表 1-1 2004 年 ITRS 所定義的關鍵性微影需求

Year of Production	2003	2004	2005	2006	2007	2008	2009
Technology Node		kp90			hp65		
DRAM							
DRAM % Pitch (nm)	100	90	80	70	65	57	50
Contact in resist (nm)	130	110	100	90	80	70	60
Contact after etch (nm)	115	100	90	80	70	65	55
Overlay	35	32	28	25	23	21	19
CD control (3 sigma) (nm)	12.2	11.0	9.8	8.6	8.0	7.0	6.1
MPU							
MPU/ASCI Metal 1 (M1) % pitch (nm)	120	107	95	85	76	67	60
MPU % Pitch (nm) (uncontacted gate)	107	90	80	70	65	57	50
MPU gate in resist (nm)	♦ 65	53	45	40	35	32	28
MPU gate length after etch (nm)	45	37	32	28	25	22	20
Contact in resist (nm)	130	122	100	90	80	75	60
Contact after etch (nm)	120	107	95	85	76	67	60
Gate CD control (3 sigma) (nm)	• 4.0	3.3	2.9	2.5	2.2	2.0	1.8
ASIC/LP		1				1	
ASIC % Pitch (nm) (uncontacted gate)	107	90	80	70	65	57	50
ASIC/LP gate in resist (nm)	90	75	65	53	45	40	36
ASIC/LP gate length after etch (nm)	65	53	45	37	32	28	25
Contact in resist (nm)	130	122	100	90	80	75	60
Contact after etch (nm)	120	107	95	85	76	67	60
CD control (3 sigma) (nm)	5.8	4.7	4.0	3.3	2.9	2.5	2.2
Chip size (mm ²)			1	-			
DRAM, introduction	485	383	568	419	662	449	356
DRAM, production	139	110	82	122	97	131	104
MPU, high volume at introduction	280	280	280	280	280	280	280
MPU, high volume at production	140	140	140	140	140	140	140
MPU, high performance	310	310	310	310	310	310	310
ASIC	704	704	704	704	704	704	704
Minimum field area	704	704	704	704	704	704	704
Wafer size (diameter, mm)	300	300	300	300	300	300	300

表 1-2 ITRS 所發表未來數年之微影技術藍圖

Year of Production	2010	2012	2013	2015	2016	2018
Technology Node	hp45		hp32		hp22	
DRAM		in the second	-		a fine of	a second
DRAM % Pitch (nm)	45	35	32	25	22	18
Contact in resist (nm)	55	45	40	35	30	25
Contact after etch (m)	50	35	30	25	21	18
Overlay	18	14	12.8	10	8.8	7.2
CD control (3 sigma) (nm)	5.5	4.3	3.9	3.1	2.7	2.2
MPU						
MPU/ASCI Metal 1 (M1) ½ pitch (nm)	54	42	38	30	27	21
MPU % Pitch (nm) (uncontacted gate)	45	35	32	25	22	18
MPU gate in resist (nm)	25	20	18	15	13	10
MPU gate length after etch (nm)	18	14	13	10	9	7
Contact in resist (nm)	59	46	42	33	30	23
Contact after etch (nm)	54	42	38	30	27	21
CD control (3 sigma) (nm)	1.6	1.3	1.2	0.9	0.8	0.6
ASIC/LP						0000
ASIC % Pitch (nm) (uncontacted gate)	45	35	32	25	22	16
ASIC/LP gate in resist (nm)	32	27	22	19	16	13
ASIC/LP gate length after etch (nm)	22	19	16	14	11	9
Contact in resist (nm)	59	46	42	33	30	23
Contact after etch (nm)	54	42	38	30	27	21
CD control (3 sigma) (nm)	2.0	1.7	1.4	1.3	1.0	0.8
Chip size (mm ²)						
DRAM, introduction	563	353	560	351	464	292
DRAM, production	83	104	83	104	138	87
MPU, high volume at introduction	280	280	280	280	280	280
MPU, high volume at production	140	140	140	140	140	140
MPU, high performance	310	310	310	310	310	310
ASIC	704	704	704	704	704	704
Minimum field area	704	704	704	704	704	704
Wafer size (diameter, mm)	300	450	450	450	450	450

表 2-1 不同型式之減光型相移圖罩之優缺點

	旋佈玻璃式	蝕刻石英式	嵌附式
優點			1. 單層膜兼有吸
			收與相移作用
	NIII.	Maria .	2. 檢測、修補與
			傳統圖罩同
	E E E	SANE	3. 適用任何圖案
缺點	1. 旋佈玻璃化合	1. 蝕刻石英側壁	1. 透射率過大產
	物厚度均一性	1890過厚,產生嚴	生側葉強度
	不易達成	重散射光	2. 解像度與製程
	2. 照射穩定性差	2. 蝕刻均一性難	寬容度改善不
	3. 厚度過厚	達成	如強型顯著

材質			微影波	長 193 nm			檢測波長	(nm)	化學科	穩定度	照射穩	道雷性	與基材附
	d(nm)	ϕ	n	k	T%	R%	Τ%	R%	Acid	Base	定度		著性
ZrSiO Bi-layer	N.A.	180	TF 2.02 AF 1.11	TF 0.108 AF 1.55	2~15	N.A.	$\begin{array}{c} 30\\ \lambda = 365 \end{array}$	N.A.	\bigcirc	×	\bigcirc	N.A.	N.A.
MoSiON Bi-layer	上 40 下 63	N.A.	上 2.25 下 1.9	上 0.53 下 0.31	5.78	11.8	$\frac{33.74}{\lambda = 36}$	19.7 55	0	×	0	N.A.	\bigcirc
CrO/ZrO Multilayer	90	N.A.	1.71~2.38	0.75~0.46	4~15	<20	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
TiSiN	86.2	N.A.	2.12	0.48	5.81	14.3	$28.1 \\ \lambda = 365$	N.A.	×	×	\bigcirc	\bigcirc	N.A.
TiSiON	101.6	N.A.	1.95	0.42	5.31	11.6	33.5 λ=365	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
AlSiN	95.5	N.A.	2.01	0.42	6.22	12.3	21.1 λ=365	N.A.	×	×	\bigcirc	\bigcirc	N.A.
SiN	72.56	176.9	2.33	0.46	9	17.09	$\begin{array}{c} 20\\ \lambda = 57 \end{array}$	21 74	\bigcirc	\bigcirc	N.A.	×	N.A.
CrAlO	78.8	189.2	2.225	0.405	8.9	14.44	>40	N.A.	×	×	N.A.	×	N.A.
PdSiO	96	180	2.005	0.45	5.1	12.57	35.8 $\lambda = 488$	N.A.	\bigcirc	N.A.	0	\bigcirc	N.A.

表 2-2 一般常見之嵌附層材料

表 2-3 常見之高透射率相移圖罩嵌附層材料

	AlSixOy	$Cr_2Al_8O_{15}$	Cr / CrF	MoSi + 帥刻石革	MoSiON 同質饉岡
使用光源波長	193nm	248nm	248nm	248nm	248nm
d ₁₈₀	86.2 nm	124 nm	無資料	無資料	D1: 37.1nm D2: 90.0nm
n	2.12	1.797	無資料	無資料	N1: 2.18 N2: 1.868
k	0.21	0.207	無資料	無資料	K1: 0.5879 K2: 0.3385
Т	25.9 %	20 %	20%	33%	18%
R	10.8 %	無資料	無資料	無資料	無資料
T (Inspection wavelength)	67.8 % (365 nm)	<40% (248 nm)	無資料	無資料	無資料
Electric conductivity	差	差	無資料	無資料	無資料
Exposure durability	良	無資料	無資料	無資料	無資料
Clean durability	差	、""差加,	無資料	無資料	無資料
Environmental durability	良	良	無資料	無資料	無資料
Surface roughness	良	良人	無資料	無資料	無資料
Adhesion	良	無資料	無資料	無資料	無資料
Etching selectivity	良	人 1 (296	無資料	無資料	無資料
Etching gases	$BCl_3 : Cl2 = 30 : 7BCl3 : Cl2 : 02 = 35 : 7 : 3.2$	無資料	無資料	無資料	無資料
Resist	EP-1EG	無資料	無資料	無資料	無資料
Etching selectivity to resist	7.7 : 1	無資料	無資料	無資料	無資料
Etching selectivity to quartz	5.8:1	無資料	無資料	無資料	無資料

		d ₁₈₀ (nm)	n	k	Τ%	R%
Si ₃ N ₄	193 nm	58.6	2.6630	0.2451	28.81	27.05
	248 nm	92.4	2.3648	0.3994	11.95	17.29
TiSiN	193 nm	70.7	2.3998	0.6036	4.67	19.29
	248 nm	116.6	2.0799	0.3908	8.26	12.47
MoSiN	193 nm	69.0	2.4284	0.5048	7.86	19.11
	248 nm	131.2	1.9565	0.3139	10.72	10.59

表 4-1 線上計算嵌附層材料之光學性質

表 4-2 n&k Analyzer 量測嵌附層材料之結果

		Thickness	n	k
		(nm)		
Si ₃ N ₄	193 nm	61.3	2.751	0.421
	248 nm	93.5	2.294	0.492
TiSiN	193 nm	71.9	2.329	0.599
	248 nm	115.2	2.121	0.394
MoSiN	193 nm	72.6	2.295	0.499
	248 nm	135.0	1.831	0.355

表 4-3 紫外光/可見光光譜儀量測之反射率與透射率

		n ₂	R%	Τ%
Si ₃ N ₄	193 nm	1.56	22.818	10.531
	248 nm	1.514	16.467	9.772
TiSiN	193 nm	1.56	17.851	4.441
	248 nm 🇃	1.514	13.07	8.32
MoSiN	193 nm	1.56	17.324	6.425
	248 nm 🍕	1.514	9.468	8.883

"THINK

		n	k
Si ₃ N ₄	193 nm	2.690	0.380
	248 nm	2.250	0.545
TiSiN	193 nm	2.260	0.620
	248 nm	2.125	0.395
MoSiN	193 nm	2.280	0.535
	248 nm	1.860	0.335

表 4-4 R-T Method 計算嵌附層材料之結果

表 4-5 以方程式修正後之材料反射率與透射率

Contraction of the second s								
		R%	Т%	Modified	Modified			
				R%	Τ%			
Si ₃ N ₄	193 nm	22.818	10.531	23.094	10.662			
	248 nm	16.467	9.772	16.666	9.894			
TiSiN	193 nm	17.851	4.441	18.213	4.533			
	248 nm	13.07	8.32	13.165	8.382			
MoSiN	193 nm	17.324	6.425	17.487	6.487			
	248 nm	9.468	8.883	9.739	8.968			

		n	k
Si ₃ N ₄	193 nm	3.025	0.465
	248 nm	2.285	0.440
TiSiN	193 nm	2.305	0.615
	248 nm	2.135	0.390
MoSiN	193 nm	2.320	0.530
	248 nm	1.845	0.365

表 4-6 Modified R-T Method 計算嵌附層材料之結果

表 4-7 變角度光譜橢圓儀量測嵌附層材料之結果

	_		-	
* 2		-		

		n	k
Si ₃ N ₄	193 nm	2.929	0.499
	248 nm	2.281	0.429
TiSiN	193 nm	2.300	0.607
	248 nm	2.152	0.388
MoSiN	193 nm	2.339	0.521
	248 nm	1.843	0.371

表 4-8 其他量測方法與變角度光譜橢圓儀於 193 nm 光源之誤差: (A) Si₃N₄; (B) TiSiN; (C) MoSiN

11	1
1 4	1 4
11	1 /
· ·	

	n		k	
n&k Analyzer	2.751	6.077%	0.421	15.631%
R-T Method	2.690	8.160%	0.380	23.848%
Modified R-T	3.025	3.278%	0.465	4.814%
Method				
VASE	2.929	-	0.499	-

(B)		ANTIN THE A		
	·••••	ESAN		Σ.
n&k Analyzer	2.329	1.245%	0.599	1.318%
R-T Method	2.260	1.739%	0.620	2.142%
Modified R-T	2.305	0.217%	0.615	1.318%
Method				
VASE	2.300	-	0.607	-

(C)

	n		k	
n&k Analyzer	2.295	1.881%	0.499	4.223%
R-T Method	2.280	2.522%	0.535	3.866%
Modified R-T Method	2.320	0.812%	0.530	1.727%
VASE	2.339	-	0.521	-

表 4-9 其他量測方法與變角度光譜橢圓儀於 248 nm 光源之誤差: (A) Si₃N₄; (B) TiSiN; (C) MoSiN

1	۸	`
1	Η	J

	n		k	
n&k Analyzer	2.294	0.570%	0.492	14.685%
R-T Method	2.250	1.359%	0.545	27.040%
Modified R-T	2.285	0.002%	0.440	2.564%
Method				
VASE	2.281	-	0.429	-

(B)

(D)		A BULLET A		
	- - - - - - - - - - -	EST	ŀ	Σ
n&k Analyzer	2.121	1.441%	0.394	1.546%
R-T Method	2.125	1.255%	0.395	1.804%
Modified R-T Method	2.135	0.790%	0.390	0.515%
VASE	2.152	-	0.388	-

(C)

	n		k	
n&k Analyzer	1.831	0.651%	0.355	4.313%
R-T Method	1.860	0.922%	0.335	9.704%
Modified R-T Method	1.845	0.109%	0.365	1.617%
VASE	1.843	-	0.371	-

圖 1-2 嵌附層使光幅產生 π 相位差之示意圖

註:1. 雷文生-涉谷型(或稱間隔型、間隔光孔型)為+1,-1兩光束成像 2. 唯相移層型可+1,-1兩光束成像(邊端成像)(上圖),或+1,0,-1三光束成像(雙光強成像)(未繪出) 3. 其他皆為+1,0,-1三光束成像

圖 1-3 傳統圖罩與六種相移圖罩之光幅向量、中央主光強及側葉光強示意圖

圖 2-1 雷文生-涉谷型相移圖罩之繞射光干涉前、後,其光幅及繞射 角變化情形,與晶圓上空間影像之光幅及光強成像之狀況

7. 製備二維接觸孔,中央光強低,側葉/中央光強比甚高,製備難度高

圖 2-2 嵌附式减光型相移圖罩原理

嵌附式減光型相移圖罩(EAPSM)分類,實際應用皆為三透(Tritone)減光型 相對相移角度差(相位差)=Y-X=π=180°,正規透射率T%=4-10,高透射率T%=15-35 微影波長反射率R%<15(嚴),R%<25(寬)

1. 同質單層

2. 同質雙層 舉例: 如表層與底層皆為ZrSiO 微影波長反射率R% 僅氧(O)原子比例不同 底層 -> 193奈米微影波長 石英(基材) 表層 透射率T%~6 ΥX 較厚銘膜 較厚鉻膜 (完全遮光) ΥX (完全遮光) 嵌附層 零低高 減光兼相移) 透射率T% 底層(低氧,透射率較低,主要功能為減光) 表層(高氧,透射率較高,主要功能為相移) 三種透射率 微影波長透射率T% 如與基材附著性良好,底層、表層交換亦可 故名三透 以Y光束為準

- 舉例:248、193 奈米 微影波長 $MoSiN_x$, $TiSiN_x$
- 3. 異質雙層

圖 2-3 嵌附式减光型相移圖罩嵌附層之分類

C>0.5, 微影品質較佳

圖 2-4 相擾度、空間影像對比度與空間頻率之關係圖

皆為(0,+1)或(0,-1)二光束成像,類似偏軸發光(OAI) 截止頻率皆為 2NA/A 在截止頻率,空間影像對比度C=0,對微影無意義 空間頻率<截止頻率,空間影像對比度C>0,對微影有意義

圖 2-5 傳統、嵌附式減光型與雷文生型相移圖罩之比較

圖 2-6 二維接觸孔與一維孤立隙之空間影像光強

圖 2-7 同調度、相擾度與光強計算之原理

相擾度 0.15

0.36

0.60

圖 2-8 相擾度變化對邊緣能見度之影響

圖 2-9 嵌附層與基材本身之多重反射示意圖

圖 2-10 由已知厚度、反射率與透射率經 R-T Method 求出 n、k 值

圖 2-11 Modified R-T Method 之修正方程式

圖 2-12 減光型相移圖罩之側葉光強產生示意圖 及應用輔助孔消除側葉光強之原理

Space with bias	最基本的圖罩設計 利用蝕刻石英產生180度之相位差 鉻膜做爲遮光之用 bias乃是經過模擬結果後,回饋至Mask 優點:此型最易製造。 缺點:但需經模擬才可決定bias之程度 通常bias非常小,難以控制。
Undercut 1 side	沉積鉻膜後,過蝕刻石英 基本上此型與space with bias有異曲同功 之妙。space with bias利用 bias來創造較 佳之成像品質,而undercut則是使用鉻膜 遮光達成同樣的目地。 缺點: undercut不易控制。
Undercut 2 side	此型針對 Dual Trench之缺點改良而成。 使用鉻膜遮擋側壁散色光,所以能在Mask 上形成較完美的電場振幅,而不受側壁光 之干擾。 優點:較 Dual Trench 成像好。 缺點: undercut 壽命短。
SCAA-type	SCAA-type與 space with bias 有最好的成 像品質。 優點:成像品質好。 缺點: 側壁鉻膜成長不易。
Dual trench	此類型圖罩因: 1. 側壁光散射,造成能量損失 2. 石英側壁表面會影響 phase-shifting 故成像品質不好
圖 2-13 各種改良式雷文	生式圖罩結構與優缺點

唯相移層型(無銘膜型) 相移圖罩

(a)

圖 2-14 唯相移層線幅寬度大小對空間光強之比較

圖 2-15 三光束傳統發光原理

圖 2-16 各類型偏軸發光型式

Quasar

(Super High Resolution by IllumiNation Control)

Slit

圖 3-1 橢圓儀基本原理示意圖

$$\left(\frac{E_x}{a_1}\right)^2 + \left(\frac{E_y}{a_2}\right)^2 - 2\frac{E_x}{a_1} \cdot \frac{E_y}{a_2} \cdot \cos \varDelta = \sin \varDelta.$$
(A)

$$S_{0} = a_{1}^{2} + a_{2}^{2}$$

$$S_{1} = a_{1}^{2} - a_{2}^{2}$$

$$S_{2} = 2a_{1}a_{2} \cos \Delta$$

$$S_{3} = -2a_{1}a_{2} \sin \Delta$$
(B)

圖 3-2 橢圓儀原理之數學式與橢圓偏振光示意圖