and (4.13), have nontrivial solutions only when 6; = 7.

The proofs of the above two lemmas are straightforward, and hence, we omit it.

4.6 Optimal Parallel Systems

In this section, we discuss the relationship between optimal parallel I',, system and the

optimal =, system through the following propositions S(n), 7 (n), and V(n).



Proposition 4.1. S(n) : For the parallel n-sensor system I',, and for arbitrary prior P(H;) =

r, the optimal error probability is achieved by identical sensors and k-out-of-n fusion rules.

Proposition 4.2. 7(n) : For the n-sensor =, system, if the broadcast sensor has m > 1

ballots in the voting fusion, then the optimal fusion rules are k-out-of-n fusion rules.

Proposition 4.3. V(n) : For the n-sensor =,, system with a fixed k-out-of-n fusion rule and
for arbitrary prior P(H;) = r, the optimal error probability is achieved by identical sensors,
i.e., the (n —1) ordinary sensors ignore the received decision of the broadcast sensor and use
local decision rules that are the same as the broadcast sensor one, and that are based on

their own observations only.

Lemma 4.6. If the proposition S(2) holds, then the proposition 7 (3) holds.

Proof. As discussed in the preceding section, theroptimal fusion rule for the =, system is
k-out-of-(n — 1 4+ m) fusion rulesfor some=ni >'0; hence, it suffices to show that for m > 1,

the optimal m = 1.

Assume that S(2) holds. Let us/eonsider the'ease of m = 1 and 1 < k < 3. These are
obviously k-out-of-3 fusion rules. Now we consider the case of m = 2 and 1 < k < 4, for

which the fusion rule can be expressed as

U — 1, 1fu1—|—u2+2u32k
O 0, if ug + ug + 2uz < k.

Observe from the above discussion that for the case of m = 2 and &k = 1 and the case

of m = 2 and k& = 4, the fusion rules are equivalent to the 1l-out-of-3 fusion rule and the
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3-out-of-3 fusion rule, respectively. For the case of m = 2 and k = 2, we have

min (P*))

n,00,01

min(r(1 — Pp(n)(1 — Q55(60)) + (1 — r)(1 — Pr(n)Q%)(60)

1,00

(1 =7)Pr(n))

min(r(1 — Pp(n)(1 — Q55(60)) + (1 — r)(1 — Pr(n))Q%)(60)

77790

min(rPp(n)(1 — QB (61)) + (1 — ) Pe(n)Q) (61)))

min (r(1 — Pp(n))(1 = Q5 (60)) + (1 = r)(1 = Pr(n) Qi) (60)

77790701

+ rPo(m)(L— Q) (01) + (1 — ) Pr(n)Q) (61))

= min (P (1,60,6.)).

77790791

Thus, the minimum error probability corresponding to the 2-out-of-3 fusion rule is no greater

than that for the case of m =2 and k£ = 2.

For the case m = 2 and k = 3, we have

p( )
77%1011911 ( )

min(r(1 — Pp(n))

0,601

rPp(n)(1 — QR4 O = 1)Pr(n)Q) (61))

min(min(r(1 — Pp(p)) 1= Q5% (60)) + (1 — r)(1 — Pr(1)Q%5(60))

n,01 1,00

rPp(n) (1 — QY (1)) + (1 — r)Pe(n)QEr(61))

min (r(1 — Pp(n))(1 — Q55(60)) + (1 — r)(1 — Pr(n)Q%5(6)

1,00,01

rPp(n)(L— Q%) (61)) + (1 — r)Pr(n)Q(6:))

min (P (17,«90,91))

1,00,01

Thus, the minimum error probability of the 2-out-of-3 fusion rule is no greater than that for

the case of m =2 and k = 3.

Note that the fusion rule for the case of m = 3 and k < 2 is equivalent to the fusion rule

for the case of m = 2 and k£ < 2. For the case of m = 3 and k& = 3, the fusion rule is uy = us,
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and its minimum error probability is equal to pY i.e., the minimum error probability of

e,min’
the single sensor; hence, it can not be the optimal fusion rule. The fusion rule for the case
of m = 3 and k = 4,5 is equivalent to the fusion rule for the case of m = 2 and k = 3,4.

Finally, it is easy to see that the analysis for the case of m > 3 is identical to the analysis

for the case of m = 3.

The lemma is then substantiated since we have shown that for all m > 0 fusion rules, there
are some k-out-of-n fusion rules that have error probabilities no greater than the original

ones. 0

Lemma 4.7. For n > 3, if

1. conditions (4.7), (4.8) and (4.9) are satisfied with 6y = 6; = n for 1 < k < n;

2. either ﬁ is monotonic, or Pe(?l) > )\mir}\ ( Pe(”));
PR (X\) Jgeess AT

3. either s>y is monotonicyor ]56(?) > win (P2),

1—Pp(\) 2N

then proposition V(n) holds.

Proof. The proof is straightforward; hence, we omit it. l

Lemma 4.8. If propositions §(2) and V(3) hold, then proposition S(3) holds.

Proof. For a fixed fusion rule, we have from the formula of the error probability of the parallel
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system

min (P( )> = min (7‘(1 - PD(/\g))( R<0>()\1, )\2)) + (]_ — 7’)(1 - PF(/\g))R<O>()\1, )\2)

)\1 )\2 )\3 )\17)\2a>‘3

+ 7Pp(A3)(1 = R57 (A1, A2)) + (1 — ) Pr(As) RE'™ (A1, As))

> min(min(r(l = Po(Aa))(1 = B5” (M, de)) + (1= 7)(1 = Pr(Xg)) RE™ (M, Aa))

+ min(rPo(As)(1 = RE (A, Ae)) + (1= 1) Pr(Ma) Ri (A1, 2a))

= min(min (r(1 = Pp(As))(L = RE" (for, fo2) + (1= 1)(1 = Pr(As)) Bi® (0o, boz))
+ uin (rPp(A) (1= B (011, 612)) + (1= 1) Pr(Aa) RE (611, 612))

> min (r(1 = Pp(n)(1 = Q" (60)) + (1= )(1 = Pr(m) Qe (60)

+ rPo(n)(1— QY1 (00) + (1 — r)Pe(n)QE 1, (61))

min (r(1 = Pp(n))(1 - Q5" (00) + (1 = r)(1 — Pr(n)Q5, " (60)

+ rPp(n) (1 — QYL @GN Ay) Pr(n)Q5 ) (01))
= min (F)

= min (P®)
A=Aa=Xs

>  min (P¥)
Az,

v

where P5% (A, A2) and P> (), \2) are the detection probability and the false alarm prob-
ability of the parallel 2-sensor system with the LLRT thresholds A\; and Ay and the fusion rule
Yo(u1, ug), respectively. P5'” (A1, A2) and P> (A;, \2) are defined similarly. Note that in
the above derivation, the second inequality comes from proposition §(2), the third inequality

follows from proposition 7 (3), and the last equality comes from proposition V(3).

Hence, we have min (Pe(3)) = min (Pe(?’)), and the lemma is proved.
A1,A2,A3 A1=A2=A3

[]

Theorem 4.3. If proposition S§(2) holds, and if for n = 3 the conditions in Lemma (4.7)

hold, then proposition S(3) holds.



Proof. The theorem can be easily obtained from the above lemmas. O]

Theorem 4.4. If propositions S(2), T'(1) and V(1) hold for n > 1 > 3, then proposition S(I)

holds for n > 1 > 1.

Proof. The theorem can be easily obtained from the above lemmas. l

4.7 The Parallel Three-sensor System

Now we turn to the classification of exponential sources problem. Although we only discuss
the optimal performance of the parallel three-sensor system, similar approach can be applied

for the analysis of the system with more than three sensors.
For the classification problem of exponential sources, we can rewrite (4.8) as
T }%)(01)
1 —_— 1 1
og (1 — T) + log (PF(Hl) +log(n)

+(k —2)log Fo(®,) +(n— k)log 1:P—Dw1) = 0. (4.16)
Pr(61) 1 — Pp(61)

Combining (4.16) and (4.9), we obtain

O 00) — QU R B QR (B0) — QY (6h)

— , 4.17
o0 11— Po@))"F ~ Pr(0)F (1~ Pr(0,)" * (4.17)
which is equivalent to
n—1 n—1 n—1 n—1
Q. (O0) = U () _ Qi "(0) — Qi 0 (4.18)

Pp(61)(1 = Pp(61))"*  Pp(01)*(1 — Pr(61))"*

Denoting a = Pr(6y) and b = Pr(6,), and putting Pp(6;) = Pr(6;)* for i = 0,1, we can

rewrite the above equation as

J©) = 17 (), (4.19)
where
J0(e) — S CF (1= ) = ST O )
K bk—DE(1 — pé)n—k '
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Some examples of J,En) (&)s are listed here for reference.

26 b2§
By @
‘]2 <§> - bg(l _ bg)?
2(a* — b%*) — 3(a®* — b*)
(4) _
and
3¢ b3§
(4) _ @
J3 (5) - b2§(1 . bé‘)

Taking the derivative of J,g") (&) with respect to £, we can show numerically that for a # b,
J,gn) (€) is either monotonically increasing or monotonically decreasing for 0 < £ < 1 and
1 < k < n; hence, for 1 < k < n, (4.19) is satisfied if, and only if, a = b, i.e., Oy = ;. In
other words, conditions (4.7), (4.8) and (4.9) are satisfied, only if 8, = ;. Moreover, from
Lemma 4.1, (4.7) and (4.8), we learn that 6y = 6, results in §, = 6; = 7, i.e., conditions

(4.7), (4.8) and (4.9) are satisfied, only when 0y =0, =n for 1 < k < n.

In the above discussion, we know.numerically that the first condition in the Lemma 4.7

holds. In addition, the third condition helds since

A Pp(N)
e YL A
1-Pp(\) _617PD(>\) = exp(A(}))
1-Pr(}) 1-Pp(})
is monotonic. As for the second condition in Lemma 4.7, since % = £ is not monotonic,
Pp(X)

we need to verify

From the formula of P, we have

P& (n,00,01) = v(1— Pp(n))+rPp(n)(1— Pp(61)" ") + (1 — ) Pr(n)Pr(61)" "



Hence,

in (P™Y = min(PW in (P™
n{golgl( ) Hgn( A )>Ag}gn( 2,

Now, from Lemma 4.7, we notice that proposition V(n) holds. Moreover, if proposition
T(l) holds for n > [ > 3, then proposition S() also holds for n > 1 > 1, i.e., the optimal

performance is achieved by the parallel systems with identical sensors.

The above arguments are, however, built partly based on numerical results. Nonetheless,
for the relatively small numbers of sensors, we can show the same results analytically. In
the following, we show the optimality of identical sensors on the classification of exponential
sources for the parallel three-sensor system. Firstly, we will show the monotonicity of J2(3) (€).

One can show the monotonicity of other J,ﬁ") (&) for relatively small n in the same way.

Lemma 4.9. J2(3) (£) is a monotonic function for a # b.

Proof. Denote the ratio between @ and b'as p = . Then J2(3) (&) can be expressed as

S L gty

Taking the derivative of the above formula with respect to £, we have

2(¢)

J;(3) (&) = (at—p o2

where

Q&) = (—a "t log(a) + p~*log(p))(a™* — p*) — (a=° — p~*)(—a " log(a) — p*log(p)).

Now taking the derivative of Q(£) with respect to &, we have

!/

Q' () = ((log(p))* — (log(a))*)a=*(p* — p™*).

Thus, either Q'(&) > 0 for & > 0 or (&) < 0 for € > 0. Moreover, Q(0) = 0; hence,
either (&) > 0 for £ > 0 or Q(§) < 0 for & > 0. Thus, we have confirmed that J;(g) (€) is
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either positive for all £ > 0 or negative for all £ > 0, i.e., J2(3) (£) is a monotonic function for

1>¢>0. O

Theorem 4.5. For the classification of exponential sources in the parallel three-sensor sys-

tem, the optimal local decision rules are identical for all sensors.

Proof. From Theorem 4.3, proposition §(2) holds as shown in Section 4.3. Also, from the

above discussion, the conditions in Lemma 4.7 are satisfied. Thus, the theorem is valid. [J

4.8 Problems with Similar ROCs

As long as the hypothesis testing problem has similar ROCs as those discussed for expo-
nential hypothesis sources, their performances should be able to be evaluated in similar
manner. Here, we illustrate two suchiexamples: .Classification problems of this sort might

be encountered in survival analysis and fatlure time analysis.

The first example considers the following hypothesis testing problem:
H1 : Xz == min(ZM, v ,Zi,ﬁ>

versus

H(] . Xz = IIlil’l(Zi’l, s ,Zi’f\/)

for i = 1,2,...,n and § < 7, where X, is the observation of i-th sensor, and {Z;;} are
independent and identically distributed random variables with the associated PDF wy(z)
and CDF Wy(z). Thus, X; has CDF Fx(z;) = 1 — Pr(min(Z;1,---,Zig) > ;) = 1 —
(1 — Wy(z;))? and PDF fx(x;) = B(1 — Wy(x;))?twy(z;) when H; is true, and has CDF
Gx(z;)) =1—Pr(min(Z;;, -+, Z;y) > x;)) =1 — (1 — Wz(x;))” and PDF gx(x;) = (1 —

Wy(x;)) twz(x;) when Hjy is true.



From the discussion in the previous sections, we know that each sensor should apply local
likelihood ratio tests as the local decision rules, and the local likelihood ratio test threshold

for ¢-th sensor is given by

‘:fx(iﬂi): _ 2. ))87
n= B e,

where £ = g The detection probability Pp and the false alarm probability Pr for i-th sensor

are therefore

and
:}’I
PF()‘Z) = ()\é) )
where § = v—iﬂ and 4 = v—Lﬂ We also have
Pr(Pp(i)) =Pg(i)*
and

| ZdPp PR Py (Pr(i)

where by abusing the notations, Pr(i) and Pp(Pr(i)) are the false alarm probability and the
detection probability for the i-th sensor, respectively. Hence, the ROC of this classification
problem is of the same form as the aforementioned classification of exponential sources
problem. The discussion for the classification of exponential sources can accordingly be

well-fit to this problem.

The second example is an analogue of the first example. Consider the following hypothesis
testing problem:

H1 : Xz = maX(Z¢,1, U >Zi75)

versus

Hy: X, = maX(Zz‘717 T aZiﬁ)
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for i = 1,2,...,n and § < v, where X, is the observation of i-th sensor, {Z;;} are inde-
pendent and identically distributed random variables with the associated PDF wy(z) and
CDF Wg(2). Thus, X; has CDF Fx(z;) = Pr(max(Z; 1, -, Zig) < 2;) = Wz(z;)? and PDF
fx(z;) = BWz(2;)’ " wz(z;) when Hy is true, and has CDF Gx(x;) = Pr(max(Z; 1, -+, Z;,) <

z;) = Wz(x;)? and PDF gx(z;) = YWz (x;)"'wz(z;) when Hy is true.
The local likelihood ratio test threshold for i-th sensor is

_ fx(l’z)
QX(sz')

A = Wy ()",

where £ = g The detection probability Pp and the false alarm probability Pg for i-th sensor

=1 ()’

PRy =1+ (%)1

where = %iﬁ and v = “/%ﬁ By:the above setting, we immediately have

are equal to

and

1 — Pp(Pp(i))=1(1— Pr(i))*

and
\ = Po(Pr(t) _ 11— Pp(Pr(i))
' dPp(i) 1 — Pp(i)

where Pr(i) and Pp(Pr(i)) are again the false alarm probability and the detection probability
for the i-th sensor, respectively. Hence, the ROC of this classification problem is also a
mirror of the ROC of the classification of exponential sources. Consequently, with slight

modification, we can have similar results as the classification of exponential sources problem.
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4.8.1 Decentralized Classification of Heavy-tailed Sources Prob-
lems

The heavy-tailed distributions, specifically the Pareto distribution, are related to the self-
similar phenomena in a way that if the packet inter-arrival process is modelled as i.i.d. Pareto
random variables, the packet counting process is asymptotically second-order self-similar

process with H = (3 — «)/2, where « is the Pareto parameter.

In practical control of the network traffic, one might need to test whether its self-similarity
is weak or strong to determine whether the long-range dependence can or cannot be ignored.
To reduce the response time and to alleviate the load of network, a decentralized scheme for
the detection of the self-similarity might be useful. As a result, one might need to consider
the following binary hypothesis testing problem:

1
Hy fx(zi) = 5@

T

versus

or equivalently,

1
Hl Fx(LCZ) =1- F
versus
1
HO . Gx(ZEZ) =1- —
Ty
fori=1,2,...,n, f <~vand z; > 1, where z; is the observed value of the random variable

X; with the associated PDF fx(z;) and CDF Fy(x;). Here, we assume that {X;} form a
set of independent and identically distributed random variables. For a fixed fusion rule, the

local likelihood ratio tests are

s.m
Pl
i

8
AIV

Aiu

<2
+
|
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or equivalently,

ZT; ; tl
1
fori=1,2,...,n, where \; and t; are some constants to be decided, and ¢, = (/\Z%)W.

It turns out that Pp(\) and Pp(\) of the above testing problem have the same forms as
the classification of exponential sources problem in Section 4.1; hence, the previous result

can be applied to the testing problem for the Pareto distributions directly.

4.9 Gaussian Classification Problems

All the previous parts in this chapter discuss mainly on the classification of exponential
sources problem (or problems with the same ROC). In this section, we briefly discuss another
classification problem that has drawn more attention among researchers, i.e., the classifica-

tion of Gaussian sources problem.

Let us introduce some notations. first.

Definition 4.2. If X is a Gaussian random variablé with mean p and variance o2, then it

has a probability density function

ex(zp,0) =

and a distribution function

Cx(z;p,0) = /I cx(ip,0) = (x _M> :

— 00 o

where ¢(-) and ®(-) are respectively the probability density function and cumulant distribu-
tion function of the standard normal distribution, i.e., the Gaussian distribution with u =0

and variance o = 1.
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We then concern the following binary hypothesis testing problem for Gaussian distribu-

tions:
Hy: P(x;) = c(xi;py 1)
versus
Hy: P(z;) = c(x; —p, 1)
fori = 1,2,...,n and B < 7, where x; is the observation of ¢-th sensor, and without loss

of generality, we assume ¢ = 1. For a fixed fusion rule, it is known that the optimal local

decision rules are local likelihood ratio tests, namely,

1 _(@=—w)?
e 202
2mo > )\
1 (w2 <70
e 202
V2o
or equivalently,
>
L=
for i =1,2,...,n, where \; and g; are some constants to be decided.

The optimal strategy of the two-sensor=system-under this setting has been solved in
[34], in which they showed analytically that the identical local decision rules are optimal.
However, for the system with more than two sensors, the desired result that identical sensor
system is optimal is still absent. Here, we offer an alternative argument that is partly built
on numerical results. Firstly, let us examine the conditions in Lemma 4.7. For Gaussian
classification problem, it is easy to show analytically that the second and third conditions
are satisfied. As for the first condition, we can show numerically that it is valid for relatively
small n. Thus, we can conclude from Theorem 4.3 that the optimal three-sensor system still

employ identical sensors.
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Chapter 5

Conclusions

5.1 Self-Similar Traffic Generators

In the first part of this dissertation, we propose a filter-based generator for the synthesization
of self-similar traffics. It can produce longirange dependent traffics with adjustable levels of
bustiness and correlation, and is parsimonious in.the number of model parameters. Precisely,
only three input parameters are required, i.e:; the self-similar parameter H (which controls
the bustiness and autocorrelation ‘of the symthesized traffic), the mean of the traffic A, and the
length of the filter W (which also determines the effective aggregation size in the variance-
time analysis). Despite the finite time scales of the self-similar phenomenon in the synthesized
traffic, it actually agrees with the measured behavior of true network traffic, i.e., the self-
similar nature only lasts beyond a practically manageable range, but disappears as the
considered aggregated window is much further extended [4, Fig. 2]. When it is compared
with exiting self-similar traffic synthesizers, e.g., the RMD and the Paxson IFFT algorithm,
the proposed filter-based synthesizer has the advantages that the synthetic traffic can be

generated on the fly, and always produces non-negative valued traffic.

Comparisons of the complexities of self-similar traffic generators are as follows. Given

that the length of the synthesized traffic is n, the number of complex multiplications required
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for the Paxson IFFT method [19] is about (n/2)(log, n + 2). Our filter-based approach, on
the other hand, requires n x W complex multiplications, where W represents the truncation
window size. After analytically analyzing our approach based on variance-time test, we
conclude that our synthesizer guarantees the generation of a traffic with desired degree of

self-similarity beyond the intended range.

5.2 Correlation Approximation to the Mutual Infor-
mation of Self-Similar Processes

We discuss the implications between the correlation coefficient (a quantity that only mea-
sures the linear dependance) and mutual information (a quantity that can represent the
general dependance) in Chapter 3. We focus on the question that given the correlation
coefficients of random sources, what is!the minimum possible value of mutual information?
Theorem 3.1 then suggests that for'weakly correlated random variables, such as two instances
of a self-similar process with a leng time lag, half the square of the correlation coefficients
is a reasonable approximation td:the-mutual‘information, provided they are also weakly

dependent in a general sense.

5.3 Bayesian Decentralized Detection

Our investigation of the optimal decentralized system has yielded some interesting results.
Firstly, for the classification of exponential sources problem, the optimality of identical sensor
system has been proved for n = 2 and n = 3. For n > 3, we have to rely partly on numerical
examination. A byproduct is that for the classification of exponential sources problem, the
optimal performance of the optimal serial two-sensor system is the same as the optimal
parallel two-sensor system. It is somewhat surprising since it is known that the serial two-

sensor system in general has better performance than the parallel two-sensor system [32].
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For the general classification problem, we propose a set of propositions on the optimality
of the identical system. These propositions can be verified without much difficulty. Moreover,
we point out that some classification problems encountered in the survival analysis and
failure time analysis, as well as the decentralized detection for the self-similarity via the
local measurements of the packet inter arrival times, can be manipulated in the same way.
Finally, for the Gaussian classification problem, we conclude the optimality of identical

sensors partly numerically.
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