國立交通大學應用化學研究所

有機發光二極體化學材料的合成與性質研究 Synthesis and Characterization of Chemical Materials for Organic Light-Emitting Diode

研究生:蘇惠真

指導教授:許慶豐博士

中華民國 九三 年 六 月

有機發光二極體化學材料的合成與性質研究

Synthesis and Characterization of Chemical Materials for Organic Light-Emitting Diode

研究生:蘇惠真 指導教授:許慶豐博士 Student: Huei Jen Su Advisor: Dr. Ching-Fong Shu

國立交通大學

應用化學研究所

碩士論文

Miller,

A Thesis Submitted to Department of Applied Chemistry

College of Science

National Chiao-Tung University

in Partial Fulfillment of the Requirements

for the Degree of Master

in

Applied Chemistry

June 2004

Hsinchu, Taiwan, Republic of China

中華民國九十三年六月

有機發光二極體化學材料的合成與性質研究

研究生:蘇惠真 指導教授:許慶豐博士

國立交通大學應用化學研究所

摘要

本論文分為三部分,分別針對聚茀高分子衍生物與銥金屬紅色磷光材 料之合成、性質與元件做討論。

在A部分中,我們在fluorene碳-9的位置上導入具有高熱穩定性與電子 傳輸特性的剛硬奎琳基團或具有電洞傳輸特性的三苯胺,形成3D-cardo結構,對於此系列PF-Q高分子之熱穩定性、電荷傳輸以及溶解度有相當程度 的提升。

在B部分中,我們嘗試將DSA衍生物(DPVBi和DPAVBi)以spiro-linkage 的形式導入聚茀高分子的側鏈上,藉此將主鏈的高能量透過Förster能量轉 移機制傳輸到低能量的側鏈,最後將光色微調至人眼較敏感的藍光範圍。 另一方面,由於spiro-bifluorene中心剛硬的sp³正交結構,有效的提升Tg, 阻止分子的堆積,降低激發雙體產生的趨勢。

在C部分中,我們在原本放射波長偏向橘光Ir(pq)2acac的螯合基4號碳位 置上加入一苯基取代,合成出Ir(dpq)2acac,藉此令放射波長紅位移至較接 近紅光的範圍,並增加立體障礙,減低濃度所造成的驟熄效應。更進一步, 為了使銥金屬錯合物能夠有效的使用於高分子摻混中,我們設計出 Ir(pfq)2acac,藉由fluorenyl的導入來調整光色至更理想的紅光位置,以及藉 由長碳鏈的導入來增加銥金屬錯合物在高分子中的分散性,同時加強立體 障礙,降低濃度效應,提升放光效率。

Synthesis and Characterization of Chemical Materials for Organic Light-Emitting Diode

Student: Huei Jen Su

Advisor: Dr. Ching-Fong Shu

Department of Applied Chemistry National Chiao-Tung University

Abstract

This thesis is divided into three parts regarding the synthesis and characterization of polyfluorene derivatives and two new red phosphorescent iridium complexes. We also report the fabrication and performance of the devices based on these materials.

In part A, three novel blue-light-emitting copolymers (PF-Q series) with bulky 2,4-diphenylquinoline and/or triphenylamine pendant groups attached at the C-9 position of fluorene have synthesized. The results from photoluminescence reveal that both the side chains and the polyfluorene main chain retain their own electronic characteristics in these copolymers. Furthermore, they also possess high thermal stability, good charge injection/transport ability and better solubility.

In part B, we report the synthesis, photophysics, electrochemistry, and device performance of two DSA-containing fluorene copolymers, SFD(1/4) and SFA(1/4). As a result of color tuning through efficient Förster energy transfer from the higher-energy polyfluorene backbone to the lower-energy pendants, the emission maxima of these polyfluorenes shift to the wavelength where the human eye is more sensitive; however, the color of emission is still in the pure blue region.

In part C, the synthesis, photophysics, electrochemistry, and device performance of two new iridium complexes, Ir(dpq)₂acac and Ir(pfq)₂acac, are reported. For Ir(dpq)₂acac, one phenyl group has been introduced onto C-4 position of the quinoline to tune the emission color and to improve steric hindrance around the metal center. For Ir(pfq)₂acac, a 9,9-dioctylfluorene group has been replaced with the phenyl group at C-2 position of the quinoline. The extent of conjugation leads to an ideal red phosphorescence, while the presence of bulky ligands results in amorphous materials and prevents self-quenching.

謝誌

研究所兩年的日子過的比自己想像中還要快,沒想到我一下子就要畢業了,不過 這都要感謝在我週遭的每一個人對我的幫助。首先,感謝我的指導教授許慶豐老師兩年 來細心的教導,雖然老師看起來很嚴肅,但是實際上他真的是一個好人,總會盡己所能 的幫助學生。兩年來,看著老師的改變,心中充滿了"哇!哇!哇!"的驚嘆聲,改變實在是 太大了。同時,也感謝口試委員陶雨台教授和季昀教授百忙之中費心審查這份論文,並 在口試當天給我很多的指導和建議。

在實驗室方面,感謝芳奕、老周、老張、小吳、小馨、阿貿、阿慶、桂如等學長 姐的幫助,總是在我有疑問的時候,熱心的給予指導。也感謝我的兩位同學翔暘與康哥 的相互扶持,以及冷汗、雅嫺、大秉、冠宇、菱均等學弟妹在想法與生活上的刺激,使 得我的研究生生涯增添了不少樂趣。在實驗量測方面,感謝NMR是張小姐及Mass室李 小姐的幫助;在實驗元件部份,感謝中研院陶雨台教授指導,及簡金雄學長對於C部分 的元件製作。另外,還要謝謝隔壁實驗室的都培常常陪我玩,可愛的豆豆龍(基育)之可 愛的笑容,讓我每天都有好心情。在私生活方面,室友可愛佳珍、漂亮卓芳、耍寶如惠 讓我的生活充滿了樂趣與與笑聲,還有有氣質又愛生氣的惠文室友不要再那麼容易被我 激怒了。

最後要感謝我的家人給予我無比的支持,如果沒有你們,就不會有現在的我。當 然,還有很多很多在這段日子幫助過我的人,雖然不能一一詳述,但是我仍然由衷感謝 你們,我要大聲的向你們說:

謝謝 ^0^

中文摘要	i
英文摘要	iii
謝誌	V
目錄	vi
圖目錄	Х
表目錄	XV
附圖目錄	xvii
附表目錄	XX
	高分子有機發光二極體簡介
第一章	緒論1
1.1	前言
1.2	高分子有機發光二極體(PLED)發展1
1.3	PLED元件裝置與發光原理
1.4	高分子發光材料簡介
1.5	目前常用的高分子發光材料
第二章	結論
參考文獻	

A部分

第一章	緒論	14
1.1	前言	14
1.2	聚茀(Polyfluorene)的歷史回顧	14
1.3	研究動機	15
第二章	實驗	17
2.1	藥品	17
2.2	使用儀器(Part A、B、C)	18

2.3	性質測量(Part A、B、C)	20
2.4	合成部份	23
第三章	結果與討論	36
3.1	合成部份	36
3.2	物理性質	40
	3.2.1 GPC測量	40
	3.2.2 DSC和TGA測量	40
	3.2.3 溶解度測試	44
3.3	光學性質	46
	3.3.1 PF-Q系列聚茀 - UV-vis吸收光譜與PL放射光譜	46
	3.3.2 PF-Q1、PF-Q2聚茀-主鏈與側鏈間之能量轉移	47
	3.3.3 量子效率測量	51
3.4	電化學性質	53
3.5	薄膜熱穩定性測量	58
3.6	元件電激發光性質	61
	3.6.1 高分子有機發光二極體元件製作與光電性質測量	61
	3.6.2 PF-Q2元件電激發光性質	63
第四章	結論	68
參考文獻		69

B部分

第一	章	緒論	.70
	1.1	前言	.70
	1.2	研究動機	.72
第二	章	實驗	.73
	2.1	藥品	.73
	2.2	合成部份	.74
第三	章	結果與討論	.83
	3.1	合成部份	.83

3.2	物理性質	88
	3.2.1 GPC測量	
	3.2.2 DSC和TGA測量	
	3.2.3 溶解度測試	92
3.3	光學性質	93
	3.3.1 SFD系列聚茀 - UV-vis吸收光譜與PL放射光譜	93
	3.3.2 SFD(1/4)- 主鏈與鏈間的能量轉移	96
	3.3.3 SFA(1/4) - UV-vis吸收光譜與PL放射光譜	98
	3.3.4 SFA(1/4) 摻雜在PF-TPA-OXD中的光學性質研究	100
	3.3.5 量子效率測量	102
3.4	電化學性質	104
3.5	薄膜熱穩定性測量	109
3.6	元件電激發光性質	112
	3.6.1 高分子有機發光二極體元件製作與光電性質量測	112
	3.6.2 SFD(1/4)元件電激發光性質	112
	3.6.3 以SFD(1/4)與MEH-PPV製成白光高分子發光二極體	115
	3.6.4 SFA(1/4)元件電激發光性質	119
第四章	結論	124
參考文獻		125

C部分

第一	章	緒論	126
	1.1	前言	127
	1.2	磷光材料發光原理	127
	1.3	磷光材料簡介	128
	1.4	研究動機	134
第二:	章	實驗	137
	2.1	藥品	137
	2.2	合成部份	138
第三:	章	結果與討論	144

3.1	合成部份144
3.2	X -ray單晶繞射147
3.3	熱性質-DSC和TGA測量151
3.4	光學性質153
	3.4.1 UV-vis吸收光譜與PL放射光譜153
	3.4.2 量子效率與半生期154
3.5	電化學性質156
3.6	元件電激發光性質159
	3.6.1 Ir(dpq) ₂ acac元件電激發光性質159
	3.6.2 Ir(pfq) ₂ acac混掺在PBD-PVK(30 wt.%)中的元件電激發光性質161
第四章	結論
參考文獻	

圖目錄

啚	1	單層式發光二極體元件5
圖	2	影響高分子能隙的五個因素6
圖	3	以fluorene為核心, 共聚不同分子而產生RGB三種激發光高分子7
圖	4	構成聚合物π共軛的主要電激發光基團8
圖	5	電激發光聚合物的主要類別
圖	6	不同側鏈取代基PPV衍生物9
圖	7	PTs的衍生物10
圖	7	PTs的共聚物11
圖	A-1	PF-Q1之DSC圖
圖	A-2	PF-Q2之DSC圖
圖	A-3	PF-QA之DSC圖
置	A-4	PF-Q1之TGA圖
圖	A-5	PF-Q2之TGA圖
圖	A-6	PF-QA之TGA圖
圖	A-7	PF-Q1的CHCl₃溶液UV-vis吸收光譜(sol. UV)、固態UV-vis吸收光譜(film
		UV)、CHCl ₃ 溶液放射光譜(sol. PL)、固態放射光譜(film PL)
圖	A-8	PF-Q2的CHCl ₃ 溶液UV-vis吸收光譜(sol. UV)、固態UV-vis吸收光譜(film
5		UV)、CHCl3溶液放射光谱(Sol. PL)、固態放射光谱(film PL)
宣	A-9	PF-QA的CHCl ₃ 溶液UV-vis吸收光譜(sol.UV)、固態UV-vis吸收光譜(film UV)、CHCl ₃ 溶液射光譜(sol PL)、固態放射光譜(film PL) 49
圖	A-10	POF、PF-Q1、PF-Q2、PF-QA(in CHCl ₃)之吸收/放射光譜
圖	A-11	PF-Q1(solution, excited by 340 nm; λ _{em} =418 nm)& dpg(in CHCl ₃)之吸收/放射
-		/激發光譜
圖	A-12	PF-Q2(solution, excited by 340 nm; λ_{em} =418 nm)& dpq(in CHCl ₃)之吸收/放射
		/激發光譜

啚	A-13	PF-QA(solution, excited by 310 nm; $\lambda_{em}{=}418$ nm) \cdot tpa(in CHCl_3) & dg	pq(in
		CHCl ₃)之吸收/放射/激發光譜	51
圖	A-14	PF-Q1 薄膜態之CV圖	55
圖	A-15	PF-Q2 薄膜態之CV圖	56
圖	A-16	PF-QA 薄膜態之CV圖	56
圖	A-17	POF 薄膜態之CV圖	57
圖	A-18	POF薄膜熱穩定性比較	58
圖	A-19	PF-Q1薄膜熱穩定性比較	59
圖	A-20	PF-Q2薄膜熱穩定性比較	59
圖	A-21	PF-QA薄膜熱穩定性比較	60
圖	A-22	ITO清洗流程	63
圖	A-23	Device IL-V-I圖,內插:不同電壓下的EL	66
圖	A-24	PF-Q2的放射光譜與Ir(pfq)2acac的吸收/放射光譜疊圖	66
圖	A-25	Device ⅡL-V-I圖,內插:不同電壓下的EL	67
圖	B-1	DSA分子模型圖	70
圖	B-2	DPVBi之結構	71
圖	B-3	DPAVBi之結構	71
圖	B-4	SFD(1/4)之DSC圖	89
圖	B-5	SFA(1/4)之DSC圖	90
圖	B-6	SFD(1/2)之TGA圖	90
圖	B-7	SFD(1/4)之TGA圖	91
圖	B-8	SFA(1/4)之TGA圖	91
圖	B-9	POF之化學結構	94
圖	B-10	sp-DPVBi之化學結構	94
圖	B-11	B4之化學結構	95
圖	B-12	SFD(1/2)的CHCl3溶液UV-vis吸收光譜(sol. UV)、固態UV-vis吸收光譜	(film
		UV)、CHCl3溶液放射發光譜(sol. PL)、固態放射光譜(film PL)	95

圖	B-13	SFD(1/4)的CHCl ₃ 溶液UV-vis吸收光譜(sol. UV)、固態UV-vis吸收光譜(film UV)、CHCl ₃ 溶液放射光譜(sol. PL)、固態放射光譜(film PL)
圖	B-14	SFD(1/2), POF & sp-DPVBi之薄膜吸收/放射光譜
圖	B-15	SFD(1/4), POF & sp-DPVBi之薄膜吸收/放射光譜
圖	B-16	相同吸收(@ 380nm)的條件下,4*POF、sp-DPVBi、4*POF+sp-DPVBi與 SFD(1/4)的放射強度比較
圖	B-17	SFA(1/4)的CHCl ₃ 溶液UV-vis吸收光譜(sol. UV)、固態UV-vis吸收光譜(film UV)、CHCl ₃ 溶液放射光譜(sol. PL)、固態放射光譜(film PL)
圖	B-18	SFA(1/4) (solution, excited by 380 nm; λ _{em} =467 nm), POF & B4之溶液態(in CHCl ₃)吸收/放射光譜/激發光譜
圖	B-19	SFA(1/4) 掺雜在PF-TPA-OXD中(重量比),最大放射波長的變化101
圖	B-20	SFA(1/4)掺雜在PF-TPA-OXD(重量比)中放射強度的變化102
圖	B-21	sp-DPVBi、POF和化合物B4能階圖105
圖	B-22	SFD(1/4)溶液態之CV圖
圖	B-23	sp-DPVBi溶液態之CV圖106
圖	B-24	POF溶液態之CV圖
圖	B-25	SFA(1/4)溶液態之CV圖
圖	B-26	化合物B4溶液態之CV圖108
圖	B-27	POF薄膜熱穩定性比較110
圖	B-28	SFD(1/4)薄膜熱穩定性比較110
圖	B-29	SFA(1/4)薄膜熱穩定性比較111
圖	B-30	Device I、Device Ⅱ之電流密度-電壓-亮度 圖
圖	B-31	Device Ⅱ在不同電壓下EL,內插: Device I 在7 V時的EL114
圖	B-32	Device Ⅱ 電流密度-外部量子效率 圖114
圖	B-33	(a)0.5 wt% MEH-PPV掺混在SFD(1/4)中的PL與MEH-PPV溶液態(in toluene) 的吸收/放射光譜(b) Device Ⅲ在不同電壓下EL 圖
圖	B-34	Device Ⅲ電流密度vs. 外部量子效率圖117
圖	B-35	Device Ⅲ亮度-電壓-電流密度圖118

圖	B-36	SFA(1/4)以不同比例掺混(w/w)在PF-TPA-OXD中的EL1	21
圖	B-37	SFA(1/4)以不同比例掺混(w/w)在PF-TPA-OXD中的C.I.E1	21
圖	B-38	SFA(1/4)以不同比例掺混(w/w)在PF-TPA-OXD中的亭度-雷壓 1	22
E I I I I I	B 30	SFA(1/4)以不同比例接误(w/w)在PETPA OYD中不同雲歐下FI:	(a)
凹	D-39	517A(1/4)这个时代网络能(w/w)在11-11A-OAD 中小时电座下日, 1:0,(b)1:5,(c)1:10,(d)1:20	(a) .22
圖	B-40	SFA(1/4)以不同比例掺混(w/w)在PF-TPA-OXD中電流密度-外部量子效	率
		圖1	23
圖	C-1	磷光材料發光原理1	27
圖	C-2	Ir(mppy)3與m-PF-ph之結構1	29
圖	C-3	FIrpic與FIr6之結構1	29
圖	C-4	PtOEP與Ir(btp)2acac之結構1	30
圖	C-5	Ir(piq)3之結構1	30
圖	C-6	成功大學孫亦文老師實驗室發表之磷光材料結構1	31
圖	C-7	陳壽安教授實驗室發表之高分子磷光材料結構1	32
圖	C-8	Tokito發表之高分子磷光材料結構1	33
圖	C-9	S. R. Forrest和M. E. Thompson發表之磷光材料結構1	35
圖	C-10	銥金屬雙體錯合物與 <u>C^N</u> 2Ir(LX)的立體結構1	44
圖	C-11	Ir(dpq) ₂ acac之ORTEP圖1	47
圖	C-12	Ir(pfq)2acac之DSC圖1	51
圖	C-13	Ir(dpq) ₂ acac之TGA圖	51
圖	C-14	Ir(pfq)2acac之TGA圖1	52
圖	C-15	Ir(dpq) ₂ acac、dpq、Ir(pfq) ₂ acac與pfq在THF中的吸收光譜1	54
圖	C-16	Ir(pq)2acac、Ir(dpq)2acac、Ir(pfq)2acac在THF溶液UV-vis吸收/放射光譜	155
圖	C-17	Ir(pq)2acac溶液態之CV圖1	57
圖	C-18	Ir(dpq)2acac溶液態之CV圖1	58
圖	C-19	Ir(pfq)2acac溶液態之CV圖1	58
圖	C-20	Ir(dpq) ₂ acac元件結構圖1	59

圖	C-21	NPB、CBP、BCP、Alq結構1	160
圖	C-22	Elr(btp) ₂ acac、lr(pfq) ₂ acac吸收/放射光譜與PBD-PVK(30 wt.%)的放射光譜 圖1	瞢疊 164
圖	C-23	Ir(pfq) ₂ acac以不同濃度掺混在PBD-PVK(30 wt.%)的PL1	165
圖	C-24	Ir(pfq) ₂ acac以不同濃度掺混在PBD-PVK(30 wt.%)的EL1	165
圖	C-25	ITO/PEDOT:PSS/Ir complex(x mol%):PBD-PVK(30 wt.%) /TPBI/ Mg:Ag/ 的能階圖	Ag 166
圖	C-26	Ir(pfq) ₂ acac在不同濃度(mol%)的I-V圖1	166
圖	C-27	'ITO/PEDOT:PSS/Ir complex(0.5 mol%):PBD-PVK(30 wt.%) /TP Mg:Ag/Ag電流密度-外部量子效率圖	BI/ 167
圖	C-28	BITO/PEDOT:PSS/Ir complex(0.5 mol%):PBD-PVK(30 wt.%) /TP Mg:Ag/Ag在不同電壓下的EL	BI/ 167

表目錄

表 A-1	PF-Q系列之分子量	40
表 A-2	PF-Q系列之DSC與TGA的數據分析表	41
表 A-3	PF-Q系列之溶解度測試	45
表 A-4	PF-Q系列、dpq、tpa與POF之UV-vis吸收與PL放射量測表	47
表 A-5	PF-Q系列之量子效率	52
表 A-6	PF-Q系列薄膜態的氧化還原電位及HOMO、LUMO	55
表 A-7	ITO/PEDOT:PSS/Polymer/TPBI/Mg:Ag/Ag之元件特性	65
表 B-1	SFD系列與SFA(1/4)的分子量	88
表 B-2	SFD系列、SFA(1/4)之DSC與TGA的數據分析表	89
表 B-3	SFD(1/2)、SFD(1/4)、SFA(1/4)之溶解度測試	92
表 B-4	SFD系列、sp-DPVBi、SFA(1/4)、DPAVBi與POF之UV-vis吸收與PL放 測表	、射量 94
表 B-5	SFD(1/4)和SFA(1/4)之量子效率1896	101
表 B-6	SFD(1/4)、sp-DPVBi、POF、SFA(1/4)、化合物B4溶液態的氧化還原	電位
	及HOMO、LUMO	105
表 B-7	ITO/PEDOT/EL/ (TPBI)/Mg:Ag/Ag的元件效率	118
表 B-8	ITO/PEDOT/ SFA(1/4):PF-TPA-OXD /TPBI/Mg:Ag/Ag的元件效率	123
表 C-1	Ir(dpq)2acac晶格數據	148
表 C-2	Ir(dpq)2acac特殊位置之鍵長、鍵角與扭曲角度	149
表 C-3	Ir(dpq)2acac、Ir(pfq)2acac之熱性質	150
表 C-4	Ir(pq)2acac、Ir(dpq)2acac、Ir(pfq)2acac、Ir(btp)2acac之吸收/放射光譜位 半生期、量子效率	立置、 153
表 C-5	Ir(pq) ₂ acac、Ir(dpq) ₂ acac與Ir(pfq) ₂ acac的溶液態氧化還原電位及HOM LUMO	ИО、 157
表 C-6	Ir(btp)2acac 與Ir(dpq)2acac元件數據比較	161

表 C-7	′ Ir(btp)2acac、Ir(dpq)2acac與Ir(pfq)2acac以不同濃度	掺雜在PBD-PVK(30 wt.%)
	的元件數據	

附圖目錄

附圖	1.	2,7-Dibromo-9,9-di(4-nitrophenyl)fluorine, 化合物A1的 ¹ H-NMR光譜圖.172
附圖	2.	2,7-Dibromo-9,9-di(4-nitrophenyl)fluorene的,化合物A1的 ¹³ C-NMR光譜圖
附圖	3.	2,7-Dibromo-9,9-bis[5-(3-phenyl-2,1-benzisoxazolyl)]fluorine, 化合物A2的 ¹ H-NMR光譜圖
附圖	4.	2,7-Dibromo-9,9-bis[5-(3-phenyl-2,1-benzisoxazolyl)]fluorine , 化合物 A2 ¹³ C-NMR光譜圖
附圖	5.	2,7-Dibromo-9,9-bis(4-amino-3-benzoylphenyl)fluorene , 化合物A3的 ¹ H-NMR光譜圖
附圖	6.	2,7-Dibromo-9,9-bis(4-amino-3-benzoylphenyl)fluorene , 化合物A3的 ¹³ C-NMR光譜圖
附圖	7.	2,7-Dibromo-9,9-bis(4-acetylphenyl)fluorene, 化合物A4的 ¹ H-NMR光譜圖
附圖	8.	2,7-Dibromo-9,9-bis(4-acetylphenyl)fluorene, 化合物A4的 ¹³ C-NMR光譜圖
附圖	9.	單體Q1的 ¹ H-NMR光譜圖
附圖	10	. 單體Q1的 ¹³ C-NMR光譜圖
附圖	11.	. 單體Q2的 ¹ H-NMR光譜圖
附圖	12	. 單體Q2的 ¹³ C-NMR光譜圖
附圖	13	. 高分子PF-Q1的 ¹ H-NMR光譜圖184
附圖	14	. 高分子 PF-Q1的 ¹³ C-NMR光譜圖185
附圖	15	. 高分子PF-Q2的 ¹ H-NMR光譜圖186
附圖	16	. 高分子PF-Q2的 ¹³ C-NMR光譜圖187
附圖	17	. 高分子PF-QA的 ¹ H-NMR光譜圖188
附圖	18	. 高分子PF-QA的 ¹³ C-NMR光譜圖189

附圖	19. 2,4-Diphenylquinoline的 ¹ H-NMR光譜圖	190
附圖	20. 2,4-Diphenylquinoline的 ¹³ C-NMR光譜圖	191
附圖	21. 2,7- Dibromo -2',7'- bis(bromomethyl))-9,9'-spirobifluorene , 化合物 ¹ H-NMR光譜圖	B1的 192
附圖	22. 2,7- Dibromo -2',7'- bis(bromomethyl) -9,9'-spirobifluorene, 化合物 ¹³ C-NMR光譜圖	B1的 193
附圖	23. 2,7-Dibromo-2',7'-bis(diethoxyphosphorylmethyl)-9,9'- spirobifluorene 物B2的 ¹ H-NMR光譜圖	化合 194
附圖	24. 2,7-Dibromo-2',7'-bis(diethoxyphosphorylmethyl)-9,9'- spirobifluorene 物B2的 ¹³ C-NMR光譜圖	化合 195
附圖	25. 2,7-Dibromo-2',7'-bis(2,2-diphenylvinyl)- 9,9'-spirobifluorene, 化合物: ¹ H-NMR光譜圖	B3的 196
附圖	26. 2,7-Dibromo-2',7'-bis(2,2-diphenylvinyl)-9,9'-spirobifluorene,化合物 ¹ H- ¹ H COSY光譜圖	B3的 197
附圖	27. 2,7-Dibromo-2',7'-bis(2,2-diphenylvinyl)-9,9'- spirobifluorene, 化合物:	B3的 198
附圖	28. 2,7-Dibromo-2',7'- bis[4'-(diphenylamino)styryl]- 9,9'-spirobifluorene,物B4的 ¹ H-NMR光譜圖	化合 199
附圖	29. 2,7-Dibromo-2',7'- bis[4'-(diphenylamino)styryl]- 9,9'-spirobifluorene, 物B4的 ¹ H- ¹ H COSY 光譜圖	化合 200
附圖	30. 2,7-Dibromo-2',7'- bis[4'-(diphenylamino)styryl]- 9,9'-spirobifluorene,物B4的 ¹³ C-NMR光譜圖	化合 201
附圖	31. 高分子SFD(1/2)的 ¹ H-NMR光譜圖	202
附圖	32. 高分子SFD(1/4)的 ¹ H-NMR光譜圖	203
附圖	33. 高分子SFD(1/4)的 ¹³ C-NMR光譜圖	204
附圖	34. 高分子SFA(1/4)的 ¹ H-NMR光譜圖	205
附圖	35. 高分子SFA(1/4)的 ¹³ C-NMR光譜圖	206
附圖	36. Ir(dpq) ₂ acac的 ¹ H-NMR光譜圖	207
附圖	37. Ir(dpq) ₂ acac的 ¹³ C-NMR光譜圖	208

附圖	38. 2-Acetyl-9,9-dioctylfluorene,化合物C1的 ¹ H-NMR光譜圖	209
附圖	39. 2-Acetyl-9,9-dioctylfluorene,化合物C1的 ¹³ C-NMR光譜圖	210
附圖	40. 2-(9,9-dioctyl-9H-2-fluorenyl)-4-phenylquinoline, 化合物C2的 ¹ H-NMR	亡譜 211
财国	日 1. 2 (0.0 diastyl 0H 2 fluoronyl) 4 phonylquingling 、化合地C2的 ¹³ C NM	D 业
们回	41. 2-(9,9-ulociyi-911-2-huorenyi)-4-phenyiquilloinie / 10/a-49/02/b) C-Nivi	N 71 i
	譜圖	212
附圖	譜圖 42. r(pfq) ₂ acac的 ¹ H-NMR光譜圖	212213

附表目錄

