C 部分

紅色有機銥金屬磷光材料研究

第一章 緒論

1-1. 前言

近年來,有機發光二極體(Organic Light-Emitting Diode; OLED)由於材 料設計與元件製程的快速進展,使得 OLED 逐漸在平面顯示器應用上受到 矚目,而磷光材料更是促使 OLED 在元件效率上大幅提升的主要原因之 一。磷光材料能夠有效並完整的將能量以光的形式放出,因此其元件內部 量子效率幾乎可以達到 100%。目前最受到重視的磷光材料是有機銥金屬錯 合物,由於其磷光半生期較短(~4 µs),可避免嚴重的三重態驟熄 (triplet-triplet annihilation),因此相當受學術界與產業界的注意。

1-2. 磷光材料發光原理

有機電激發光是透過電子與電洞再結合形成激子,最後以光的形式將能量放出。如圖 C-1.所示,有機分子被激發後會有四分之一的機會形成單重態(singlet; S₁),四分之三的機會形成三重態(triplet; T₁),由單重態輻射性緩解所放出的光為螢光,由三重態輻射性緩解所放出的光為磷光。螢光材料由於只利用到單重態的能量,因此會有四分之三的能量會被浪費掉。而 磷光材料則充分利用到三重態的能量,若再引入重原子(heavey atom),造成 強烈的 spin-orbital coupling,提升 intersystem crossing 的機會,使得單重態 的能量有效的轉移至三重態,並從三重態放光,使得內部量子效率有機會 達到100%,大幅提高放光效率。

圖 C-1. 磷光材料發光原理

1-3. 磷光材料简介

1-3-1. 綠色磷光材料

綠色磷光材料是目前磷光材料中發展的最好的,以 fac tris(2-phenylpyridine) iridium [Ir(ppy)₃]為發展主流,其最大放射波長位於 510 nm, C.I.E.1931 色度座標為(0.27,0.63)。目前 Ir(ppy)₃ 元件效率最佳條件為將 其 摻 雜於 4,4',4''-tris(N-carbazoyl)triphenylamine(TCTA)中,以 starbrust perfluorinated phenylenes(C₆₀F₄₂)為電洞與激子阻隔層,最大外部量子效率為 19.2 %(73.0 cd/A),內部量子效率幾乎已經達到 100 %,即使是在高電流密度的條件下(10-20 mA/cm²),其外部量子效率依舊保持在 15 %以上。¹

除了 Ir(ppy)₃以外,亦有人利用在螯合基上導入不同的取代基來改變銥 金屬錯合物的性質。DuPont 公司做了一系列含氟取代的銥錯合物,將 C-H 鍵置換成 C-F 鍵,減少因 C-H 鍵所造成的非輻射緩解,使錯合物更容易昇 華,減少自我驟熄現象,增加電子流動性,並調整放光顏色。² 而在 Lee 、 Tsuzuki 分別合成出 Ir(mppy)₃³與 m-PF-ph⁴(圖 C-2),利用導入具有立體障礙 的基團,有效的抑制濃度驟熄效應。

Ir(mppy)₃ m-PF-ph

圖 C-2. Ir(mppy)3 與 m-PF-ph 之結構

1-3-2. 藍色磷光材料

藍色磷光材料的發展較綠光與紅光晚,目前最常使用的藍色磷光材料為 FIrpic⁵(圖 C-3.),其最大放射波長為 472 nm,1931 C.I.E.座標為(0.17,0.34), 最大外部量子效率為 10.4%。2003 年,Forrest 發表了另一個顏色更接近藍 光的銥金屬錯合物-FIr6(圖 C-3.),其最大放射波長為 457 nm,1931 C.I.E. 座標為(0.16,0.26),元件最大外部量子效率可達 11.6%,為目前藍光效率最

FIrpic

FIr6

圖 C-3. FIrpic 與 FIr6 之結構

1-3-3. 紅色磷光材料

最早被使用於 OLED 的磷光材料是以鉑為中心的金屬錯合物-2,3,7,8,12,13,17,18-octaethyl-12*H*,23*H*-porhine platinum II(PtOEP)(圖 C-4.), 將其以共蒸鍍的方式摻雜在 CBP 中,可得到紅光元件,元件最大外部量子 效率可達 6.9%。但是由於 PtOEP 的半生期太長(~80 μs),所以在高電流的 情況下會有 triplet-triplet annihilation 造成能量的損失,使得元件效率大幅下 降。⁷

2001 年, Forrest 等人發表了另一新型紅光的銥金屬錯合物bis(2-2'-benzo[4,5-a]thienyl)pyridinato-N,C^{3'})iridium(acetylacetonate) [Ir(btp)₂acac] (圖 C-4.),將其摻雜在 CBP 中,最大量子效率可達到 7.0%, 最大亮度為 6800 cd/m²。相較於 PtOEP, Ir(btp)₂acac 具有較短的半生期(~4 µs),因此 Ir(btp)₂acac 在高電流密度下的外部量子效率比 PtOEP 佳。而在光 色方面, Ir(btp)₂acac 的最大放射波長為 616 nm,在 670 nm 和 745 nm 分別

129

有較弱的放射峰。CIE 色度座標為(0.68,0.32),相當接近國際顯示器的標準 紅色。⁷

PtOEP Ir(btp)₂acac

圖 C-4. PtOEP 與 Ir(btp)2acac 之結構

2003 年,另一個比 Ir(btp)₂acac 效率更佳的銥金屬錯合物被發表— Ir(piq)₃(圖 C-5.)。將其摻雜在 CBP 中,最大外部量子效率可達 11.2 %,最 大亮度為 11000 cd/m², CIE 色度座標為(0.68,0.32)。在高電流密度下, Ir(piq)₃ 的元件穩定性和效率均比 Ir(btp)₂acac 佳。^{8,9}

圖 C-5. Ir(piq)3 之結構^{8,9}

2004年,成功大學孫亦文老師實驗室在 Ir(piq)3 螯合基上不同的位置加 入甲基取代進行修飾(圖 C-6.),元件最大亮度可提升到 17164 cd/m^{2。10}目前 所知小分子紅色磷光發光體,在銥金屬錯合物分類中以 Ir(piq)3 效率及光色 最佳。

圖 C-6. 成功大學孫亦文老師實驗室發表之磷光材料結構¹⁰

紅色磷光材料除了銥金屬錯合物以外, 銪(Eu, 鑭系金屬)也被用於紅 光,但是半生期太長了(~350µs),易造成 T-T annihilation,使得元件效率不 高。另外,除了銥與銪錯合物外,鋨(Os)金屬錯合物近來也陸續被用於紅色 磷光材料中,主要是掺混在高分子當中以旋轉塗佈的方式製成元件¹¹。Os 錯合物具有很好的電荷捕捉能力,主要是因為 polypyridine 螯合基的 p 軌域 夠低(~-3.33 eV),能夠有效的捕捉電子,同時 Os(II)的 d 軌域能階較高(~ -5.47 ev),能夠有效捕捉電洞,使得電子/電洞能夠有很好的再結合率。目前 文獻上(到 2004 年 4 月為止),Os 錯合物元件最佳外部量子效率為 1.1 %, 最大亮度為 8900 cd/m²。¹¹

1-3-4. 高分子磷光材料

高分子磷光材料主要分成兩大類,第一種是將小分子磷光材料以物理性 掺混的方式掺雜在高分子材料當中,另一種則是將磷光基團直接接在高分 子側鏈上,形成化學性的掺混。物理性的掺混發展的較早,最先有人將 Ir(ppy)3、Ir(btp)2acac等掺混在PPP與PVK中^{12,13},但是Ir(ppy)3與Ir(btp)2acac 分子量較小,在高分子中的分散性較差,於是Hegger實驗室發表了三個具 有大型螯合基的銥金屬錯合物¹⁴,藉此提高銥金屬錯合物在高分子中的分散 性。目前以物理性掺混的高分子磷光材料以紅光發展的最好,元件外部量 子效率最高可達到 12 %。¹⁵而在化學性掺雜方面,2003 年分別有 Tokito¹⁶ 與清華大學陳壽安實驗室¹⁷分別發表了兩組材料(圖 C-7.、C-8.)。Tokito 將 Ir(ppy)₂acac、Ir(btp)₂acac、FIrpic 分別以長碳鏈作為橋樑,連接在 PVK 的側 鏈上,而陳壽安教授實驗室則以長碳鏈作為橋樑,將 Ir(ppy)₂acac、 Ir(btp)₂acac、carbazole 以不同比例同時化學性掺混在 polyfluorene 中,藉此 提升能量轉移效率。

圖 C-7. 陳壽安教授實驗室發表之高分子磷光材料結構

1-4. 研究動機

在銥金屬的磷光材料研究當中,目前以 S. R Forrest 和 M. E Thompson 最有名,在 2001 年的 J. Am. Chem. Soc.中幾乎包含了大部分主要的結構(圖 C-9.)¹⁸。在本篇論文中,我們在原本放射波長偏向橘光 Ir(pq)₂acac(圖 C-9.) 的螯合基4號碳位置上加入一苯基取代,合成出 Ir(dpq)₂acac, 翻此令放射 波長紅位移至較接近紅光的範圍,並增加立體障礙,減低濃度所造成的驟 熄效應。更進一步,為了使銥金屬錯合物能夠有效的使用於高分子掺混中, 我們設計出 Ir(pfq)₂acac,藉由 fluorenyl 的導入來調整光色至更理想的紅光 位置,以及藉由長碳鏈的導入來增加銥金屬錯合物在高分子中的分散性, 同時加強立體障礙,降低濃度效應,提升放光效率。

Ir(dpq)₂acac

Ir(pfq)₂acac

圖 C-9. S. R. Forrest 和 M. E. Thompson 發表之磷光材料結構¹⁸

第二章 實驗

2-1.藥品

	購自	PMO (Pty) Ltd
	購自	Lancaster
	購自	Rieddel-de Haën
	購自	Lancaster
	購自	Tedia
AND RESIDE	購自	Lancaster
1895	購自	Lancaster
- Thomas and the second	購自	Acros
	購自	Merck
	TIB96	構自 構 構 構 構 構 </td

上述所列藥品,不純化直接使用。溶劑中 2-ethoxyethanol 以充氮氣除 氧,溶劑中間-甲酚經過減壓蒸餾,tetrabutylammonium hexafluorophosphate (TBAPF₆) 經過乙酸乙酯再結晶,並在 60 ℃ 的真空下烘乾。其餘皆購自於 Merck、Aldrich、Mallickrodt、Fisher Scientific、聯工等公司。 2-2.合成部份

1. 化合物[Ir(dpq)₂Cl]₂.

在氮氟下,將 2,4-diphenylquinoline(750 mg, 2.66 mmol)和 2-ethoxyethanol(12 mL)加到雙頸瓶中,攪拌至完全溶解,再加入 IrCl₃. 3H₂O(338 mg, 1.07 mmol)和蒸餾水(4 mL),升溫至 120℃,反應 24 小時。 反應結束,降至室溫,過濾,並以乙醇清洗。烘乾後,以二氯甲烷:乙醇 為1:1再結晶,得紅色固體產物 543 mg,產率 64.6%。

2. 化合物 Ir(dpq)2acac

在氮氟下,將[Ir(dpq)₂Cl]₂(343 mg, 0.22 mmol)、acetyl acetone(48 mg, 0.48 mmol)、碳酸鈉(230 mg, 2.17 mmol)和 2-ethoxyethanol(30 mL)加入雙頸瓶中,升溫至120 ℃,反應8小時。反應結束,冷卻至室溫,過濾,並以蒸餾水、正己烷和乙醚沖洗。烘乾後,以二氯甲烷:乙醇為1:1再結晶,得紅色固體產物338 mg,產率90.9 %。

Ir(dpq)₂acac

¹H NMR (300 MHz, CDCl₃): δ 1.54(s, 6 H), 4.70(s, 1 H), 6.60(d, 2 H, *J* = 7.0 Hz), 6.64(d, 2 H, *J* = 7.5 Hz), 6.92(td, 2 H, J = 2.2, 8.4 Hz), 7.38-7.45(m, 4 H), 7.52-7.68(m, 10 H), 7.76-7.86(m, 4 H), 7.80(s, 2 H), 8.57(dd, 2 H, *J* = 2.1, 7.8 Hz)((附圖 36)

¹³C NMR (75 MHz, CDCl₃): δ 28.3, 100.2, 117.1, 120.9, 122.0, 125.8, 125.8, 126.0, 126.3, 127.0, 128.7, 128.8, 129.0, 129.7, 130.2, 136.2, 137.6, 138.0, 147.2, 148.2, 149.6, 150.0, 150.8, 169.7, 185.6 (附圖 37)

HRMS $[M^+]$ calad. for C₄₇H₃₆O₂N₂Ir 853.2406, found 853.2409.

Anal. Calcd. for C₄₇H₃₇O₂N₂Ir: C, 66.26; H, 4.14; N, 3.29. Found: C, 66.03; H, 4.13; N, 3.56.

3. 2-Acetyl-9,9-dioctylfluorene 化合物 C1.

冰浴下,用針筒將 acetyl chloride(373 mg, 4.75 mmol)慢慢滴入溶於 dry CH₂Cl₂(4.3 mL)的 AlCl₃(576 mg, 4.32 mmol)中(約花5分鐘)(試劑 A)。冰浴 下,將試劑 A 以針筒慢慢滴入溶於 dry CH₂Cl₂(4.3 mL)的 9,9-dioctylfluorene(1.75 g, 4.48 mmol)中(費時 20分鐘),慢慢回至室溫,反應 16小時。將反應液倒入冰塊(4.32 g)和濃鹽酸(3.45 mL)的混合溶液中,取有 機層,以蒸餾水洗至中性,加入硫酸鎂(s)除水,過濾,濃縮。以正己烷進行 管柱層析分離,得起始物 375 mg,黃色油狀產物 956 mg,產率 62.2%。

¹H NMR (300 MHz, CDCl₃): δ 0.52-0.56(m, 4 H), 0.79(t, 6 H, *J* = 7.0 Hz),1.00-1.20(m, 20 H), 1.95-2.01(m, 4 H), 2.65(s, 3 H), 7.34-7.35(m, 3 H), 7.72-7.75(m, 2H), 7.92-7.95(m, 2 H) (附圖 38) ¹³C NMR (75 MHz, CDCl₃): δ 14.0, 22.5, 23.7, 26.8, 29.2, 29.9, 31.7, 40.2, 55.3, 119.4, 120.7, 122.3, 123.0, 127.0, 128.2, 128.4, 135.8, 139.7, 146.1, 151.0, 152.0, 198.2(附圖 39)

HRMS $[M^++H]$ calad. for C₃₃H₄₅O 457.3470, found 457.3468.

4. 2-(9,9-Dioctylfluorene-2-yl)-4-phenylquinoline 化合物 C2 (pfq).

將化合物 C1(526 mg, 1.22 mmol), 2-aminobenzophenone(264 mg, 1.34 ml), diphenyl phosphate(1.52 g, 6.08 mmol), 間-甲酚(0.93 mL) 加入雙頸瓶 中, 通氮氣 20 分鐘, 升溫至 140 ℃,反應 3 小時。將 100 mL 的二氯甲烷 和 100 mL 的 10 % NaOH_(aq)加到反應混合物中,取有機層,以蒸餾水洗至中

性,再用硫酸鎂(s)除水,過濾,減壓濃縮除去溶劑。以乙酸乙酯:正己烷為 1:50進行管注層析分離,得黃色液體產物608 mg,產率83.9%。

C2 (pfq)

¹H NMR (300 MHz, CDCl₃): δ 0.63(br, 4 H), 0.75(t, 6 H, *J* = 6.9 Hz), 1.02 – 1.15(m, 20 H), 1.95 – 2.07(m, 4 H), 7.29 – 7.37(m, 3 H), 7.47(t, 1 H, *J* = 7.5 Hz), 7.52 – 7.61(m, 6 H), 7.74 – 7.76(m, 2 H), 7.83(d, 1 H, *J* = 7.9 Hz), 7.87 – 7.90(m, 2 H), 8.12(s, 1 H), 8.23(d, 2 H, *J* = 8.0 Hz) (附圖 40)

¹³C NMR (75 MHz, CDCl₃): δ 14.0, 14.1, 22.5, 23.8, 29.2, 30.0, 31.7, 40.4,
55.3, 119.5, 120.0, 120.1, 121.8, 122.9, 125.6, 125.7, 126.2, 126.7, 126.8, 127.4,
128.4, 128.6, 129.5, 129.6, 130.0, 138.4, 138.5, 140.6, 142.5, 148.8, 149.0,
151.3, 151.3, 157.2(附圖 41)

HRMS $[M^++H]$ calad. for $C_{44}H_{52}N$ 594.4100, found 594.4099.

5. 化合物 [Ir(pfq)₂Cl]₂.

將化合物 C2(453 mg, 0.78 mmol)溶於 2-ethoxyethanol(4.5 mL)中, 再加 入 IrCl₃·3H₂O(129 mg, 0.41 mmol)和蒸餾水(1.5 mL),升溫至 120℃,反應 24 小時。反應結束,降至室溫,過濾,並以乙醇清洗。烘乾後,以二氯甲烷:乙醇為1:1再結晶,得紅色固體產物453 mg,產率78.7 %。

[Ir(pfq)₂Cl]₂

ALL CONTRACTOR

6. Ir(pfq)₂acac.

在氮氟下,將[Ir(pfq)₂Cl]₂(453 mg, 0.16 mmol)、acetyl acetone(35.3 mg, 0.35 mmol)、碳酸鈉(170 mg, 1.60 mmol)和 2-ethoxyethanol(25 mL)加入雙頸 瓶中,室溫下,反應3分鐘。反應結束,加入20 mL 蒸餾水,過濾。烘乾 後,以二氯甲烷:乙醇為1:1 再結晶,得紅色固體產物281 mg,產率59.4 %。

Ir(pfq)₂acac

¹H NMR (300 MHz, CDCl₃): δ 0.70-0.81(m, 16 H), 0.96(br, 20 H), 1.13(br, 24 H), 1.56(s, 6H), 1.88-1.91(m, 8 H), 4.75(s, 1 H), 6.97-7.09(m, 8 H), 1.56(s, 6 H), 1.90(m, 8 H), 7.20-7.24(m, 2 H), 7.38(br, 4 H), 7.60-7.69(m, 6 H), 7.75-7.84(m, 8 H), 8.08(s, 2 H), 8.60(m, 2 H) (附圖 42)

¹³C NMR (75 MHz, CDCl₃): δ 14.0, 14.1,22.5, 22.6, 23.9, 24.1, 28.3, 29.0, 29.2, 29.3, 29.4, 30.0, 30.2, 31.7, 31.9, 40.2, 40.4, 54.1, 100.3, 117.3, 119.9, 120.2, 122.7, 125.4, 125.5, 125.8, 126.0, 126.5, 127.0, 127.1, 128.65, 128.70, 129.8, 130.0, 138.4, 141.0,141.5, 143.8,146.0, 149.1, 149.5, 149.8, 152.0, 169.9, 185.5(附圖 43)

HRMS(m/z) : $[M^++H]$ calad. for $C_{93}H_{108}O_2N_2Ir$ 1477.8040; found 1477.8036. Anal. Calcd. for $C_{93}H_{107}O_2N_2Ir$: C, 75.62; H, 7.30; N, 1.90. Found: C, 75.71; H, 7.55; N, 1.72.

ALL CONTRACTOR

第三章 結果與討論

3-1. 合成部份

3-1-1. Iridium 錯合物之合成

反應流程如 Scheme 1、2 所示,將 IrCl3 · nH2O 與 Part A 中所合成之化 合物 dpg 或化合物 pfg 在 2-ethoxyethanol 及水(3:1)的混合溶液中進行反應, 反應機制如 eq.(1)¹⁸所示。在氮氯下,以 120 ℃加熱迴流 24 小時,反應剛 開始是澄清的,但是隨著反應時間的增長會逐漸有暗紅色的固體產物析出 在反應液中,所以反應結束後直接過濾後再經過一次再結晶之後即可得到 反式組態¹⁸(trans configuration,如圖 C-10.)的銥金屬雙體錯合物(dimer)。接 著再將銥金屬的雙體錯合物、acetylacetone 先溶在 2-ethoxyethanol 中,最後 再加入碳酸鈉,產物的構型仍保有原本在雙體錯合物中的反式組態¹⁸(trans configuration,如圖 C-10.),反應機制如 eq.(2)所示。。Ir(dpq)2acac 必須在 120 ℃下加熱迴流 8 小時才能反應完全; Ir(pfq)2acac 反應時間不宜過久, 在 碳酸納加入之後,大約3分鐘即需加入蒸餾水以終止反應,而且不需要加 熱,若反應太久或加熱,則會出現 ligands 脫落的現象。在反應過程中, Ir(dpq)2acac、Ir(pfq)2aca之反應液均會逐漸轉變成亮紅色混濁狀,可明顯觀 察到反應進行的概況。反應結束後,經過過濾、沖洗、再結晶,最後再以 昇華法或管柱層析分離加以純化產物。

$$IrCl_3 \cdot nH_2O + 4 \underline{C^N}H \longrightarrow \underline{C^N}_2Ir(\mu-Cl)_2Ir\underline{C^N}_2 + 4 HCl + n H_2O$$
(1)

$\underline{C^{N}_{2}}Ir(\mu-Cl)_{2}Ir\underline{C^{N}_{2}} + 2 LXH \qquad 2 \underline{C^{N}_{2}}Ir(LX) + 2 HCl \qquad (2)$

Scheme 2 C₈H₁₇ C₈H₁₇ C₈H₁₇ C₈H₁₇ AlCl₃, Acetyl chloride CH_2Cl_2 **C1** C₈H₁₇ C₈H₁₇ C₈H₁₇ .C₈H₁₇ DPP,m-cresol C2 (pfq) C₈H₁₇ C₈H₁₇ C₈H₁₇ С₈Н₁₇ 2-ethoxyethanol $IrCl_3.H_2O + 2$ [$]_2$ 1/2120°C,24hr C₈H₁₇ C_sH₁ AU LUN [Ir(pfq)₂Cl]₂ 441111 C₈H₁₇ C₈H₁₇ 0 0: Na₂CO₃ Lr Cl [2 + 2]2 2-ethoxyethanol 0 C₈H₁₇ C₈H₁₇ C₈H₁₇ C₈H₁

Ir(pfq)₂acac

3-2. X-ray 單晶繞射

為了更了解 Ir(dpq)2acac 的分子結構特性,我們將 Ir(dpq)2acac 送至台灣 大學進行 X-ray 單晶繞射。Ir(pfq)2acac 由於長碳鏈的存在使得長晶不易,因 此無法獲得晶體結構的相關數據。圖 C-11.為 Ir(dpq)2acac 之 ORTEP 圖,晶 格結構數據則如表 C-1.所示。特殊位置之鍵長、鍵角與扭曲角度則如表 C-2. 所示。Ir(dpq)2acac 之晶體為一個以銥金屬為中心,且與2個 phenylquinoline 和1個雙酮基團(diketonate)螯合所形成的八面體結構。其中N(1)與N(2)以 及 C(1)與 C(22)分別相互形成反式(trans)與順式(cis)排列,而雙酮基 (diketonate)上的氧原子則位於 2 個 phenylquinoline 基團 C(1)與 C(22)的對 位。Ir(dpq)₂acac 的兩個 phenylquinoline 基團為了達到作用力的平衡, C(7) 與 C(28)位置上的 phenyl 與 quinoline 之間具有小幅度的扭曲角度(3.1, 4.4 °),因此結構上並非完全呈現平面。除此之外,觀察位於 C(9)與 C(30)上的 phenyl 與 quinoline 兩平面結構之間的的角度可發現,其扭曲角度約為 62° , 使得 phenylquinoline 這個配位基成不共平面的 3-D 立體結構,具有相當不 錯的立體障礙,可防止分子間配位基的堆疊。

圖 C-11.Ir(dpq)2acac 之 ORTEP 圖

Empirical formula	$C_{47}H_{35}IrN_2O_2$
Formula weight	851.97
Temperature	295(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	pī
Unit cell dimensions	$a = 11.2451(5) \text{ Å}, \alpha = 106.876(1)^{\circ}$
	b = 11.7178(5) Å, $β = 91.234(1)$ °
	$c = 14.2394(6) \text{ Å}, \gamma = 100.583(1)^{\circ}$
Volume, z	1759.35(13) Å ³ , 2
Density (caculated)	1.608 Mg/m ³
Absorption coefficient	3.839 mm ⁻¹
F(000)	848
Crystal size	0.20 x 0.15 x 0.05 mm
θ range for data collection	1.50 to 27.50°
Index range	$-14 \le h \le 14$
	$-15 \le k \le 15$
	$-18 \le 1 \le 18$
Reflections collected	23504
Independent reflections	$8059 (R_{int} = 0.0505)$
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.8312 and 0.5140
Refinement method	Full-matrix least-squares on F ²
Data/restraints/parameters	8059/0/469
Goodness-of-fit on F ²	1.038
Final R indices [I>2o (I)]	R1 = 0.0349, w $R2 = 0.0715$
R indices (all data)	R1 = 0.0408, $wR2 = 0.0793$
Largest diff. peak and hole	1.260 and -0.738 e Å ⁻³

表 C-1. Ir(dpq)2acac 晶格數據

Bond Length (Å)						
Ir(1)-N(1)	2.072(3)					
Ir(1) - N(2)	2.066(3)					
$\operatorname{Ir}(1) - \operatorname{C}(1)$	1.963(4)					
Ir(1) - C(22)	1.973(4)					
Ir(1) - O(1)	2.176(3)					
Ir(1)-O(2)	2.170(3)					
Bond ang	gles (deg)					
N(1) - Ir(1) - N(2)	174.2(13)					
N(1) - Ir(1) - C(1)	79.7(15)					
N(1) - Ir(1) - O(1)	100.8(13)					
C(1) - Ir(1) - O(1)	91.1(15)					
O(1) - Ir(1) - O(2)	85.3(12)					
Torsion ar	ngles (deg)					
C(5)-C(6)-C(7)-C(8)	3.1					
C(26) - C(27) - C(28) - C(29)	4.2					
C(8)-C(9)-C(16)-C(17)	61.4					
C(29)-C(30)-C(37)-C(38)	61.5					
ETHINA TROOT						

表 C-2. Ir(dpq)2acac 特殊位置之鍵長、鍵角與扭曲角度

3-3. 熱性質-DSC 與 TGA 測量

TGA 可測量出重量隨溫度的變化以判斷 Ir(dpq)₂acac 與 Ir(pfq)₂acac 的熱 穩定性,並用以控制 Ir(dpq)₂acac 昇華之溫度。在氮氟環境下,Ir(dpq)₂acac 與 Ir(pfq)₂acac 的 5 %和 10 %之重量損失溫度分別介於 389~396 ℃、326~ 338 ℃之間(**表 C-3.、圖 C-13.~C-14.**)。Ir(pfq)₂acac 的熱穩定性較 Ir(dpq)₂acac 差,主要是因為在 Ir(pfq)₂acac 的結構中有四個 octyl 基團,造成 Ir(pfq)₂acac 熱穩定性的降低。由 DSC 的測量,Ir(pfq)₂acac 的玻璃轉移溫度為 92 ℃, 結晶溫度為 154 ℃,熔點為 261 ℃。在 Ir(pfq)₂acac 中,由於 <u>C^N</u> 螯合基上 有長碳鏈的導入,使得 Ir(pfq)₂acac 呈現非晶相(amorphous)的狀態,

表 C-3. Ir(dpq)2acac、Ir(pfq)2acac 之熱性質

	$T_g(^{\circ}C)$	$T_{c}(^{\circ}C)_{\mathfrak{s}\mathfrak{s}}$	T _m (°C)	T _{d(-5%)} (°C)	T _{d(-10%)} (°C)
Ir(dpq) ₂ acac	a	unna mu	a	389	396
Ir(pfq) ₂ acac	92	154	261	326	338

a由DSC 無法明顯判斷 Tg。

圖 C-13. Ir(dpq)₂acac 之 TGA 圖

圖 C-15.為 Ir(dpq)₂acac、dpq、Ir(pfq)₂acac 與 pfq 在 THF 中的吸收光譜
 疊圖, Ir(dpq)₂acac 與 Ir(pfq)₂acac 在 300~400 nm 的吸收為 <u>C^N</u> 螯合基的
 ¹(π-π*)轉移。大於 400 nm 的吸收則是來自於 ¹MLCT ← S₀、³(π-π*)
 ← S₀、³MLCT ← S₀ 的貢獻。¹⁹

圖 C-16.為 Ir(pq)₂acac、Ir(dpq)₂acac 與 Ir(pfq)₂acac 在溶液態的吸收/放射 光譜。Ir(pq)₂acac、Ir(dpq)₂acac 與 Ir(pfq)₂acac 的磷光最大放射波長分別為 593、614 與 625 nm,放射峰半高寬分別為 55、73 與 44 nm。相較於 Ir(pq)₂acac,Ir(dpq)₂acac 的最大放射峰位置為 614 nm,有 21 nm 的紅位移, 最大放射峰已經相當接近紅光範圍,但是由於其半高寬較大,使得其光色 偏向橘光。而在 Ir(pfq)₂acac 中,藉由 fluorene 基團的導入來增加 <u>C^N</u> 螯合基的共軛長度,使得最大放射峰紅位移至 625 nm,得到理想的紅光放射。 由先前的文獻¹⁹可知, Ir(dpq)₂acac、Ir(pfq)₂acac 在長波長(>550 nm)處有吸收,放射光譜半高寬較大且具特徵性,因此可知 Ir(dpq)₂acac 與 Ir(pfq)₂acac 的放射主要是來自於 ³MLCT。

3-4-2. 量子效率(Quantum Yield;Q.Y.)與半生期(lifetime;τ)

Ir(dpq)₂acac 與 Ir(pfq)₂acac 的量子效率與半生期如表 C-4.所示。 Ir(pq)₂acac、Ir(dpq)₂acac 與 Ir(pfq)₂acac 的溶液態半生期分別為2、1.33 和 1.31 µs。在量子效率(Q.Y.)方面, Ir(dpq)₂acac 表現出不錯的量子效率,約為 Ir(btp)₂acac 的 2 倍。因此更進一步,我們對 dpq 的結構進行修飾,利用在 苯基 4'碳的位置上苯基的加入來增加共軛長度,並搭配 fluorene 結構,將 額外導入的苯基鎖住,防止形成激態時分子構型的改變所造成量子效率的 下降。

表 C-4. Ir(pq)2acac 、Ir(dpq)2acac、Ir(pfq)2acac、Ir(btp)2acac 之

	$absorbance \lambda(nm)^{a}$	$\lambda_{PL,sol}{}^a$	FWHM ^a	Lifetime(µs) ^b	O V ^{a,c}
		(nm)	(nm)	298 K	Q. I.
Ir(pq)2acac	271, 342, 432, 474,553	597	69	224	0.12
Ir(dpq)2acac	275, 352, 441, 480, 522, 564	614	73	1.33	0.14
Ir(pfq)2acac	313, 382, 456, 500, 547, 600	625	44	1.31	0.11
Ir(btp) ₂ acac	286, 340, 355, 495	614	28	5.1	0.06

吸收/放射光譜位置、半生期、量子效率

^a以THF 為溶劑。

^b以 2-methyltetrahydrofuran 為溶劑。

^c 標準品為 quinine sulfate 溶於 1 N 的 H₂SO₄ 中,以 360 nm 波長激發的量子效率為 0.564。

圖 C-15. Ir(dpq)₂acac、dpq、Ir(pfq)₂acac 與 pfq 在 THF 中的吸收光譜

圖 C-16. Ir(pq)2acac、 Ir(dpq)2acac、Ir(pfq)2acac 在 THF 溶液 UV-vis 吸收

3-5. 電化學性質--氧化還原電位測量

為了探討用於元件的有機材料,我們先建立能階圖,來得知我們選用的材料特性,預測電子與電洞結合的位置及能量轉移的效果。

我們利用下列公式來計算 HOMO、LUMO 值 20,21 ,其中氧化起始電位 $(\mathbf{E}_{onset}^{ax})$ 採用伏特為單位(vs. Fc/Fc⁺),常數為 4.8 為 ferrocene 相對於真空能 階, \mathbf{E}_{o}^{opt} 為 UV-vis 光譜開始吸收位置的能隙值。

HOMO = $-4.8 - E_{onset}^{ox}$

$LUMO = -4.8 - E_{onset}^{red}$

Ir(dpq)₂acac的E^{or}_{onser}、E^{ord}_{onser}經過ferrocene校正之後分別為0.30 V、-2.18 V, 利用上述公式求得HOMO = -5.10 eV、LUMO = -2.62 eV。根據文獻^{21,22}可 知,此類銥金屬錯合物的氧化主要是來自於中心銥金屬由Ir(Ⅲ)氧化成 Ir(IV),而且同時受到配位基上phenyl基團結構的影響;還原電位則是發生 在<u>C^N</u>螯合基上具有很強接受電子能力的雜環部分。由於<u>C^N</u>螯合基與銥金 屬形成錯合物後,比其自由態具有較少的負電性,因此在銥金屬錯合物中 的第一個螯合基的還原會比自由態容易。比較Ir(pq)₂acac與Ir(dpq)₂acac,它 們在phenyl部分的結構是相同的,因此其氧化電位起始值幾乎是一樣的,均 在0.3 eV;而在pyridine部分,Ir(dpq)₂acac與Ir(pq)₂acac多出一個苯環,所以 前者較後者容易還原。Ir(dpq)₂acac與Ir(pfq)₂acac在pyridyl的結構是相同的, 所以兩者之還原電位起始值幾乎是相同的,均在-2.2 eV(**表C-5.**)。而在phenyl 部分,由於pfq具有較長的共軛與推電子的苯基,因此Ir(pfq)2acac較 Ir(dpq)2acac容易氧化(表C-5.)。

表 C-5. Ir(pq)2acac、Ir(dpq)2acac 與 Ir(pfq)2acac 的溶液態氧化還原電位起

	E ^{red} _{onset} , (V) ^a	E_{onset}^{ox} , (V) ^a	HOMO, (eV) ^b	LUMO, (eV) ^c	triplet energy, (eV) ^d
Ir(pq) ₂ acac	-2.25	0.29	-5.09	-2.55	2.25
Ir(dpq) ₂ acac	-2.18	0.30	-5.10	-2.62	2.48
Ir(pfq) ₂ acac	-2.20	0.21	-5.01	-2.60	2.41

始值及 HOMO、LUMO

^a相對於 Fc/Fc⁺的電位.

^b HOMO = $-4.8 - E_{onset}^{ox}$.

^d 三重態能隙=1240/ λ_{onset} , λ_{onset} 為放射光譜中的最大放射峰的起始波長.

E^{red}onset

圖 C-17. Ir(pq)2acac 溶液態之 CV 圖

圖 C-19. Ir(pfq)2acac 溶液態之 CV 圖

3-6. 元件電激發光性質

3-6-1. Ir(dpq)2acac 元件電激發光性質

為了研究 Ir(dpq)₂acac 的電激發光性質,我們委託中研院陶雨台博士實驗室將 Ir(dpq)₂acac 製成元件。根據文獻⁸所報導的方法將 Ir(dpq)₂acac 掺雜 在 CBP 中作為發光層,以 BCP 為電洞阻擋層,Alq 為電子傳輸層,NPB 為 電洞傳輸層,元件結構如下所示:

ITO/NPB(40nm)/~6w.t.% Ir(dpq)₂acac:CBP(30nm)/BCP(10nm)/Alq(30nm)/Mg:Ag

圖 C-20. Ir(dpq)2acac 元件結構圖

圖 C-21. NPB、CBP、BCP、Alq 結構

從表 C-6.可知, Ir(dpq)₂acac 具有不錯的 EL 效率,元件驅動電壓為 3.5 V(1 cd/m²),最大亮度為 39800 cd/m²(15 V),最大外部量子效率為 7.33%, 1931 C.I.E.座標為(0.64, 0.35)。

40000

將 Ir(dpq)₂acac 與目前最常被使用的紅色磷光材料 Ir(btp)₂acac 作比較(表 C-6.),不管是在亮度或者效率上, Ir(dpq)₂acac 均比 Ir(btp)₂acac 佳,特別是 在最大亮度上, Ir(dpq)₂acac 約為 Ir(btp)₂acac 的 6.5 倍。但是在光色上,雖 然 Ir(dpq)₂acac 與 Ir(btp)₂acac 的最大放射波長均為 616 nm,但是因為 Ir(dpq)₂acac 的半高寬較大,因此光色比 Ir(btp)₂acac 偏向橘色。

Parameter	η _{max.} (%) at J mA/cm ²	B _{max.} [cd m ⁻²] at J mA/cm ²	λ _{max.} (nm)	FWHM (nm)	Lifetime (µs)	CIE coordinates
Ir(btp) ₂ acac ¹	7.0 (0.01)	6800 (690)	616	28	4	x=0.68 y=0.32
Ir(dpq) ₂ acac	7.33 (1.07)	39800 (972)	616	73	1.3	x=0.64 y=0.35

表 C-6. Ir(btp)2acac 與 Ir(dpq)2acac 元件數據比較

α-NPD(40nm)/Ir-btp in CBP(30nm)/BCP(10nm)/Alq(30nm)

NPB(40nm)/~6% Ir-dpq in CBP(30nm)/BCP(10nm)/Alq(30nm)

3-6-2. Iridium complexes 混掺在 PBD-PVK(30 wt.%)中的元件電

激發光性質

為了研究 Ir(pfq)₂acac 在高分子中的發光性質,我們將 Ir(pfq)₂acac 以不 同濃度掺雜在含 30 wt.%PBD 的 PVK 中,元件製作參照 A 部分節 3-6-1.方 式,其中本部分發光層所使用的溶劑為 chlorobenzene,元件結構如下: ITO/PEDOT:PSS(35nm)/Ir complex(x mol%):PBD-PVK(30 wt.%)(50~60nm)/TPBI (30nm)/Mg:Ag

其中 PEDOT:PSS 為電洞注入層,ITO 基材與 Al 分別為陽極和陰極,TPBI 為電子傳輸與電洞阻擋層。在此我們也將 Ir(btp)2acac 製成相同的元件結構 來比較它們的 EL 效率。

選擇將 Ir(pfq)₂acac 掺雜在 PBD-PVK(30 wt.%)主要是因為 PVK 的螢光 放射光譜與 Ir(pfq)₂acac 之吸收光譜有很好的重疊性(圖 C-22.),同時也是不 錯的電洞傳輸材料,而 PBD 則為電子傳輸材料。由圖 C-22.可知, PBD-PVK(30 wt.%)的放射光譜與 Ir(pfq)₂acac 的 MLCT(Metal to ligand charge transfer)吸收有很好的重疊性,因此主發光體 PBD-PVK(30 wt.%)能夠 很有效的透過 Förster energy transfer 機制將單重態能量傳給 Ir(pfq)₂acac。而 在 Ir(pfq)₂acac 中,由於重原子(heavey atom)的存在,使得單重態的能量能 夠透過很有效率的 intersystem crossing 將能量轉移至三重態,使得 Ir(pfq)₂acac 具有高效率的放光能力。根據文獻,PBD 與 PVK 在激發態的過程中會形成複合體[(PBD-PVK)^{*}],而該複合體的螢光衰退速率較 PBD 與 PVK 慢,對於 Ir(pfq)₂acac 的放光是有利的。²³

圖 C-23.為 Ir(pfq)₂acac 以不同濃度掺雜在 PBD-PVK(30 wt.%)的 PL。在 低濃度時,由於從高分子鏈到銥錯合物的距離太遠,能量轉移效率不佳, 因此在低濃度時,大約在 425 nm 出會有部分(PBD-PVK)^{*}的放光。²³相較於 PL 光譜,在 EL 光譜(圖 C-24.)中,當銥錯合物濃度為 0.1 mol%時,並幾乎 沒有(PBD-PVK)^{*}的放光出現,主要是因為在此系統中,電激發光是以電荷 捕捉(charge trapping)的機制為主。由元件能階圖(圖 C-25.)可知,由於 Ir(pfq)₂acac 的能階夾在 PVK 與 PBD 中,因此在電激發光的過程中可能會 有電荷捕捉(charge trapping)效應,而觀察元件的驅動電壓可發現其隨著 Ir(pfq)₂acac 的濃度增加而上升(圖 C-26.),表示在電激發光的過程中, Ir(pfq)₂acac 具有電荷捕捉(charge trapping)的能力 ²³。

表 C-7.為 Ir(pfq)2acac、Ir(btp)2acac、Ir(dpq)2acac 以不同濃度摻雜在

162

PBD-PVK(30 wt.%)的元件數據。Ir(pfq)₂acac 以濃度為 0.5 mol%的時候元件 效率最佳,驅動電壓為 7.0 V,最大亮度可達 13975 cd/m²(17 V),最大外部 量子效率為 10.03 %,1931 C.I.E.座標為(0.68,0.32); Ir(btp)₂acac 以濃度為 0.5 mol%的時候元件效率最佳,驅動電壓為 6.5 V,最大亮度可為 8380 cd/m²(16 V),最大外部量子效率為 6.88 %,1931 C.I.E.座標為(0.66,0.33); Ir(dpq)₂acac 以濃度為 0.5 mol%的時候元件效率最佳,驅動電壓為 7.5 V,最 大亮度可達 17336 cd/m²(16 V),最大外部量子效率為 6.07 %,1931 C.I.E. 座標為(0.61,0.37)。

比較 Ir(pfq)₂acac 與 Ir(btp)₂acac 的電流密度-外部量子效率圖(圖 C-27.)可以發現,在電流密度逐漸加大時, Ir(pfq)₂acac 的元件穩定性比 Ir(btp)₂acac 佳,即使在電流密度加高至 200 mA/cm²時, Ir(pfq)₂acac 仍具有 6.61 %的外部量子效率,主要是因為 Ir(pfq)₂acac(1.31 µs)的半生期比 Ir(btp)₂acac(5.8 µs)短以及大型螯合基結構的導入,使得三重態驟熄現象比較 不嚴重;同時 Ir(pfq)₂acac 的元件在加大電壓的情況下,EL 的光譜不會隨著 電壓而改變(圖 C-28.),也沒有出現主發光體的放光,表現出相當不錯的穩 定性。

從元件結果可以明顯得知 Ir(pfq)₂acac 的元件效率是三者當中表現最好 的,主要是因為 Ir(pfq)₂acac 的結構上有長碳鏈的導入,使得 Ir(pfq)₂acac 呈 現非晶相,因此在與非晶相高分子 PVK 進行摻混時,能夠具有不錯的分散

163

性;相對於 Ir(pfq)₂acac, Ir(dpq)₂acac 與 Ir(btp)₂acac 是屬於較易結晶的小分子,其分子特性與高分子差異較大,因此掺混在高分子當中時分散性會較差,因此如表 C-7.所示, Ir(dpq)₂acac 與 Ir(btp)₂acac 在 PBD-PVK(30 wt.%) 中的元件效率均較 Ir(pfq)₂acac 差。

圖 C-22. Ir(btp)2acac、Ir(pfq)2acac 吸收/放射光譜與 PBD-PVK(30 wt.%)

的放射光譜疊圖

圖 C-23. Ir(pfq)₂acac 以不同濃度掺混在 PBD-PVK(30 wt.%)的 PL

圖 C-24. Ir(pfq)2acac 以不同濃度掺混在 PBD-PVK(30 wt.%)的 EL

圖 C-25. ITO/PEDOT:PSS/ Ir(pfq)2acac(x mol%):PBD-PVK(30 wt.%)

圖 C-26. Ir(pfq)₂acac 在不同濃度(mol%)的 I-V 圖

圖 C-27. ITO/PEDOT:PSS/ Ir(pfq)₂acac (0.5 mol%):PBD-PVK(30 wt.%)

圖 C-28. ITO/PEDOT:PSS/Ir(pfq)2acac(0.5 mol%):PBD-PVK(30 wt.%)

/TPBI/ Mg:Ag/Ag 在不同電壓下的 EL

表 C-7. Ir(btp)2acac、Ir(dpq)2acac 與 Ir(pfq)2acac 以不同濃度掺雜在

Dopant	Doping concentration (mole %)	Voltage @1 cd/m ² (V)	η _{max} (%)	P.E. _{max} (cd/A)	$L_{\rm max}$ (cd/m ²)	CIE @11V (x,y)
Ir(pfq) ₂ acac	0.05	6.2	5.37	7.79	7601(@14V)	(0.49,0.30)
	0.5	7.0	10.03	11.16	13975 (@ 17V)	(0.68,0.32)
	1	8.5	9.62	9.40	9105 (@ 19.5V)	(0.68,0.32)
Ir(btp) ₂ acac	0.05	6.2	2.43	2.87	2245 (@ 14.5V)	(0.40,0.23)
	0.5	6.5	6.88	9.37	8380 (@ 16.0V)	(0.66,0.33)
	1	6.6	6.98	9.31	7357 (@ 17.5V)	(0.65,0.33)
Ir(dpq) ₂ acac	0.5	7.5	6.07	11.53	17336 (@ 16V)	(0.61,0.37)

PBD-PVK(30 wt.%)的元件數據

第四章 結論

我們成功的合成出 Ir(dpq)2acac 與 Ir(pfq)2acac 兩個銥錯合物,藉由螯合 基結構上的修飾成功的將原本光色偏橘光的 Ir(pq)2acac 分子調成光色較接 近紅光且具有不錯放光效率的 Ir(dpq)2acac、Ir(pfq)2acac。Ir(dpq)2acac 在小 分子元件 (NPB(40nm)/~6% Ir(dpq)₂acac in CBP(30nm)/BCP(10nm) /Alq(30nm))的摻雜中,最大外部量子效率可達 7.33 %,最大亮度為 39800 cd/m²(15 V),均比文獻所報導之 Ir(btp),acac 佳。而在高分子元件 (ITO/PEDOT:PSS/Ir(dpq)₂acac(0.5 mol%):PBD-PVK(30 wt.%)/TPBI/Mg:Ag/ Ag)中,最大量子效率與最大亮度分別為 6.07 %與 17336 cd/m²(16 V)。另一 方面, Ir(pfq), acac 由於分子結構上增加了共軛長度,因此得到一非常理想 的紅光放光位置(λmax 為 627 nm),同時長碳鏈的導入提升了銥錯合物在高分 子中的分散性並降低驟熄效應(T-T annihilation),使得元件效率大幅提升。 Ir(pfq)2acac 在高分子元件(ITO/PEDOT:PSS/Ir(dpq)2acac(0.5 mol%):PBD -PVK(30 wt.%)/TPBI/Mg:Ag/Ag)中最大量子效率與最大亮度分別為 10.5 % 與13975 cd/m²(17 V),表現出相當優良的發光效率。

參考文獻

- 1. Ikai, M.; Tokito, S. Appl. Phys. Lett. 2001, 79, 156.
- Grushin, V. V.; Herron, N.; LeCloux, D. D.; Marshall, W. J.; Petrov, V. A.; Wang, Y. Chem. Commun., 2001, 1494.
- Xie, H. Z.; Liu, M. W.; Wang, O. Y.; Zhang, X. H.; Lee, C. S.; Hung, L. S.; Lee, S. T.; Teng, P. F.; Kwong, H. L.; Zheng , H.; Che, C. M. *Adv. Mater.* 2001, 13, 1245.
- 4. Tsuzuki, T.; Shirasawa, N.; Suzuki, T.; Tokito, S. Adv. Mater. 2003, 15, 1455.
- 5. Tokito, S. Appl. Phys. Lett. 2003, 83, 569.
- Holmes, R. J.; D'Andrade, B. W.; Forrest, S. R. Appl. Phys. Lett. 2003, 83, 3818.
- 7. Adachi, C.; Baldo, M. A.; Forrest, S. R. Appl. Phys. Lett. 2001, 78, 1622.
- Su, Y. J.; Huang, H. L.; Li, C. L.; Chien, C. H.; Tao, Y. T.; Chou, P. T.; Datta, S.; Liu, R. S. *Adv. Mater.* 2003, *15*, 884.
- Okada, S.; Iwawaki, H.; Furugori, M.; Kamatani, J.; Igawa, S.; Moriyama, T.; Miura, S.; Tsuboyama, A.; Takiguchi, T.; Mizutani, H. SID 02 DIGEST, 1360.
- 10. Yang, C. H.; Tai, C. C.; Sun, I. W. J. Mater . Chem., 2004, 14, 947.
- 11. Kim, J. H.; Liu, M. S.; Jen, A. K.Y. Appl. Phys. Lett. 2003, 83, 776.
- 12. (a)Lee, C. L.; Lee, K. B.; Kim, J. J. Appl. Phys. Lett. 2000, 77, 2280.(b) Zhu,
 W.; Mo, Y.; Yuan, M.; Yang, W.; Cao, Y. Appl. Phys. Lett. 2002, 80, 2045.
- Lamansky, S.; Djurovich, P. I.; Abdel-Razzaq, F.; Garon, S.; Murphy, D. L.; Thompson. M. E. J. Appl. Phys. 2002, 92, 1570.
- 14. Ostrowski, J. C.; Robinson, M. R.; Heeger, A. J.; Bazan, G. C. Chem. Commun., 2002, 784.
- 15. Jiang, C.; Yang, W.; Peng, J.; Xiao, S.; Cao, Y. Adv. Mater. 2004, 16, 537.
- 16. Tokito, S.; Suzuki, M.; Sato, F.; Kamachi, M.; Shirane, K. Organic *Electronics*, **2003**, *4*, 105.

- Chen, X.; Liao, J. L.; Liang, Y.; Ahmed, *M. O.*; Tseng, H. E.; Chen, S. A. J. Am. Chem. Soc. 2003, 125, 636.
- Su, Y. J.; Huang, H. L.; Li, C. L.; Chien, C. H.; Tao, Y. T.; Chou, P. T.; Datta, S.; Liu, R. S. Adv. Mater. 2003, 15, 884.
- Tsuboyama, A.; Iwawaki, H.; Furugori, M.; Mukaide, T.; Kamatani, J.; Igawa, S.; Moriyama, T.; Miura, S; Takiguchi, T.; Okada, S.; Hoshino, M.; Ueno, K. J. Am. Chem. Soc. 2003, 125, 12971.
- 20. Lee, Y. Z.; Chen, X.; Chen, S. A.; Wei, P. K.; Fann, W. S. J. Am. Chem. Soc. 2001, 123, 2296.
- 21. Dedeian, K.; Djurovich, P. I.; Garces, F. 0.; Carlson, C.; Watts, R. J. *Inorg. Chem.* **1991**, *30*, 1685.
- 22. Brooks, J.; Babayan, Y.; Lamansky, S.; Djurovich, P. I.; Tsyba, I.; Bau, R.; Thompson, M. E. *Inorg. Chem.* **2002**, *41*, 3055.
- 23. (a).(b) Gong, X.; Ostrowski, J. C.; Bazan, G. C.; Moses, D.; Heeger, A. J. *Appl. Phys. Lett.* 2002, *81*, 3711. (c) Negres, R. A.; Gong, X.; Ostrowski, J. C.; Bazan, G. C.; Moses, D. *Phy. Review B* 2003, *68*, 115209. (d) Gong, X.; Lim, S. H.; Ostrowski, J. C.; Moses, D.; Bardeen, C. J.; Bazan, G. C. *J. Appl. Phys.* 2004, *95*, 948.
- Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Lee, H. E.; Adachi, C.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E. J. Am. Chem. Soc.
 2001, 123, 4304.