

國 立 交 通 大 學

電子工程學系電子研究所

博 士 論 文

新式位元層次設計方法及其應用於離散弦轉換

A Novel Bit-level Design Approach and its Application to Discrete

Sinusoidal Transforms

 研 究 生 ： 陳 漢 臣

 指導教授 ： 任 建 葳

 張 添 烜

 中華民國九十五年一月

A Novel Bit-level Design Approach and its Application to Discrete

Sinusoidal Transforms

新式位元層次設計方法及其應用於離散弦轉換

研究生: 陳漢臣 Student: Hun-Chen Chen

指導教授: 任建葳 博士 Advisors: Prof. Chein-Wei Jen

張添烜 博士 Prof. Tian-Sheuan Chang

國立交通大學

電子工程學系電子研究所

博 士 論 文

A Dissertation

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical and Computer Engineering

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

in

Electronics Engineering

January 2006
Hsinchu, Taiwan, Republic of China

推 薦 函
事由：推薦電子研究所博士班研究生陳漢臣提出論文以參加國立交通大學博士班

論文口試。

說明：本校電子研究所博士班學生陳漢臣已經完成本校電子研究所所規定之學科

課程及論文研究之訓練。有關學科方面，陳君已修畢十八學分(請查閱學籍

資料)，通過學科考試。有關論文研究部份，陳君已完成「新式位元層次設

計方法及其應用於離散弦轉換」(A Novel Bit-level Design Approach and its
Application to Discrete Sinusoidal Transforms)初稿。相關論文發表情形如下:

[1]. H. C. Chen, J. I. Guo, T. S. Chang, and C. W. Jen, “A Memory Efficient
Realization of Cyclic Convolution and its Application to Discrete Cosine
Transform,” IEEE Tran. Circuits and Systems for Video Technology, vol. 15, no.
3, pp. 445-453, March 2005.

[2]. H. C. Chen, T. S. Chang, J. I. Guo, and C. W. Jen, “The Long Length DHT
Design with a New Hardware Efficient Distributed Arithmetic Approach and
Cyclic Preserving Partitioning,” IEICE Tran. Electronics, Vol. E88-C, No. 5, pp.
1061-1069, May 2005.

[3]. H. C. Chen, J. I. Guo, C. W. Jen, and T. S. Chang, “Distributed Arithmetic
Realisation of Cyclic Convolution and Its DFT Application,” IEE Proceedings
Circuits, Devices and Systems, Vol. 152, No. 6, pp. 615-629, December 2005.

[4]. H. C. Chen, T. S. Chang, and C. W. Jen, “A Low Power and Memory Efficient
Distributed Arithmetic Design and its DCT Application,” Proc. 2004 IEEE
Asia-Pacific Conference on Circuits and Systems, Tainan Taiwan, pp. 805-808,
2004.

[5]. H. C. Chen, J. I. Guo, and C. W. Jen, “A Memory Efficient Realization of
Cyclic Convolution and its Application to Discrete Cosine Transform,” Proc.
2003 IEEE International Symposium on Circuits and Systems, Bankok Thailand,
pp. IV-33-IV-36, 2003.

[6]. H. C. Chen, J. I. Guo, and C. W. Jen, “A New Group Distributed Arithmetic
Design for the One Dimensional Discrete Fourier Transform,” Proc. 2002 IEEE
International Symposium on Circuits and Systems, Arizona USA, pp.
I-421-I-424, 2002.

[7]. H. C. Chen, J. I. Guo, and C. W. Jen, “Low Power Module Designs for Video
Codec Systems,” Proc. The 10th VLSI Design/CAD Symposium, Nantou Taiwan,
pp. 275-278, 1999.

[8]. H. C. Chen, T. S. Chang, J. I. Guo, and C. W. Jen, “A Power-of-Two Variable
Length DFT Processor using Group Distributed Arithmetic for Communication
Applications,” submitted to IEEE Tran. Circuits and Systems I in Dec. 2005.

 總言之，陳君具備國立交通大學電子研究所應有之教育及訓練水準，因此

推薦陳君參加國立交通大學電子研究所博士班論文口試。

 此致

 國立交通大學 電子研究所

 電子研究所教授
 任建箴

 張添烜

 中華民國九十四年十一月

新式位元層次設計方法及其應用於離散弦轉換

研究生: 陳漢臣 指導教授: 任建葳 博士

張添烜 博士

國立交通大學電子工程學系暨研究所

摘要

離散弦轉換已被廣泛的應用於數位信號處理，諸如: 影像處理、數位濾波器

及數位通訊等...。於低成本架構設計的研究，文獻中雖已有許多的設計，但都因

只考慮到係數的常數特性而未真正有效的著眼於不同演算法中這些係數的數值

特性，因此高效能低成本離散弦轉換之架構設計仍有極大的著墨空間。對此，本

論文提出了一低記憶體成本之位元層次設計方法並應用於高效能低成本之離散

弦轉換架構設計上。

本論文以迴旋疊積離散弦轉換演算法為基礎，同時利用分散式算數將輸入資

料分解至位元層次進而去除潛在的冗餘而提出名為群組式分散式算數之低記憶

體成本之位元層次設計方法；對於一個 N 點的迴旋疊積運算，所提出之新的分

散式算數設計方法僅僅使用了一組遠小於傳統式分散式算數設計方法的記憶

體、一組 N 位元之移位暫存器、及 N 個累加器。跟據輸入資料之迴旋特性，我

們重新安排了分散式算數架構中記憶體的內容進而消除了原先儲存於記憶體中

重複出現之係數和而達到降低硬體成本之目的。與傳統之分散式算數設計比較，

所提出之群組式分散式算數設計可使記憶體成本由)2(NO 降至)2(2log NNO − ；若

考慮額外付出的硬體代價，硬體成本則由)2(NO 改善至)22(2log ++− NO NN 。

此外，為了使所提出之群組式分散式算數設計方法可應用於長點數之設計，群組

式分散式算數之分割問題是在提出一種新的分散式算數方法時必須面對的。對質

數點數及非質數點數我們分別結合了 Agarwal-Cooley 及 Pseudocirculant matrix

factorization 等分割演算法進行迴旋疊積之分割，這樣的結合使得群組式分散式

算數設計方法在低成本長點數的迴旋疊積設計上一併得到了解決方案，也進而提

升了此二分割演算法在實際應用上之價值。

在離散弦轉換的實現上，為使能夠更進一步降低硬體成本，在離散傅利葉轉

換的設計中我們進一步利用了其中係數之對稱性，使得在群組式分散式算數之離

散傅利葉轉換設計上可再降低一半的記憶體成本。而在離散餘絃轉換的設計中，

由於迴旋疊積的不完美，為使群組式分散式算數方法能順利的應用於離散餘絃轉

換的設計之中，我們亦利用了離散餘絃轉換中係數之對稱性將原來的迴旋疊積演

算法轉換成一完美的迴旋疊積演算法，進而使得一個低成本的群組式分散式算數

離散餘絃轉換架構得以實現，這樣的一個處理也使得群組式分散式算數在離散餘

絃轉換的實現上亦減少了一半的記憶體成本。與現存的心脈式陣列架構及其他分

散式算數架構之離散絃轉換設計比較，所提出之群組式分散式算數架構可節省超

過 29% 的延遲時間-硬體成本乘積值。

考慮在通訊系統上的應用，本研究最後嘗試使用所提出之低硬體成本群組式

分散式算數設計方法來實現長點數且為可變點數之二的次方長度之離散傅利葉

轉換。我們使用 Cooley-Tukey 演算法先對離散傅利葉轉換進行分解，再使用

pseudocirculant matrix factorization 演算法對分解後的離散傅利葉轉迴旋疊積式

進行進一步的分割，使得一長點數的問題仍可利用低硬體成本之群組式分散式算

數加以實現。所提出之以群組式分散式算數設計為基礎的可變點數離散傅利葉轉

換架構可適用於 64/128/256/512/1024/2048/4096 等長度之離散傅利葉轉換。此

外，所提出之架構亦適用於任意長度之離散傅利葉轉換實現。與現存的長點數及

可變點數 FFT 架構比較，除了潛在延遲較短及高硬體使用率的優點外，在單位

產出率下，當長度小於 256 時，本架構可節省超過 9.6% 的硬體成本；因此，

所提出的是一個具相當競爭力的硬體架構實現。除了上述有關離散弦轉換的應用

外，本論文所提出之設計方法亦適用於任何有關迴旋運算的數位信號處理方面的

應用上。

A Novel Bit-level Design Approach and its Application to Discrete
Sinusoidal Transforms

Student: Hun-Chen Chen Advisors: Prof. Chein-Wei Jen

Prof. Tian-Sheuan Chang

Department of Electronics Engineering and Institute of Electronics,
National Chiao-Tung University

Abstract
The Discrete Sinusoidal transform (DSST’s) have been widely used in many

digital signal processing applications such as image processing, digital filtering,
digital communication, and etc. Although many designs of the DSST’s have been
proposed in the literatures, their designs are still not efficient enough since they
exploit only the constant property of the transform coefficients without considering
the numerical property of these coefficients in the reformulated algorithms to further
optimize the hardware cost. This dissertation proposes a novel bit-level
hardware-efficient group distributed arithmetic (GDA) design and its applications for
Discrete Sinusoidal transform (DSST’s) designs.

In the proposed GDA design approach, first we formulate the algorithm of
DSST’s into cyclic convolution form in algorithm level. Then we use the distributed
arithmetic to decompose the input data into bit-level in architecture level. Thus, the
data redundancy due to the cyclic convolution can be efficiently removed within the
bit-level input context to facilitate a hardware efficient DA realization. The proposed
GDA approach rearranges the contents of DA memory according to its cyclic property
such that redundancy of the contents can be eliminated and only a few groups of data
are needed. Thus, compared with the conventional DA design, the memory cost of the
proposed GDA design can be reduced from)2(NO to)2(2log NNO − , and accounting
with the necessary overhead, the overall complexity is improved from)2(NO to

)22(2log ++− NO NN . To further extend its applications to long length designs, we
further combine the Agarwal-Cooley algorithm and Pseudocirculant matrix
factorization algorithm. This can partition the long length cyclic convolution into
short ones while can still maintain its cyclic property, which avoids the non-cyclic
problem of direct partitioning. Thus the proposed GDA design can efficiently be

applied to realize each of the shortened cyclic convolution blocks to achieve low
hardware cost.

The proposed GDA design approach has been applied successfully to the DFT,
DHT and DCT designs. For DFT design, we further combine the symmetrical
property of the DFT coefficients with the proposed GDA design approach such that
this design requires only half the contents to be stored. This further reduces the
memory size by a factor of two. For the DCT design, in addition to the symmetry
property of DCT coefficients, we further reformulate the non-cyclic DCT kernel into
two perfect cyclic forms such that the DCT can be implemented by the GDA design
approach with less hardware of (N-1)/2 adders or substractors, one much small
memory module, a (N-1)/2-bit barrel shifter, and (N-1)/2+1 accumulators. Compared
with the existing systolic array designs and DA-based designs, the realizations of 1-D
DFT, DHT, and DCT with the proposed GDA design approach reduce the delay-area
product more than 29% according to a 0.35 um CMOS cell library.

In addition to the prime length design, we also apply the GDA approach to the
long length power-of-two DFT design commonly used in the communication system.
We combine the proposed hardware efficient GDA approach with the Cooley-Tukey
algorithm on DFT decomposition, and pseudocirculant matrix factorization algorithm
on cyclic convolution partitioning to facilitate the long- and variable-length DFT
design with low hardware cost. The proposed design can be flexibly used to compute
the 1-D 64/128/256/512/1024/2048/4096-point DFT by cascading two 1-D short
length DFTs and summing up the partitioned short length cyclic convolutions for each
stage of the cascaded DFT. Besides, the proposed hardware efficient design approach
can also be adopted in the design with the length beyond power of two. Compared
with the existing long-length and variable-length FFT design, in addition to the
advantages of short latency and high hardware utilization efficiency, under the same
throughput rate, the proposed variable-length DFT can be a competitive design, and
save the hardware cost more than 9.6% while the transform length is smaller than 256.
In summary, the presented GDA-based design approach provides a solution to
efficiently implement not only the DSST’s but also the DSP applications involving
convolution and correlation.

 I

CONTENTS

Chapter 1 Introduction...1

1.1 Motivation..1

1.2 Current status of DSST’s designs ..2

1.3 Review of DA-based designs...3

1.4 Overview of the proposed design approach...4

1.5 Considerations to the DSST’s designs ...5

1.6 Outline of this dissertation ...6

Chapter 2 The Group Distributed Arithmetic (GDA) Design Approach.............8

2.1 Algorithm point of view...8

2.2 Architecture point of view ...10

2.2.1 Memory-based Group Distributed Arithmetic design.........................10

2.2.2 Analysis of Barrel shifter ..11

2.2.3 Evaluation of hardware cost..16

2.3 Consideration of low power design ...17

2.3.1 Analysis of transition activity ...17

2.3.2 Address morphing approach ...19

2.3.3 Exploration of dynamic range of the input data..................................20

2.3.4 Low Power Design with pre-computation scheme24

2.3.5 Evaluation of power cost ..28

2.4 Partitioning of cyclic convolution..29

2.4.1 Agarwal-Cooley algorithm..29

2.4.2 Pseudocirculant matrix factorization algorithm..................................30

2.4.3 Long length cyclic convolution design ...32

2.4.4 Evaluation of long length cyclic convolution GDA design37

Chapter 3 GDA-based Design for 1-D DSST’s ...39

3.1 Design of 1-D DFT ..39

3.1.1 Cyclic Convolution Formulation ..39

3.1.2 CORDIC (CO-ordinate Rotation Digital Computer)41

 II

3.1.3 Symmetry exploration of the DFT in cyclic convolution45

3.1.4 Architecture design and evaluation...49

3.2 Design of 1-D DHT ...57

3.2.1 Cyclic Convolution Formulation ..57

3.2.2 Numerical stability..59

3.2.3 Symmetry exploration of the DHT in cyclic convolution...................60

3.2.4 Architecture design and evaluation...64

3.3 Design of 1-D DCT..66

3.3.1 Cyclic Convolution Formulation ..66

3.3.2 Numerical stability..71

3.3.3 Architecture design and evaluation...72

3.3.4 Chip implementation...79

Chapter 4 Long-length DSST’s designs ..80

4.1 Decomposition of long-length DSST’s..80

4.1.1 Cooly-Tukey Algorithm..80

4.1.2 Prime Factor Algorithm ..81

4.1.3 Rader’s Algorithm...83

4.2 Long length DHT Design and Evaluation..85

4.3 Variable-length DFT Design to Communication System Application...........96

4.3.1 Overview of Communication system..96

4.3.2 Hardware Cost Analysis..97

4.3.3 GDA-based Variable Length DFT Design and Evaluation...............102

Chapter 5 Conclusion ...118

5.1 Contributions..118

5.2 Future Research Directions..119

Bibliography ...121

List of Figures
Fig. 1.1: Outline of this research. ...7

Fig. 2.1: The proposed GDA architecture and the associated memory content
arrangement in realizing the cyclic convolution example shown in (2.2).................10

Fig. 2.2: Multiplexer–based barrel shifter design...12

Fig. 2.3: Multiplier-based barrel shifter design. ...12

Fig. 2.4: Logarithmic number of multiplexer barrel shifter design.13

Fig. 2.5: Barrel shifter with N2 transistors..14

Fig. 2.6: Comparison of the four barrel shifters in (a) hardware cost, (b) power
consumption, and (c) delay time. ..15

Fig. 2.7: The delay-area product comparison in the proposed GDA design and the
traditional memory-based DA design with 16-bit data word length.17

Fig. 2.8: Trend of the improvement of transition probability versus the number of
input-data bit..19

Fig. 2.9: The description of architecture transformation from DA to GDA20

Fig. 2.10: The test image with the size of 252 * 252 pixels.21

Fig. 2.11: gray-level of the pixels in the image of Fig. 2.10.22

Fig. 2.12: histogram of the gray-level distribution in the image of Fig. 2.10.22

Fig. 2.13: The preprocessed gray-level of the image in Fig. 2.10.23

Fig. 2.14: Histogram of the preprocessed data used in the example of 7-point DCT
design...23

Fig. 2.15: The skipped bits in DA computation for the even outputs.25

Fig. 2.16: The skipped bits in DA computation for the odd outputs.26

Fig. 2.17: Power consumption of the GDA-based 1-D DCT designs.28

Fig. 2.18: The low cost version of BGDA design realizing the cyclic convolution
example shown in (2.19). ..33

Fig. 2.19: The BGDA design on realizing the cyclic convolution example shown in
(2.19) with high performance. ...34

Fig. 2.20: The low cost version of GDA realization of the example shown in (2.21).
...36

Fig. 2.21: The high performance version of GDA realization of the example shown in
(2.21). ..37

Fig. 3.1: Realization of CORDIC iterations and scaling iterations.44

Fig. 3.2: Comparison of (a) area cost and (b) power consumption for the complex
multiplications realized with serial multiplier and CORDIC....................................45

Fig. 3.3: Architecture design of the 1-D 11-point DFT with GDA approach.50

Fig. 3.4: Comparison of the area cost of the existing DFT designs and the proposed
GDA design in realizing the 1-D N-point DFT. ..53

Fig. 3.5: Comparison of the ACT for the existing designs and the proposed GDA
design in realizing the 1-D N-point DFT...54

Fig. 3.6: Comparison of the delay-area product for the existing designs and the
proposed GDA design in realizing the 1-D N-point DFT..54

Fig. 3.7: The architecture of the GDA design realizing the 1-D 11-point DHT.65

Fig. 3.8: The area reduction of the memory cost when applying the symmetry
property of DCT coefficients or not. ...69

Fig. 3.9: Block diagram of the proposed pipeline architecture for computing the 1-D
N-point DCT..73

Fig. 3.10: Design of the preprocessing stage in the 1-D 7-point DCT.74

Fig. 3.11: Design of the DA processing stage that is used to compute the kernel of
T((3k)7) in the 1-D 7-point DCT. ...74

Fig. 3.12: Design of the post-processing stage in the 1-D 7-point DCT including (a)
the post-processing, and (b) the output buffer. ..76

Fig. 3.13: The delay-area product of the proposed design and the existing DCT
designs [33]-[35][52] in realizing the 1-D DCT..78

Fig. 3.14: Layout view of the 1-D 7-point GDA-based DCT design.79

Fig. 4.1: The GDA-based architecture design for 1-D 29-point DHT example90

Fig. 4.2: Comparison of the normalized area cost in the realization of 1-D N-point
DHT using the proposed design and the existing designs...93

Fig. 4.3: Comparison of the normalized cycle time in the realization of 1-D N-point
DHT using the proposed design and the existing designs...93

Fig. 4.4: Comparison of the normalized area-delay product in the realization of 1-D
N-point DHT using the proposed design and the existing designs94

Fig. 4.5: Average improvement of the normalized area-delay product in the designs
of 841-point DHT, 1653-point DHT, and 3249-point DHT using the proposed design
approach ..95

Fig. 4.6: Transceiver /Receiver architecture in the communication system...............97

Fig. 4.7: Hardware cost of the original FFT versus the proposed GDA-based DFT101

Fig. 4.8: Delay-area product of the FFT versus the proposed GDA-based DFT......102

Fig. 4.9: Block diagram of the proposed variable-length DFT architecture.............104

Fig. 4.10: Architecture of 2-D DFT with real input..104

Fig. 4.11: Architecture design of the 2-D DFT in cyclic convolution formulation. .104

Fig. 4.12: Version 1 of the reduced architecture of 2-D DFT in cyclic convolution
formulation. ...105

Fig. 4.13: Version 2 of the reduced architecture of 2-D DFT in cyclic convolution
formulation. ...105

Fig. 4.14: Folding of the computation of each eight row blocks in 64-point cyclic
convolution. ...106

Fig. 4.15: Folding of the computation of each four row blocks in 32-point cyclic
convolution. ...107

Fig. 4.16: Detail architecture of (a) the row 1-D DFT with input buffer and (b) the
column 1-D DFT with output buffer. ..109

Fig. 4.17: Detail design of (a) input buffer groups, (b) PISO groups, and (c) output
buffer groups in the proposed 1-D DFT architecture. ...110

Fig. 4.18: (a) design of the 1-bit three dimensional rotator and the routing for (b)
2-bit BRG in stage 2, (c) 4-bit BRG in stage 3, and (d) 8-bit BRG in stage 4........112

Fig. 4.19: Detail design of variable-length GDA-based module used for the
computation of Tij() in the proposed 1-D DFT architecture. 113

Fig. 4.20: Data-flow of the adder-group tree follows the GDAUs in the proposed
variable-length DFT design... 114

Fig. 4.21: Detail design of serial multiplier groups in the proposed 1-D DFT
architecture. ...115

Fig. 4.22: The transpose memory with the specific address generator.....................115

List of Tables
Table 2.1: The rule of group mapping...11

Table 2.2: Comparison of memory size in both the traditional memory-based DA and
the proposed GDA designs for different values of N. ...16

Table 2.3: Transformation of transition probability for the input data of the 4-input
data-path. ...18

Table 2.4: The relation ship of the address morphing...20

Table 2.5: Relationship between the sum of primary inputs and the even outputs.....25

Table 2.6: Analysis for the covered lengths of cyclic convolution can be decomposed.
...30

Table 2.7: Comparison of the hardware cost of the design examples shown in
low-cost BGDA, high performance BGDA, and conventional DA in the case of
non-coprime partitioning. ..38

Table 3.1: Table for θi ...43

Table 3.2: Determination of the si sequence at the θ of 56. ..43

Table 3.3: Hardware cost comparison of direct realization and CORDIC realization
for a complex multiplication. ..45

Table 3.4: The 8 groups of memory content used for computing the 5-point cyclic
convolution in GDAUc..51

Table 3.5: The 8 groups of memory content used for computing the 5-point cyclic
convolution in GDAUs..51

Table 3.6: Area cost models to estimate the 1-D N-point DFT modules in the existing
systolic array designs, DA-based designs, and the proposed GDA design with real
input data. ..55

Table 3.7: Area cost models to estimate the 1-D N-point DFT modules with the
partitioned cyclic convolution in the existing systolic array designs, DA-based
designs, and the proposed BGDA design with real input data.56

Table 3.8: Average cycle time (ACT) models to estimate the not partitioned and
partitioned 1-D N-point DFT modules in the existing systolic array designs,
DA-based designs, and the proposed GDA design with real input data....................57

Table 3.9: The 8 groups of memory content used for computing the 5-point cyclic
convolution in GDAUc..66

Table 3.10: The 8 groups of memory content used for computing the 5-point cyclic
convolution in GDAUs..66

Table 3.11: The seed-value, group address, and rotating factor used in the design of
group address decoder of 1-D 7-point DCT. ...75

Table 3.12: The partial products distribution for different DCT outputs under the
same input value. ...75

Table 3.13: 8-word memory contents arranged into groups.76

Table 3.14: The comparison of the proposed design and the existing DCT designs
[33]-[35][52] in realizing the 1-D N-point DCT in terms of delay and silicon area. 78

Table 4.1: Function of the address decoders in the 1-D 29-point DHT design...........91

Table 4.2: The performance comparison of different designs for computing the 1-D
N-point DHT ...92

Table 4.3: Length of 1-D DHT constructed by the decomposed short length DHTs..94

Table 4.4: The evaluation result of GDA-based DHT designs95

Table 4.5: DFT lengths for several communication systems97

Table 4.6: The computation complexity of various DFT algorithms..........................98

Table 4.7: The estimation of hardware costs of the FFT and the proposed GDA-DFT
...100

Table 4.8: The estimation of hardware costs of the FFT with actual complexity and
the proposed GDA-DFT..100

Table 4.9: The estimation of cycle times of the FFT and the proposed GDA-DFT for
each sample ...101

Table 4.10: Length of 1-D DFT constructed by the decomposed short length DFTs103

Table 4.11: Condition of BR in each stage for DFT with the lengths of 64, 256, 1024,
and 4096. ... 111

Table 4.12: Comparison of the existing FFT designs and our DFT design 117

 1

Chapter 1
Introduction

In this chapter, we illustrate the motivation, current status of DSST’s designs,

review of the existing DA-based designs, overview of the proposed memory efficient

bit-level design approach, considerations to the DSST’s designs, and outline of this

dissertation. The details of the proposed design approach and associated advantage as

well as the application in DSST’s will illustrate in the following chapters.

1.1 Motivation

The Discrete Sinusoidal transforms (DSST’s), including discrete Fourier

transform (DFT), discrete Hartley transform (DHT), and discrete cosine transform

(DCT), have been widely used in many digital signal processing applications such as

image processing, digital filtering, digital communication, etc. There are two main

solutions for realizing the high complexity of the DSST’s in real-time. One is based

on the fast algorithms that aim at reducing the complexity of DSST’s to speed up the

computation. The other is to directly realize the DSST’s formulations or their

reformulations, such as the convolution, with hardware for accelerating the DSST’s

computation.

The designs with fast algorithms are attractive for low computational complexity.

However, hardware design of the algorithm is communication intensive and

computation intensive to complicate the realizations of controller and arithmetic

operation. In addition, most of the designs with fast algorithms exploit a butterfly

datapath and a global memory in storing all of input/output data as well as the

intermediate results. The mass data access from the global memory wastes a large

percentage of power in this kind of designs. Besides, the cascaded structure in the fast

algorithm makes the designs have poor numerical accuracy such that longer data word

length in the datapath is needed. This fact will reduce the low complexity advantages

of the fast algorithm and thus increase the hardware cost of the designs with fast

algorithm, especially in the design with the length of non-power of two.

On the designs with direct manner, many existing architectures, such as the

systolic array, are still severely suffered from large hardware cost because most of the

 2

existing designs use area-consuming multipliers as the fundamental computing

elements. Besides, these designs are not efficient enough since they only exploit the

constant property of the transform coefficients without considering the possibility on

further hardware optimization. Thus, efficient hardware design of the DSST’s is still a

challenging problem due to its high computational complexity and the requirement of

real-time processing.

The other popular architecture based on the distributed arithmetic (DA) has been

adopted in DSP applications. In the case of short length, with less hardware cost, the

memory-based DA design can instead of area-consuming multiplier for the

computation of multiple-in-multiple-out (MIMO) inner product. Thus, trading the

required performance, the DA technique shall be a hardware efficient method for the

realization with direct manner. Combining with the good feature of DA, we explore

the existing DSST’s algorithms to develop a hardware efficient DA design approach

for real-time realization of the main modules in the multimedia and communication

systems.

1.2 Current status of DSST’s designs

 In this subsection, we will illustrate the current status of DSST’s designs with

fast algorithms and the direct manner respectively.

For the DFT designs, the designs [1]-[5] exploited the feature of low computation

complexity in fast Fourier transform (FFT) algorithms to achieve the goal of reducing

the number of computation. However in these design, the global interconnection

usually complicates the realization of controller. Since most of the FFT-based designs

exploit a butterfly datapath and a global memory in storing all of input/output data as

well as the intermediate results, the mass data access from the global memory wastes

a large amount of power. Besides, the cascaded structure of FFT algorithm makes

these designs have poor numerical accuracy such that longer data word-length in the

data-path is needed. This fact will reduce the low complexity advantages of the FFT

algorithm and thus increase the hardware cost of the FFT-based designs. On the

exploration of hardware solution, the systolic array designs for DFT [6]-[11] were the

major trend of realizing DFT in the past decades due to the promising VLSI features

of modularity, locality, and regularity. However, these designs are still severely

suffered from large hardware cost because most systolic array designs for DFT use

 3

area-consuming multipliers as the fundamental processing elements (PEs).

For the Hartley transform (DHT) designs, since it is a good alternative to the

discrete Fourier transform (DFT) for its real-number operations [12][13], the discrete

Hartley transform (DHT) [14][15] also plays an important role in many DSP

applications. There are many high-speed communication applications [16]-[21] that

address the use of dedicated hardware designs for the DHT computation. For instance

of the discrete multitone modulation (DMT)-based ADSL transceiver realization, the

modulator and demodulator need to respectively compute the DFT and IDFT. The

DFT and IDFT computation can be realized effectively by using DHT and IDHT

computation for its inherent real-number operations [14]-[15]. The efficiency of using

DHT to compute the DFT/FFT becomes more apparent in the applications

encapsulating real input data than those encapsulating the complex input data. Many

hardware implementations of the DHT have been proposed, including

multiplier-based designs [22][23], Coordinate rotation digital computer

(CORDIC)-based designs [14]-[29], memory-based designs [30][31], and hardwired

multiplier-based design [32]. The design [22] uses a time recursive lattice structure to

compute the 1-D DHT. The design [24] uses a fast algorithm to compute 1-D DHT.

The designs [23][25]-[29] use direct matrix-vector multiplication algorithm to

compute the 1-D DHT. The designs [30][32] use cyclic convolution based

matrix-vector multiplication algorithm to compute the 1-D DHT.

For the DCT designs, due to playing a key function in image and signal

processing, especially for the demanding multi-media and portable applications, the

efficient hardware implementation of DCT is still a challenging problem for the

requirements of high computational complexity and real-time processing. To achieve

efficient hardware realization, except for the multiplier-based systolic array designs,

many researches have been done on realizing the multiplications needed in the DCT

through memory. One is the memory-based systolic array design [33] in which the

proposed cyclic convolution based architecture possesses the features of simple I/O

behavior and removes the data redundancy in the DCT coefficients.

1.3 Review of DA-based designs

To remedy the problems in the DFT, DHT, and DCT realizations with the

designs mentioned above, many researches have realized the multiplications needed in

 4

the DSST’s through memory [33]-[37]. One of the popular techniques is distributed

arithmetic (DA). It has been widely used in many DSP applications such as the

DSST’s, convolution, and digital filters [34]-[37]. The DA technique is an efficient

method for computing inner products by using table look-up, shifting, and

accumulations. Therefore, some existing designs are great interests in reducing the

memory size required in the implementation of the DA-based architectures [34]-[36],

such as the partial sum techniques and the Offset Binary Coding (OBC) techniques

[34][35]. Besides, there is a different DA-based design denoted as adder-based DA

design that realizes the multiplications by using adders instead of memories

[32][38]-[40]. Chang [38]-[39] took advantage of the shared partial sum-of-products

and sparse nonzero bits in the fixed input data to reduce the computational complexity.

Guo [32][40] exploited the feature of cyclic convolution to simplify the computation

of DHT and DFT, so that the multiplications and additions can be realized by using a

small number of adders. On the algorithm point of view, these existing designs

mentioned above, cyclic convolution-based designs have the good features of simple

I/O behavior and reduction of coefficients redundancy in the 1-D DFT, DHT, and

DCT. However, since they only exploit the constant property of the transform

coefficients without considering the possibility on further hardware optimization with

different DSST’s algorithms, they are still not efficient enough.

1.4 Overview of the proposed design approach

In this dissertation, we propose a new hardware efficient DA approach for the

1-D DSST’s design. The proposed approach can further reduce the memory size

required in the traditional DA technique [34]. For a glance of the proposed DA design

approach, first we formulate the algorithm of DSST’s into cyclic convolution form in

algorithm level, and then exploit the distributed arithmetic to decompose the input

data into bit-level in architecture level. Thus, the data redundancy due to the cyclic

convolution can be efficiently removed within the bit-level input context to facilitate a

hardware efficient DA realization.

Observing the cyclic convolution realized by DA technique, we find that different

DSST’s outputs can be computed using the same DSST’s coefficients and the same

input data samples with rotated order. If we directly realize the DSST’s in cyclic

convolution using traditional DA technique, we find that N identical memory modules

are used. It reveals a message that the redundancy still exists in the contents of the

 5

memory, which implies that the memory utilization in this case is not good enough.

Therefore, we intend to reduce the memory size by re-arranging the memory contents

in different way. Combining with the cyclic property, we first group the candidates of

DA inputs with rotated order as the same candidate, and then arrange the memory

contents in this manner that the partial products for accumulating different DSST’s

outputs according to the candidates being grouped together, and accessed

simultaneously for the different outputs of DSST’s. The partial products arranged in a

group should be rotated suitably before accumulating. With this way, the memory

module contains only few groups of contents and only one memory module, instead

of N identical memory modules needed in the computation of 1-D N-point DSST’s in

conventional DA design. We named this proposed new DA design approach, Group

Distributed Arithmetic (GDA).

Because of the inherent issue of DA-based design that the memory size increases

exponentially as the length of input data increases, the partition issue must be

regarded for long length DA design. In the conventional DA design, we can arbitrarily

partition the input data of DA, and then sum up the partial sums from the different

memory modules to achieve low hardware cost. Because of the necessity of cyclic

preserving, the manner of arbitrarily partitioning cannot be applied to the proposed

GDA design. Otherwise, the benefit of low hardware cost in GDA design will not

exist. To solve the problems mentioned above, we combine several algorithms to

decompose the long length DSST’s and partition the DA design in each of the

shortened DSST’s into smaller ones, which is still preserving the property of cyclic,

such that the DSST’s can efficiently be realized with GDA design. In the proposed

decomposition approach, we decompose the long length DSST’s into the short ones

with prime factor algorithm (PFA) or Cooley Turkey algorithm, and further partition

each of them by using Agarwal-Cooley algorithm [41] or pseudocirculant matrix

factorization algorithm (PMFA) [42] such that all the partitioned short DSST’s are

still composed of the shortened cyclic-convolution blocks. For such long-length

computations, dedicated hardware designs can meet both the real-time and low

hardware cost requirements in the various high-speed data communication

applications.

1.5 Considerations to the DSST’s designs

For the DFT design, we further explore the symmetrical property of DFT

 6

coefficients for further reducing the hardware cost of the memory by a factor of two.

Compared with the existing systolic array designs and DA-based designs, the DFT

design with the proposed GDA design approach can reduce the delay-area product

from 29% to 68% according to the 0.35 μm CMOS cell library for short lengths. As

compared with the existing designs, the DHT design with the proposed GDA design

approach possesses better performance in reducing the area-delay product from 52%

to 91%. For the DCT design, due to the rotated input data in the input-data matrix of

DCT possess different signs, it is not easy to apply the GDA approach directly to

DCT realization. Exploiting the symmetry property of DCT coefficients, we merge

the elements in the matrix of DCT kernel, and separate the matrix to two perfect

cyclic forms. Then these two smaller perfect cyclic convolution forms can be realized

with the proposed GDA approach. This realization facilitates reducing the memory

size significantly. As compared with the existing DA-based designs, for an example

of 1-D 7-point DCT with 16-bit coefficients; the proposed design can save more than

57% of the delay-area product. Besides, the 1-D DCT chip was implemented to

illustrate the efficiency associated with the proposed approach.

As for the popular application of DFT with the length of power of two in the

communication system, combining the proposed low cost GDA design with the

suggested long-length transform decomposition methodology, a variable-length DFT

design has been proposed and implemented in our studies. The proposed design can

flexibly be used to compute the 1-D 64/128/256/512/1024/2048/4096-point DFT by

cascading two 1-D short length DFTs and summing up the partitioned short length

cyclic convolutions for each stage of the cascaded DFT. Besides, the proposed

hardware efficient design approach can also be adopted in the design with the length

beyond power of two. Compared with the existing long-length and variable-length

FFT design [67]-[70], in addition to the advantages of short latency and high

hardware utilization efficiency (HUE), the proposed variable-length DFT design can

achieve competitive hardware cost under the same throughput rate.

1.6 Outline of this dissertation

The dissertation is organized following the research outline as Fig. 1.1. In chapter

2 we illustrate the proposed GDA design approach for cyclic convolution in detail,

including the issue of cyclic convolution partitioning, and its advantages compared

with the traditional memory-based DA approach on hardware cost and power

 7

consumption points of view. Chapter 3 illustrates GDA for 1-D DSST’s designs,

where the optimization on algorithm level for further reducing the hardware cost is

involved. Chapter 4 illustrates long-length issues for DSST’s design and the proposed

variable-length DFT design to communication Application. Finally, we conclude this

dissertation in chapter 5, including contributions in this research and some future

research directions.

GDA

DFT DHT DCT

Long-length
GDA (BGDA)

Variable-length
DFT

Long-length
DHT

Long-length
DFT

•SA-DCT
• Variable-length FFT
• Unified DFT/IDFT

Ch2

Ch2

Ch3

Ch4Ch4

Ch4

Future work

Fig. 1.1: Outline of this research.

 8

Chapter 2
The Group Distributed Arithmetic (GDA)
Design Approach

The presented Group Distributed Arithmetic (GDA) design approach mainly

consists of cyclic convolution and memory-based DA technique. The algorithm in

cyclic convolution can significantly reduce the complexity for the inner product

computation with multiple inputs and multiple outputs (MIMO). In the following, we

illustrate the proposed GDA design approach from algorithm-level to

architecture-level involving the solution of cyclic convolution partitioning for GDA

design and the evaluations of hardware cost and power consumption for design with

this approach.

2.1 Algorithm point of view

Let us first consider a cyclic convolution example:

 ,

4

3

2

1

4

3

2

1

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

v
v
v
v

adcb
badc
cbad
dcba

u
u
u
u

U (2.1)

where {v1, v2, v3, v4} are input data, {a, b, c, d} are coefficients, and {u1, u2, u3, u4}

are output data. Using the commutative property of convolution, we can rewrite (2.1)

as follow:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

d
c
b
a

vvvv
vvvv
vvvv
vvvv

u
u
u
u

U

3214

2143

1432

4321

4

3

2

1

. (2.2)

Observing (2.2), we find that different outputs in vector U can be computed

using the same input data with rotated order and the same set of coefficients {a, b, c,

d}. According to the DA technique [34], using the same set of coefficients implies that

identical memory modules are used to compute all the different outputs. And using the

 9

same inputs with rotated order implies that we can arrange the partial products

generated by them as a group and these partial products can be accessed

simultaneously in accumulating all the outputs.

For facilitating utilization of the GDA design approach, the general form of

GDA shows as

Nkuuu q
L

q
qRkRkk NqN

,,2,1,2
1

1
,1)1(0,1)1(0

L=⋅+−= −
−

=
++−++− ∑ (2.3)

Where)u R(u ,R 000
= ,

},,,,,{ 0,1)1(0,1)1(0,1)1(0,1)0(00000,0 ++−++−++++=
NNNNR RNRkRR uuuuu LL ,

},,,,,{ 0,0,0,20,10 Nk uuuuu LL=

and

)u R(u q,qqR = ,

},,,,,{ ,1)1(,1)1(,1)1(,1)0(, qRNqRkqRqR NqNqNqNqqqR uuuuu ++−++−++++= LL ,

},,,,,{ ,,,2,1 qNqkqq uuuuu q LL= ,

and

1

0,1))1()1((0, 0∑
=

++−+− ⋅=
N

n
nRknk cvu

N and

1

,1))1()1((, ∑
=

++−+− ⋅=
N

n
nqRknqk cvu

Nq .

where L denotes the word length of the input data v, N denotes the length of cyclic

convolution, Rq denotes the rotating factor for qth bit that is used for indicating the

number of position of the partial products in DA input and output should be rotated,

and cn are the coefficients. The rotation function R() is used to rotate the elements in

the output vector qqRu , from the input vector qqRv , by Rq for the qth bit of DA

computation. In the example of 4-point cyclic convolution mentioned above, the

coefficient vector {c1, c2, c3, c4} is given as {a, b, c, c, d}.

 10

2.2 Architecture point of view

2.2.1 Memory-based Group Distributed Arithmetic design

Fig. 2.1 shows the proposed GDA architecture for computing the vector U in (2.2).

We arrange the memory contents (16 words) into six groups in this example. The

candidate of DA input in the q-th bit, i.e. vector Vq, is first fed into an address decoder

to generate the group address Vq’ and the corresponding rotating factor Rq according

to the rule of group mapping shown in Table 2.1 that performed by the specific

address decoder in the proposed GDA design when realizing the cyclic convolution

example shown in (2.2). Here, the group address Gq denotes which group the

candidate of DA input belongs to. If the candidate is the seed value of a group V’q, the

rotating factor is equal to 00. That means the partial products accessed from the group

memory is directly fed into the accumulators for computing the DA outputs without

performing any rotation. If the candidate is different from the seed value but belongs

to the same group, the rotating factor is the value indicating how many positions the

partial products accessed from the group memory should be rotated before entering

the accumulators.

+/-

u1 u2 u3 u4

a+b+c+da+b+c+da+b+c+da+b+c+d

+/- +/- +/-

bcda
b+c+d

cdab

a+da+bb+cc+d
dabc

abcd

0000

a+da+bb+c c+d

a+da+b c+d b+c

a+d c+d b+c a+b

a+b+c a+b+d a+c+d

a+b+c a+b+d a+c+d b+c+d
a+b+d a+c+d b+c+d a+b+c

a+c+d b+c+d a+b+c a+b+d

a+cb+da+cb+d

a+cb+da+c b+d

v1,q (msb)
v2,q
v3,q
v4,q (lsb)

Barrel shifter

a+b+c+da+b+c+da+b+c+da+b+c+d

b+c+d
a+da+bb+cc+d

abcd

0000

a+b+c a+b+d a+c+d
a+cb+da+cb+d

+/-

u1 u2 u3 u4

+/- +/- +/-

Rq={r1,q, r2,q}

Memory
re-arrangement

A
dd

re
ss

 d
ec

od
er

v1,q (msb)
v2,q
v3,q
v4,q (lsb)

A
dd

re
ss

de

co
de

r

GDAU

Fig. 2.1: The proposed GDA architecture and the associated memory content

arrangement in realizing the cyclic convolution example shown in (2.2).

 11

Table 2.1: The rule of group mapping.

Grouped candidates of DA input
(Vq)

{v1,q, v2,q, v3,q, v4,q}

Seed value
(V’ q)

{v’1,q, v’2,q, v’3,q, v’4,q}

1Rotating factor
(Rq)

{r1,q, r2,q }

Group address
(Gq)

{g1,q, g2,q, g3,q}

0001 0
0010 1
0100 2
1000

0001

3

000

0011 0
0110 1
1100 2
1001

0011

3

001

0111 0
1110 1
1101 2
1011

0111

3

010

0101 0
1010

0101
1

011

0000 0000 0 100
1111 1111 0 101

Note:

1. Rotating factor denotes the number of position of the output data, corresponding to

the candidate of DA input value in a group, needs to rotate.

2.2.2 Analysis of Barrel shifter

In this subsection, we will illustrate the hardware cost of barrel shifter in the

design of overhead. Four barrel shifter designs are respectively analyzed and

evaluated in the following. Fig. 2.2 shows the architecture realized with multiplexer.

This straight forward design adopts the multiplexers that switch the input data to the

selected outputs by the control signals as a rotation operation. The hardware required

of this design is N times of N log2N+1-input AND gates and one N-input OR gates.

Thus the complexity of hardware is O(N2log2(log2N+1)+log2N) in gate count. It

reveals that the design with this approach is not hardware efficient. Besides, the

number of level of the multiplexer logic will increase while the number of input is

increased. Then the delay time in this design will be not a constant.

 12

Fig. 2.2: Multiplexer–based barrel shifter design.

Fig. 2.3 shows the second design of barrel shifter. It adopts the multiplier with double

length of input data. The duplicated input data is multiplied by the control signals, and

then select out the 2nd N-bit of the result of multiplier as the shifted result. Although

implementation with this algorithm uses only one multiplier and one-to-four

demultiplexer, the word length in them is the drawback in hardware implementation.

The required hardware in this design is one 2N-bit multiplier and one N-bit

one-to-four demultiplexer. It is equivalent to 103*(-0.039 + 0.457 * 2N + 0.001 * 2N

+ 0.263 * 4N2)/58 and 2N 2-input gates (i.e., N * 2 2-input gate). Thus the complexity

of hardware is O(N2+2N) in gate count .

Fig. 2.3: Multiplier-based barrel shifter design.

 13

Fig. 2.4 shows the third design of barrel shifter. This design consists of log2N rotators

and log2N N-bit two-to-one multiplexer. The length of these rotators are respectively

20, 21, …. 1log22 −N . If the length of the barrel shifter is not power of two, the length of

most significant rotator is N- (2log22 −N + 3log22 −N + … +20). Since each of the rotators

can be realized with the manner of wiring, there is no hardware cost on these rotators.

Therefore, the hardware cost of this barrel shifter design is log2N N-bit two-to-one

multiplexer. It is equivalent to log2N times of 2N 2-input AND gates and N 2-input

OR gates. Thus the complexity of hardware is O(3Nlog2N) in gate count.

Fig. 2.4: Logarithmic number of multiplexer barrel shifter design.

Fig. 2.5 shows the fourth design of barrel shifter. This design consists of N2

transistors and N inverter gates. The hardware cost of this barrel shifter design is

equivalent to N2/4+N/2 in gate count. Thus the complexity of hardware of this design

is O(N2/4+N/2) in gate count. Compared with the designs mentioned above, it reveals

that this design is the most efficient choice for the case that the length of input data is

smaller than 64.

 14

A[0]

A[1]

A[2]

A[3]

A[4]

B[0]

B[1]

B[2]

B[3]

B[4]

Sh[0] Sh[1] Sh[2] Sh[3] Sh[4]

Sh[1]

Sh[2]

Sh[3]

Sh[4]

Fig. 2.5: Barrel shifter with N2 transistors

Fig. 2.6 (a), (b), and (c) show the comparisons of the four barrel shifters in hardware

cost, power consumption, and delay time, respectively. It is seen that the area cost,

power consumption, and delay time of N2-transistor barrel shifter are almost smaller

than the others. However, this design is hard to implement by synthesis in the

cell-based design flow. Thus the alternative of logarithmic barrel shifter is chosen, and

synthesized in the implementation of the proposed GDA design and its applications.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 2 3 4 5 6 7

Length of BS

A
re

a
(u

m
2)

Multiplexer–based BS

Multiplier-based BR

Logarithmic BS

N^2 Tr. BS

 15

(a)

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7

Length of BS

Po
w

er
 c

on
su

m
pt

io
n

(u
W

) Multiplexer–based BS

Multiplier-based BR

Logarithmic BS

N^2 Tr. BS

(b)

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7

Length of BS

D
el

ay
 ti

m
e

(n
s)

Multiplexer–based BS

Multiplier-based BR

Logarithmic BS

N^2 Tr. BS

(c)

Fig. 2.6: Comparison of the four barrel shifters in (a) hardware cost, (b) power

consumption, and (c) delay time.

 16

2.2.3 Evaluation of hardware cost

In the following, we evaluate the delay time and hardware cost of the designs with

the proposed GDA approach and the traditional DA approach for illustrating the

advantages of the proposed approach. For a fair comparison, we adopt Avant 0.35μm

CMOS cell-library [43] in the performance evaluation. The delay time for accessing a

partial product from a memory module is taddr_dec + trom_acc in the traditional DA

designs, and taddr_dec + trom_acc + tbar_shf in the GDA design, where taddr_dec denotes the

delay time of address decoder, trom_acc denotes the access time of memory, and tbar_shf

denotes the delay time of the barrel shifter. Since the memory size required in the

GDA design is much smaller than that in the traditional DA design, the delay time of

address decoder and access time of memory in the GDA design are accordingly much

smaller than that in the traditional DA design. However, the extra delay time of the

barrel shifter must be counted in the GDA design. As a result, the total delay of the

GDA design is almost similar to that of the traditional DA design. As for the hardware

cost evaluation, the hardware for accessing a partial product is Arom in the traditional

DA design, and is Agrp_rom + Abar_shf in the proposed GDA design, where Agrp_rom

denotes the area cost of Group memory, and Abar_shf denotes the area cost of a barrel

shifter.

Table 2.2: Comparison of memory size in both the traditional memory-based DA and

the proposed GDA designs for different values of N.

Length of cyclic convolution
(N) 3 4 5 6 7 8 9 10 11 12 13 14 …

Traditional DA 23 24 25 26 27 28 29 210 211 212 213 214 …
GDA

(# of group: G(N)) 4 6 8 14 20 36 60 108 188 352 632 1197 …

memory size reduction ratio
(DA / GDA) 2 2.7 4 4.6 6.4 7.1 8.5 9.5 10.9 11.6 13 13.7 …

Table 2.2 shows the comparison of memory size required in the two designs under

different N. We can see that the proposed GDA design is much more hardware

efficient than the traditional DA design. Fig. 2.7 shows the measure of delay-area

product to evaluate the performance for the proposed GDA design and the traditional

DA design. We find that the delay-area product of the proposed GDA design is much

 17

smaller than that of the traditional DA design as N increases, which illustrates that the

proposed GDA design possesses better performance than the traditional DA designs in

terms of delay-area product.

0

10000

20000

30000

40000

4 5 6 7 8 9

length of cyclic convolution

de
la

y-
ar

ea
 p

ro
du

ct
 (n

s *
 k

 u
m

2
)

Traditional ROM-based DA

GDA

Fig. 2.7: The delay-area product comparison in the proposed GDA design and the

traditional memory-based DA design with 16-bit data word length.

2.3 Consideration of low power design

With the approach of address grouping in GDA design, the number of adress

appears on DA input has been reduced significantly such that the transition activity on

the word-line of memory in original DA design is reduced. And due to reduction of

the memory size in GDA design, the bit-line loading as well as the transition activity

on the bit-line is also reduced. Besides, the barrel-shifter is with higher driving

strength than ROM in conventional DA. On the power consumption point of view, the

proposed GDA design should be not only the low hardware cost design but also a low

power design. In the following, we will analysis and evaluate the GDA design to be a

low power design.

2.3.1 Analysis of transition activity

In general, transition activity at the output of circuitry depends on the transition

activity at the inputs and the circuitry function. The transition probability of a node

 18

from 0 to 1 (i.e., 10→
α) is p0⋅p1, where p0 and p1 denote the probability of signal is

settled on logic-0 and logic-1, respectively [44]. The transition probability appeared in

the input of data-path have affected power consumption of the followed circuitry.

Considering a design example of 4-input data-path, Table 2.3 shows the comparisons

of transition probability and Hamming distance, respectively. Since grouped binary is

a subset of the complete binary, we can select to construct a subset as the distribution

of group addresses with lowest Hamming distance. Thus the transition activity on the

input nodes will be much smaller than that of complete binary such that the power

consumption of the data-path can be reduced significantly. Fig. 2.8 shows the trend of

sum of transition probability against the number of input-data bit.

Table 2.3: Transformation of transition probability for the input data of the 4-input

data-path.

Complete binary Grouped binary Input data
v3 v2 v1 v0 v3 v2 v1 v0

 0 0 0 0 0 0 0 0
 0 0 0 1
 0 0 1 0
 0 1 0 0
 1 0 0 0

0 0 0 1

 0 0 1 1
 0 1 1 0
 1 1 0 0
 1 0 0 1

0 0 1 0

 0 1 0 1
 1 0 1 0

0 1 0 0

 0 1 1 1
 1 1 1 0
 1 1 0 1
 1 0 1 1

1 0 0 0

 1 1 1 1 0 0 1 1
Transition probability 64/256 64/256 64/256 64/256 5/36 5/36 8/36 8/36

Sum of transition
probability 1 0.722

Average Hamming
distance 2 1.444

improvement 27.8 %

 19

11.1

25
27.8

33.8

5

10

15

20

25

30

35

40

2 3 4 5

The number of input data bit

Im
pr

ov
em

en
t o

f t
ra

ns
iti

o
 p

ro
ba

bi
lit

y
 (%

)

Fig. 2.8: Trend of the improvement of transition probability versus the number of

input-data bit.

2.3.2 Address morphing approach

With the GDA design approach, the distribution of DA input address is reduced

into few groups. Shown as Table 2.4, we can realize the cyclic convolution by using

the scheme of address morphing that converts the distribution of DA input address

into a subset of it with minimal transition activity such that the transition activity on

the word lines of memory is reduced. Even in the case of never removing the unused

entries of memory, due to the lower input activity, the power consumption of memory

shown in Fig. 2.9 is reduced. Actually due to the number of memory entry is reduced

in Fig. 2.9; the bit-line loading of memory and transition activity on the bit-lines are

also reduced. Thus the power consumption of memory in the GDA design is reduced

significantly. However, the barrel shifter in the overhead of GDA design consumes

extra power such that the overall power consumption of GDA design with short length

is improved inconspicuously.

 20

Table 2.4: The relation ship of the address morphing.

DA input address (Vq)
{v1,q, v2,q, v3,q, v4,q}

Rotating
factor (Rq)
{r1,q, r2,q}

Morphed
address

0001 0
0010 1
0100 2
1000 3

0001

0011 0
0110 1
1100 2
1001 3

0011

0111 0
1110 1
1101 2
1011 3

0111

0101 0
1010 1

0101

0000 0 0000
1111 0 1111

Fig. 2.9: The description of architecture transformation from DA to GDA

2.3.3 Exploration of dynamic range of the input data

The power consumption of a circuit highly depends on the transition activity of

input data. In some video codec systems, the data to be processed is the difference of

the adjacent frames such as the inter frame used in the video codec standards of

 21

MPEG-2, MPEG-4, H.26X, and etc. As most of the pixels in the inter frame, the

difference is with smaller value such that some of the higher bit in DA computation

can be omitted to achieve lower power consumption. On the second concept, with the

choice of DSP algorithm, sometimes the data fed into the processing unit needs to be

processed previously such as the difference of input data. It means that we can exploit

the property of correlation for the local data such that the dynamic range of these

being processed data is reduced significantly. For example of 7-point DCT in cyclic

convolution formulation, the data on the input of processing unit is not the direct input

data. These data need to be computed previously with the combination of subtractions

and additions. Fig. 2.10, Fig. 2.11, and Fig. 2.12 show the test image, gray-level of the

pixels in this image, and histogram of the gray-level distribution, respectively. Fig.

2.13 and Fig. 2.14 respectively show the preprocessed gray-level and the histogram of

the input data of processing unit in DCT design. It reveals that most of the

preprocessed data values is small than the original one. Thus, the dynamic range is

reduced for most of the input data. Combined with the second concept above, the

number of cycle of DA computation in the DCT design will be reduced to achieve

lower power consumption.

Fig. 2.10: The test image with the size of 252 * 252 pixels.

 22

Fig. 2.11: gray-level of the pixels in the image of Fig. 2.10.

Fig. 2.12: histogram of the gray-level distribution in the image of Fig. 2.10.

 23

Fig. 2.13: The preprocessed gray-level of the image in Fig. 2.10.

Fig. 2.14: Histogram of the preprocessed data used in the example of 7-point DCT

design.

 24

2.3.4 Low Power Design with pre-computation scheme

Exploiting the property of spatial correlation in natural images, for the algorithm

with the inputs formed as sum and difference of the primary inputs, the sum of inputs

are likely to have a number of equal high-order bits, and the difference inputs are

likely to have small dynamic range. Then for some cases, such as the 8-point 1-D

DCT, the cycles of DA computation for the high-order bits of sum inputs can be

skipped. On the other hand, since most of the bits in high-order bits of the difference

of inputs are the sign-extension bits, with the manner of bit-serial and word-parallel,

the cycles in DA computation for these extended sign-bits can also be skipped to

achieve lower computation power [45]. In the following, we will illustrate the

high-order bits rejection technique briefly, where this technique named most

significant bit rejection (MSBR) in [45], and explore the distribution of pre-computed

input data for the cyclic convolution formulation of prime-length DCT. For the

realization of prime-length DCT, combining the proposed GDA design with the

MSBR technique facilitates not only reducing the memory size, but also improving

the power consumption.

MSBR technique

Considering the even and odd outputs of the reformulated 8-point 1-D DCT as

 =

43

52

61

70

6

4

2

0

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
+
+
+

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

xx
xx
xx
xx

CBBC
AAAA
BCCB

AAAA

X
X
X
X

, (2.4)

 =

43

52

61

70

1

5

3

1

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−
−

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−

−−−

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

xx
xx
xx
xx

DEFG
EGDF
FDGE

GFED

X
X
X
X

 (2.5)

Observing the Table 2.5, we can see that some of candidates of DA input, i.e.,

0000 and 1111, cause the even output to be zero. It means that the computation,

shown as the rejected bits in Fig. 2.15, can be skipped in DA computation.

 25

Table 2.5: Relationship between the sum of primary inputs

and the even outputs.

{x0+x7, x1+x6,
x2+x5, x3+x4} X0 X2 X4 X6

0000 0 0 0 0
0001 A -B A -C
0010 A -C -A B
0011 2A -(B+C) 0 B-C
0100 A C -A -B
0101 2A -(B-C) 0 -(B+C)
0110 2A 0 -2A 0
0111 3A -B -A -C
1000 A B A C
1001 2A 0 2A 0
1010 2A B-C 0 B+C
1011 3A -C A B
1100 2A B+C 0 -(B-C)
1101 3A C A -B
1110 3A B -A C
1111 4A 0 0 0

Fig. 2.15: The skipped bits in DA computation for the even outputs.

As for the computation of odd outputs, with the property of high spatial

correlation for the pixels in an image, shown as Fig. 2.16 the difference of primary

inputs reveals the property of small dynamic range, and thus most of the high-order

bits in these difference inputs are the sign-extension bits. Then we need only

computing for the least significant bit of sign-extension bits to have the exactly final

result of DA computation. Similar to the sum inputs, the number of cycles in DA

computation for these extended sign-bits can also be reduced significantly. However,

due to the huge amount of overhead for skippable bits detection, development of the

 26

efficient detection scheme is still the issue of low power GDA-based design with

MSBR technique.

Fig. 2.16: The skipped bits in DA computation for the odd outputs.

Exploration of the input data for prime-length DCT in cyclic convolution

In the following, we illustrate how the MSBR technique can apply to the

prime-length DCT design with the example of 7-point DCT. Considering the kernel of

DCT T((3k)7) in (2.7), where x((3n-k+1)7) denotes the indirect inputs pre-computed

from the primary input y(n) as (2.8).

∑
=

=
6

0

)()0(
n

nyY

6,....,1));)3((cos()]0())3((2[))3((71477 =⋅⋅+⋅= kxTY kkk π
 (2.6)

))3(cos()1())3(())3((7
1

7

6

1
7

1
7

+

=

+− ⋅⋅−⋅=∑ nm

n

knk xT π
 (2.7)

where (3k)7 denotes the result of “3k modulo 7” for short,

⎭
⎬
⎫

⎩
⎨
⎧

<+−
≥+−

=
+−+

+−
+−

01);)3((
01);)3((

))3((
7

)1(6
7

1

7
1

knifx
knifx

x kn

kn
kn , the value of m is determined by

6,....,1,;)3()3(7)3(77
1

7
1 =⋅=⋅+ +−+ knm kknn , and the sequence {x(n)} is defined

as

.
501)

 66

⎩
⎨
⎧

⎭
⎬
⎫

=+−=
=

,....);nx(ny(n)x(n
)y()x(

 (2.8)

 27

We can write the kernel T((3k)7) as the matrix form

,

)3cos(
)1cos(
)5cos(
)4cos(
)6cos(
)2cos(

)3()1()5()4()6()2(
)2()3()1()5()4()6(
)6()2()3()1()5()4(
)4()6()2()3()1()5(
)5()4()6()2()3()1(

)1()5()4()6()2()3(

)1(
)5(
)4(
)6(
)2(
)3(

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

×

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−−
−−−
−−−

−−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

a
a
a
a
a
a

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

xxxxxx

T
T
T
T
T
T

 (2.9)

where a denotes
7
π .

And then exploiting the symmetry property of DCT coefficients, (2.9) is reformulated
as

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

×

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−−
−−−
−−−

−−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

)4cos(
)6cos(
)2cos(

)4cos(
)6cos(
)2cos(

)3()1()5()4()6()2(
)2()3()1()5()4()6(
)6()2()3()1()5()4(
)4()6()2()3()1()5(
)5()4()6()2()3()1(

)1()5()4()6()2()3(

)1(
)5(
)4(
)6(
)2(
)3(

a
a
a

a
a
a

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

xxxxxx

T
T
T
T
T
T

 (2.10)

, and

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
×

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−
−−−
+++
+++
+++
−−−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

)4cos(
)6cos(
)2cos(

)3()4()1()6()5()2(
)5()2()3()4()1()6(
)1()6()5()2()3()4(
)3()4()1()6()5()2(
)5()2()3()4()1()6(
)1()6()5()2()3()4(

)1(
)5(
)4(
)6(
)2(
)3(

a
a
a

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

T
T
T
T
T
T

. (2.11)

To separate the even and odd outputs, two smaller perfect cyclic forms are shown as

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
×
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+++
+++
+++

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

)4cos(
)6cos(
)2cos(

)1()6()5()2()3()4(
)3()4()1()6()5()2(
)5()2()3()4()1()6(

)4(
)6(
)2(

a
a
a

xxxxxx
xxxxxx
xxxxxx

T
T
T

 (2.12)

and

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
×

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
−−−
−−−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

)4cos(
)6cos(
)2cos(

)1()6()5()2()3()4(
)3()4()1()6()5()2(
)5()2()3()4()1()6(

)3(
)1(
)5(

a
a
a

xxxxxx
xxxxxx
xxxxxx

T
T
T

. (2.13)

With the property of spatial correlation, the difference of the indirect inputs will

 28

remain most of the high-order bits as sign-extension bits such that the cycles of DA

computation for most of the bits can be skipped. Similar to the benefit of MSBR

technique in 8-point DCT design, combining this technique with the proposed GDA

approach for the prime-length DCT design facilitates not only low hardware cost but

also low power consumption.

2.3.5 Evaluation of power cost

We have synthesized and verified the power consumption of 1-D 5-point to

13-point DCT designs at the clock frequency of 166MHz by using respectively

DesignCompiler and PrimePower with the UMC 0.18um cell-library and the test

benches of Lena, Babon, and Peper. As shown in Fig. 2.17, the simulation result

shows that power consumption of the 1-D prime-length DCT with GDA design is

lower than that of the conventional DA design for the test benches with different

characteristics of content. With the power consumption point of view, it reveals that

the proposed GDA design is also a low power design.

10

20

30

40

50

60

70

80

3 5 7 9 11 13 15

Length of 1-D DCT

Po
w

er
 c

on
su

m
pt

io
n

(m
W

)

Conventional DA

GDA

Fig. 2.17: Power consumption of the GDA-based 1-D DCT designs.

 29

2.4 Partitioning of cyclic convolution

Because of the inherent issue of DA-based design that the memory size

increases exponentially as the length of input data increases, the partition issue must

be regarded. In the conventional DA design, we can arbitrarily partition the input data

of DA, and then sum up the partial sums from the different memory modules to

achieve low hardware cost. However, because of the necessity of cyclic preserving,

the manner of arbitrarily partitioning cannot be applied to the proposed GDA design.

Otherwise, the benefit of low hardware cost in GDA design will not exist. To solve the

problems mentioned above, we combine applicably the proposed GDA approach with

the partition methods for prime length and non-prime length cyclic convolutions

respectively such that the case of long length GDA can be partitioned, and composed

of the short cyclic-convolution blocks. It facilitates that we can still realize each of the

shortened cyclic convolution blocks with the proposed GDA design to achieve low

hardware cost.

2.4.1 Agarwal-Cooley algorithm

The approach of Agarwal-Cooley algorithm is to convert one-dimensional cyclic

convolution into a multidimension cyclic convolution [41]. In essence, a

one-dimensional cyclic convolution of length n, where n = n1 * n2, and n1 and n2 are

relatively prime, can be expressed as a two-dimensional cyclic convolution of length

n1 and n2, respectively. The extension of the idea to convert one-dimensional cyclic

convolution to a d-dimensional cyclic convolution when n has d relatively co-prime

factors, that is n = n1 * n2… nd, and ni and nj are relatively prime, i ≠ j, is

straightforward. The Agarwal-Cooley algorithm consists in the application of Chinee

remainder theorem for integers (CRT-I) [46] to the indices of sequences being

convoluted. Therefore, it is valid for data sequences defined over any arbitrary

number system. A major advantage of the Agarwal-Cooley algorithm is that the long

length cyclic convolution can be constructed from short length cyclic convolution.

Table 2.6 shows the covered lengths that the cyclic convolution can be decomposed

with Agarwal-Cooley algorithm.

 30

Table 2.6: Analysis for the covered lengths of cyclic convolution can be decomposed.

Length of
cyclic

convolution

Decomposition
factors

Length of
cyclic

convolution

Decomposition
factors

Length of
cyclic

convolution

Decomposition
factors

Length of
cyclic

convolution

Decomposition
factors

7 7 20 4*5 33 3*11 43 43
10 2*5 21 3*7 34 2*17 44 4*11
11 11 22 2*11 35 5*7 45 9*5
12 4*3 23 23 36 4*9 46 2*13
13 13 24 8*3 37 37 47 47
14 2*7 26 2*13 38 2*19 48 3*16
15 3*5 28 4*7 39 3*13 50 5*10
17 17 29 29 40 8*5 51 51
18 2*9 30 6*5 41 41 M M
19 19 31 31 42 6*7

Note: Power of two and power of prime-value cannot be covered.

2.4.2 Pseudocirculant matrix factorization algorithm

Since the partitioning factors for cyclic convolution are not relatively co-prime,

the Chinese Remainder Theorem I (CRT-I) cannot be used in the indices of sequences

being convoluted. Thus for preserving the cyclic property for GDA design, we use the

pseudocirculant matrix factorization algorithm [42] for further partitioning the

long-length cyclic convolution. With this algorithm, shown as (2.14) and (2.15), the

cyclic convolution with the length of N can be factorized as the factors of N/r and r.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

−

−

−

−

N

N

NN

NN

NN

NN

NN

N

N

v
v

v
v
v

ccccc
ccccc

ccccc
ccccc
ccccc

u
u

u
u
u

1

3

2

1

1132

2113

3211

1321

1321

1

3

2

1

M

L

L

MOM

L

L

L

M (2.14)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

−

−

−

−

r

r

rr

rNrr

rNrNrr

rrNrNrNr

rrNrrNrNrN

r

r

V
V

V
V
V

CCCCC
CSCCCC

CSCSCCC
CSCSCSCC
CSCSCSCSC

U
U

U
U
U

1

3

2

1

1132

2/113

3/2/11

1/3/2/1

/1/3/2/1

1

3

2

1

M

L

L

MOM

L

L

L

M (2.15)

 31

where {v1, v2, v3, v4, ... , vN } are input data, { c1, c2, c3, c4, ... , cN } are coefficients,

and { u1, u2, u3, u4, ... , uN } are output data. The cyclic shift operator SN/r can be

written in form as

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

01000

00100
00010
00001
10000

/

M

LLLLLL

M

M

M

M

rNS

Using the commutative property of convolution, we can rewrite (2.14) and (2.15)

as follow:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−−

−−−

−

−

−

−

N

N

NNNN

NNNN

NN

NN

NN

N

N

c
c

c
c
c

vvvvv
vvvvv

vvvvv
vvvvv
vvvvv

u
u

u
u
u

1

3

2

1

1231

2311

2113

1132

1321

1

3

2

1

M

L

L

MNM

L

L

L

M (2.16)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

−

−−−

−−−−

1

4

3

2

1221

1221/

321/4/

21/4/3/

1/4/3/2/

1

3

2

1

1231

231/1

21/4/3

1/4/3/2

/4/3/2/1

1

3

2

1

C
C

C
C
C

VVVVV
VVVVVS

VVVVSVS
VVVSVSVS
VVSVSVSVS

C
C

C
C
C

VVVVV
VVVVSV

VVVSVSV
VVSVSVSV

VSVSVSVSV

U
U

U
U
U

r

rrr

rrrrN

rrNrN

rrNrNrN

rrNrNrNrN

r

r

rrrr

rrrrNr

rrNrN

rrNrNrN

rrNrNrNrN

r

r

M

L

L

MNM

L

L

L

M

L

L

MNM

L

L

L

M

 (2.17)

 32

2.4.3 Long length cyclic convolution design

The case of the partitioning factors is relatively co-prime

Consider the example of computing the cyclic convolution example shown in

(2.18), where {v1, v2, v3, v4, v5, v6} are input data, {a, b, c, d, e, f} are coefficients, and

{u1, u2, u3, u4, u5, u6} are output data.

,

543216

432165

321654

216543

165432

654321

6

5

4

3

2

1

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

f
e
d
c
b
a

vvvvvv
vvvvvv
vvvvvv
vvvvvv
vvvvvv
vvvvvv

u
u
u
u
u
u

U (2.18)

In the case of cyclic formulation with 6 input data, it can be factorized into 2 and 3.

Since the factors of 2 and 3 are relatively prime, there exists a data permutation on the

rows and columns of the matrix such that the resulting matrix of input data shown in

(2.19) can be partitioned into the form of block circulants of 2× 2 with circulant

blocks of 3× 3.

 GDAU1 GDAU2

⎥
⎦

⎤
⎢
⎣

⎡
⋅⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

B
A

VV
VV

U
U

f
b
d
c
e
a

vvvvvv
vvvvvv
vvvvvv
vvvvvv
vvvvvv
vvvvvv

u
u
u
u
u
u

U

AB

BA

B

A

513246

135462

351624

246513

462135

624351

6

2

4

3

5

1

 (2.19)

where

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

3

5

1

u
u
u

U A ,
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

6

2

4

u
u
u

UB ,
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

513

135

351

vvv
vvv
vvv

VA ,
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

246

462

624

vvv
vvv
vvv

VB ,
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

c
e
a

A , and

 33

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

f
b
d

B
.

From the hardware point of view, we have partitioned the original memory

module into two smaller ones. One memory module stores the combination of the

coefficients {a, e, c} for u1, u5, and u3 as well as u4, u2, and u6. Similarly, the other one

stores the combination of the coefficients {d, b, f} for u1, u5, and u3 as well as u4, u2,

and u6. In performing the memory access, we can access the partial products for u1, u5,

and u3 by using the memory address generated from {v1, v5, v3} through first memory

module and access the partial products for u1, u5, and u3 by using the memory address

generated from {v4, v2, v6} through second memory module at the same time. Then we

sum up the two partial products to have u1, u5, and u3 using the extra adders. With the

identical hardware and extra input-data-rotator, we can compute u4, u2, and u6 in the

next iteration. The cyclic convolution realized with this partitioning scheme and GDA

approach is named block-based group distributed arithmetic (BGDA) in our research.

Fig. 2.18 shows low-cost hardware architecture to realize the design example

illustrated in (2.19) based on the proposed BGDA design approach. To meet the

requirement of high performance, we can easily duplicate the BGDA modules to

construct the high performance version of BGDA design as shown in Fig. 2.19.

G
ro

up
de

co
de

r
G

ro
up

de
co

de
r

Fig. 2.18: The low cost version of BGDA design realizing the cyclic convolution

example shown in (2.19).

 34

000
a+b+ca+b+ca+b+c

d+ca+cb+a
bca0

1
2
3

Barrel shifter

ROM1

0
1
2
3

Barrel shifter

ROM2

+

+

+

u6
u5
u4
u3
u2
u1

000
a+b+ca+b+ca+b+c

d+ca+cb+a
bca0

1
2
3

Barrel shifter

ROM1

0
1
2
3

Barrel shifter

ROM2

+

+

+

D

D

D

D

D

D

000
d+e+f

e+fd+fd+e
efd

d+e+f d+e+f

000
d+e+f

e+fd+fd+e
efd

d+e+f d+e+f

ACC

ACC

ACC

ACC

ACC

ACC

u4

u2

u6

u1

u5

u3

v6
v5
v4
v3
v2
v1

D

D

D

D

D

D

P/S

P/S

P/S

P/S

P/S

P/S

v2

v3

v4

v5

v6

G
ro

up
 d

ec
od

er
G

ro
up

 d
ec

od
er

Fig. 2.19: The BGDA design on realizing the cyclic convolution example shown in

(2.19) with high performance.

The case of the partitioning factors is not relatively co-prime

Considering the example of computing the cyclic convolution shown in (2.20),

{v1, v2, v3, v4, v5, v6, v7, v8} denote the input data, {a, b, c, d, e, f, g, h} denote the

coefficients, and { u1, u2, u3, u4, u5, u6, u7, u8} denote the output data.

 35

,

76543218

65432187

54321876

43218765

32187654

21876543

18765432

87654321

8

7

6

5

4

3

2

1

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

h
g
f
e
d
c
b
a

vvvvvvvv
vvvvvvvv
vvvvvvvv
vvvvvvvv
vvvvvvvv
vvvvvvvv
vvvvvvvv
vvvvvvvv

u
u
u
u
u
u
u
u

U (2.20)

In the case of cyclic formulation with eight input data, we permute the data on the

rows and columns of the matrix such that the resulting matrix of input data shown in

(2.21) can be partitioned into the form of block pseudocirculants of 2× 2 with

circulant blocks of 4× 4.

GDAU1 GDAU2

⎥
⎦

⎤
⎢
⎣

⎡
⋅⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

B
A

VV
VV

U
U

h
f
d
b
g
e
c
a

vvvvvvvv
vvvvvvvv
vvvvvvvv
vvvvvvvv
vvvvvvvv
vvvvvvvv
vvvvvvvv
vvvvvvvv

u
u
u
u
u
u
u
u

U

AB

BA

B

A

'

75316428

53174286

31752864

17538642

64285317

42863175

28641753

86427531

8

6

4

2

7

5

3

1

 (2.21)

where

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

7

5

3

1

u
u
u
u

U A
,

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

8

6

4

2

u
u
u
u

U A
,

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

5317

3175

1753

7531

vvvv
vvvv
vvvv
vvvv

VA
,

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

6428

4286

2864

8642

vvvv
vvvv
vvvv
vvvv

VB
,

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

7531

5317

3175

1753

'

vvvv
vvvv
vvvv
vvvv

VB
,

 36

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

g
e
c
a

A , and

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

g
f
d
b

B .

From the hardware point of view, we have partitioned the original memory

module into two smaller ones. One memory module stores the combination of the

coefficients {a, c, e, g} for u1, u3, u5, and u7 as well as u2, u4, u6, and u8. Similarly, the

other one stores the combination of the coefficients {b, d, f, g} for u1, u3, u5, and u7 as

well as u2, u4, u6, and u8. In performing the memory access, we can access the partial

products for u1, u3, u5, and u7 by using the memory address generated from {v1, v3, v5,

v7} through first memory module and access the partial products for u1, u3, u5, and u7

by using the memory address generated from {v2, v4, v6, v8} through second memory

module at the same time. Then we sum up these two partial products for obtaining u1,

u3, u5, and u7 by using extra adders respectively. With the help of the identical

hardware and extra input-data-rotator, we can compute u2, u4, u6, and u8 in the same

way. However, for the operation of input data rotation, in the case of partitioning

factors is not relatively co-prime, the number of rotated bit for VB’ is larger than VA by

one bit. Fig. 2.20 and Fig. 2.21 show the low-cost and high performance GDA

architectures to realize this design example illustrated in (2.21).

Fig. 2.20: The low cost version of GDA realization of the example shown in (2.21).

 37

000

e+g

Barrel shifter

ROM1

v8
v7
v6
v5
v4
v3
v2
v1

ROM2

u2

+

+

+

u4

u6

ACC

ACC

ACC

Barrel shifter

+
u8

ACC

G
ro

up
 d

ec
od

er

D

D

D

D

D

D

D

D

P/S

P/S

P/S

P/S

P/S

P/S

P/S

P/S

v2

v3

v4

v5

v6

v7

v8

u8
u7
u6
u5
u4
u3
u2
u1

cag e

0
a+c+e+g a+c+e+g a+c+e+g a+c+e+g

a+g a+c c+e
c+g a+e c+g a+e

c+e+g a+e+g a+c+g a+c+e

000

f+h
dbh f

0
b+d+f+h b+d+f+h b+d+f+h b+d+f+h

b+h b+d d+f
d+h b+f d+h b+f

d+f+h b+f+h b+d+h b+d+f

000

e+g

Barrel shifter

ROM1

ROM2

u1

+

+

+

u3

u5

ACC

ACC

ACC

Barrel shifter

+
u7ACC

G
ro

up
 d

ec
od

er
G

ro
up

 d
ec

od
er

cag e

0
a+c+e+g a+c+e+g a+c+e+g a+c+e+g

a+g a+c c+e
c+g a+e c+g a+e

c+e+g a+e+g a+c+g a+c+e

000

f+h
dbh f

0
b+d+f+h b+d+f+h b+d+f+h b+d+f+h

b+h b+d d+f
d+h b+f d+h b+f

d+f+h b+f+h b+d+h b+d+f

D

D

D

D

D

D

D

D

Fig. 2.21: The high performance version of GDA realization of the example shown in

(2.21).

2.4.4 Evaluation of long length cyclic convolution GDA design

As shown in Fig. 2.18, the proposed low-cost BGDA design with co-prime only

requires two small memory modules to compute all the output samples. It saves 72

words of memory (i.e., 75% of memory cost), 6 adders, and 3 registers at the cost of

introducing the extra barrel rotator and input-vector rotator circuitries as well as

halfing the throughput rate as compared with the traditional DA-based design. For the

requirement of high performance, the proposed BGDA design (shown in Fig. 2.19)

can save 48 words of memory (i.e., 50% of memory cost) and operate at the same

throughput rate as compared with the traditional DA design at the cost of one extra

barrel rotator. As to the non-coprime partitioning, the proposed low-cost BGDA

design shows in Fig. 2.20, similar to the case of co-prime partitioning, this design

only requires two small memory modules to compute all the output samples. It saves

 38

208 words of memory (i.e., 81.25% of memory cost), 8 adders, and 4 registers at the

cost of introducing the extra barrel rotator and input-vector rotator circuitries as well

as halfing the throughput rate as compared with the traditional DA-based design. For

the requirement of high performance, the proposed BGDA design (shown in Fig. 2.21)

can save 160 words of memory (i.e., 62.5% of memory cost) and operate at the same

throughput rate as compared with the traditional DA design at the cost of one extra

barrel rotator. Table 2.7 summarizes the hardware cost in the architectures of low-cost

BGDA, high performance BGDA, and traditional DA. It is concluded that the

proposed BGDA design approach provides a hardware efficient scheme to realize the

long-length cyclic convolution.

Table 2.7: Comparison of the hardware cost of the design examples shown in low-cost

BGDA, high performance BGDA, and conventional DA in the case of non-coprime

partitioning.

Address
decoder

(coded
addresses)

memory
size

(words)

4-bit
Barrel
shifter

(words)

Adder
(words)

SR
(words)

P/S
(words)

Rotator
(words)

Normalized
Throughput

Conventional DA
design 2*24 256 0 16 24 8 0 1

Proposed BGDA
design (high

performance version)
2*(16+24) 96 34 16 24 8 0 1

Proposed BGDA
design

(low cost version)
2*(6+4) 48 2 8 20 8 6 0.5

Note:

1 denotes the number of group-address.

2 denotes the number of rotate-left factor.

3 denotes equivalent area of 4*42 memory words.

 39

Chapter 3
GDA-based Design for 1-D DSST’s

In this chapter, we illustrate the GDA-based designs of 1-D DSST’s with

prime-length and any-length, including DFT, DHT, and DCT, from algorithm to

architecture, respectively. The optimizations on algorithm level of DSST’s for further

reducing the hardware cost are involved. Besides, we have evaluated each of the

DSST’s designs in the corresponding subsection.

3.1 Design of 1-D DFT

3.1.1 Cyclic Convolution Formulation

Prime-length case

The 1-D N-point DFT of an input sequence {x(n), n = 0, 1, …., N-1} is defined as

 1,....,1,0,)()(
1

0

−==∑
−

=

NkWnxkY
N

n

nk
N (3.1)

If N is prime, we can rewrite (3.1) in a cyclic convolution by exploiting the property

of input/output (I/O) data permutation as

∑
−

=

=
1

0

)()0(
N

n

nxY (3.2)

)0())((

1,....,1);0(]))(([))(())((
1

1

-n

xgT

NkxWgxgY

N
k

g
N

N

n
N

k
N

k Nn

+=

−=+⋅= ∑
−

= (3.3)

∑
−

=

− ⋅=
1

1

)()()(
N

n

g
NN

kn
N

k N
n

W)gx()gT((3.4)

, where (gk)N denotes the result of “gk modulo N” for short and g is a primitive

element. T((gk)N) in (3.4) is the kernel of the N-point DFT that is written in cyclic

convolution formulation. For facilitating the utilization of the GDA design approach,

the GDA formulation of T((gk)N) shows as

 40

 q
L

q
N

Rk
qN

Rk
N

k qgTgTgT −
−

=

++ ⋅+−= ∑ 2))(())(())((
1

1
0

0 (3.5)

where)()(000 TRRT = ,

)})((),)((),)((),)(({)(0000
00

2
0

1
000 N

RN
N

Rk
N

R
N

R gTgTgTgTRT ++++= LL ,

)})((),)((),)((),)(({ 00
2

0
1

00 N
N

N
k

NN gTgTgTgTT LL=

and

)()(qqq TRRT = ,

)})((),)((),)((),)(({)(21
N

RN
qN

Rk
qN

R
qN

R
qqq

qqqq gTgTgTgTRT ++++= LL ,

)})((),)((),)((),)(({ 21
N

N
qN

k
qNqNqq gTgTgTgTT LL= ,

and

))(())((
1

1
00

)(0∑
−

=

−− ⋅=
N

n
NN

Rkn
N

k N
ngWgxgT and

))(())((
1

1

)(∑
−

=

−− ⋅=
N

n
NN

Rkn
qN

k
q

N
ngq WgxgT .

where L denotes the data word length of the variable x, N denotes the transform length,

Rq denotes the rotating factor for qth bit that is used for indicating the number of

position of the partial products in DA input and output should be rotated, and)(N
ng

NW

are the DFT coefficients. The rotation function R() is used to rotate the elements in

the output vector)(qRT q from the input vector qT by Rq for the qth bit of DA

computation.

Non-prime length case

For the case of non-prime length, the 1-D N-point DFT of an input sequence {y(n),

n=0,1,…,N-1} is defined as

∑
−

=
−=⋅=

1

0
,110

N

n
 ,...,N,;kWy(n)Y(k) nk

N (3.6)

where WN
nk denotes N

nk

e
π2−

.

 41

Using the identity

[] ,)(
2
1 222 knknkn −−+×=× (3.7)

we can express (3.6) as

 ,110);(2

2

−=×= ,...,N,kkTWY(k)
k

N (3.8)

where

∑
−

=
−=⋅=

−
−1

0
,110

2)(
2
1N

n
 ,...,N,;kWx(n)T(k)

kn

N (3.9)

and

 .)(
2

2
1 n

NWnyx(n) ×= (3.10)

The T(k) in (3.8) is expressed as a cyclic convolution. To facilitate the GDA

design of T(k), we expressed T(k) in a commutative form as

∑
−

=
⋅+=

−1

0
)(

2)(
2
1N

n
 W)knx(T(k)

n

NN (3.11)

2

2
1n

NW in (3.10) denotes the complex multiplication for the input sample, and the 2

2k

NW

in (3.8) denotes the complex multiplication for the result of cyclic convolution

operation. Hence the extra pre-processing and post-processing are needed for the

cyclic convolution of any length DFT. Since the GDA design is based on bit serial

approach, with the stage-balance point of view in pipeline architecture, the CORDIC

(CO-ordinate Rotation Digital Computer) complex multiplier should be an proper

combination. The detail of CORDIC is illustrated as the following.

3.1.2 CORDIC (CO-ordinate Rotation Digital Computer)

For properly combining with the feature of bit-serial in DA computation, we hope

to realize the complex multiplication in serial manner for pre-processing and

post-processing of the DFT in cyclic convolution. The existing realizations of

complex multiplication have either direct manner or rotated transformation algorithm.

 42

The realization of complex multiplication with direct manner needs four multipliers

and two adders, but realization with the rotated transformation algorithm, such as the

CORDIC, needs only a sequence of identical arithmetic shift-and-addition operations.

With the feature of serial manner, CORDIC should be a proper choice of serial

complex multiplication for low hardware cost in the bit-level design. So, combining

the GDA approach with CORDIC facilitates a hardware efficient design for

any-length cyclic convolution DFT.

The CORDIC was developed by Volder in 1959 as a technique for solving the

coordinate rotation problem [47] and later generalized to solve other elementary

functions by Walther [48]. It can be applied to the rotations in three coordinates

systems: the linear, circular, and hyperbolic coordinate systems. A complex

multiplication with the rotation operation in the circular mode can be shown as (3.12).

The basic concept of CORDIC computation is to decompose the desired rotation

angle of coefficient into the weighted sum of a set of predefined elementary rotation

angles in (3.13) so that the rotation through each of them can be accomplished with

simple shift-and-add operations for two stages. As shown in Fig. 3.1, the architecture

design of CORDIC is more hardware efficient than the direct realization of complex

multiplications, which needs four multipliers and two adders.

⎥
⎦

⎤
⎢
⎣

⎡
×⎥

⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
×=⎥

⎦

⎤
⎢
⎣

⎡
y
x

y
x

R
y
x

)cos()sin(
)sin()cos(

)(
 '
 '

θθ
θθ

θ . (3.12)

Where [x, y] denotes the input vector with real part of x and imaginary part of y. R(θ)

denotes the complex coefficient to be multiplied.

⎥
⎦

⎤
⎢
⎣

⎡
×⎥

⎦

⎤
⎢
⎣

⎡

−
⋅=⎥

⎦

⎤
⎢
⎣

⎡
×=⎥

⎦

⎤
⎢
⎣

⎡
∏
−

=
−

−

y
x

s
s

K
y
x

R
y
x m

i
i

i

i
i

m

1

0
'

'

12
21

)(

θ (3.13)

Where ∏
−

=

=
1

0

)cos(
m

i
imK θ

 43

Table 3.1: Table for θi

i θi (degree)
0 45
1 26.56
2 14.03
3 7.12
4 3.58
5 1.79
6 0.89
7 0.45
8 0.22
9 0.11
10 0.06

Table 3.2: Determination of the si sequence

at the θ of 56.

i si Sum(θi)
0 1 45
1 1 71.5
2 -1 57.5
3 -1 50.4
4 1 53.9
5 1 55.7
6 1 56.6
7 -1 56.2
8 -1 56

Since the DFT algorithm θ has been given, with the table for θi in in Table 3.1, the

corresponding set of si can be computed and stored in memory in advance. Table 3.2

shows the example to determine the sequence of si at the θ of 56. In the two stages

computation of CORDIC, the multiplication of the scaling factor in second stage

imposes significant overhead. Fortunately, if ⎮si⎮equals 1, and i is given, Km can be

computed in advance, and converted into a canonical sign-digit representation [49] as

(3.14) so that the same processing unit shown in Fig. 3.1 can be used for the two

stages of CORDIC computation.

 44

∑
=

−=
p

p

i
pm

pkK
1

2
 (3.14)

where kp = ±1, ip are positive integers. Multiplication for scaling then will take p-1

shift-and-add operations.

Fig. 3.1: Realization of CORDIC iterations and scaling iterations.

Hardware cost analysis of the complex multiplication realization with direct

manner and CORDIC is addressed as the following. Table 3.3 shows the comparison

of the hardware cost for the two realizations. In the direct realization, since the two

product terms are respectively formed of the real part and imaginary part such that

L-1 shift operations and L-1 accumulation operations are needed for each computation

of the product term. Then 4(L-1) shift operations and 4(L-1) accumulation operations

are needed for the complex multiplication, where the parameter L denotes the word

length. For the CORDIC realization, 2m shift and additions operations are needed for

the first stage, and 2(p-1) shift and accumulation operations are needed for the second

stage. Consequently, the total number of shift and accumulation operations needed for

the direct realization are 4(L-1) and 4(L-1) as well as 2m+2(p-1) and 2m+2(p-1) for

the CORIC realization. Additionally, two additional additions in the direct realization

are needed for summing up two terms of real part and imaginary part for output. In

general, the word length of the input value is larger than the number of iteration in

 45

each of the CORDIC stages. With the UMC 0.18um cell-library and the same

constrained speed, Fig. 3.2 shows the comparison of area cost and power

consumption for the complex multiplications realized with serial multiplier and

CORDIC, respectively. As a result of the simulation result, the CORDIC realization

should be better than the direct realization for hardware cost.

Table 3.3: Hardware cost comparison of direct realization and

CORDIC realization for a complex multiplication.

 Shift Accumulation Adder

Direct manner 4(L-1) 4(L-1) 2

CORDIC 2m+2(p-1) 2m+2(p-1) 0

0

50000

100000

150000

200000

250000

300000

350000

9 14

Word-length (bit)

A
re

a
co

st
(u

m
2

)

serial multiplier
CORDIC

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

9 14

Word-length (bit)

Po
w

er
 c

on
su

m
pt

io
n

(m
W

)

serial multiplier
CORDIC

 (a) (b)

Fig. 3.2: Comparison of (a) area cost and (b) power consumption for the complex

multiplications realized with serial multiplier and CORDIC.

3.1.3 Symmetry exploration of the DFT in cyclic convolution

Let us take an example of 1-D 11-point DFT with the real input sequence {x(n), n=0,

1, …, 10}. The cyclic convolution form of T((gk)N) can be expressed as

 46

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

×

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

1
11

6
11

3
11

7
11

9
11

10
11

5
11

8
11

4
11

2
11

)1()6()3()7()9()10()5()8()4()2(
)2()1()6()3()7()9()10()5()8()4(
)4()2()1()6()3()7()9()10()5()8(
)8()4()2()1()6()3()7()9()10()5(
)5()8()4()2()1()6()3()7()9()10(
)10()5()8()4()2()1()6()3()7()9(
)9()10()5()8()4()2()1()6()3()7(
)7()9()10()5()8()4()2()1()6()3(
)3()7()9()10()5()8()4()2()1()6(
)6()3()7()9()10()5()8()4()2()1(

)1(
)6(
)3(
)7(
)9(
)10(
)5(
)8(
)4(
)2(

W

W

W

W

W

W

W

W

W

W

xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx

T
T
T
T
T
T
T
T
T
T

.

 (3.15)

As shown in (3.11), the coefficient matrix in (3.15) can be expanded as the even

symmetries of cosine function 1,...2,1, −== − Nicc iN
N

i
N , where)cos(2 N

ii
Nc π= , and the odd

symmetries of sine function 1,...2,1, −=−= − Niss iN
N

i
N , where)sin(2 N

ii
Ns π= .

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+

+

−

+

−

−

−

+

−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

−

−

−

−

−

−

−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

10
11

10
11

6
11

6
11

8
11

8
11

4
11

4
11

2
11

2
11

10
11

10
11

6
11

6
11

8
11

8
11

4
11

4
11

2
11

2
11

1
11

1
11

5
11

5
11

3
11

3
11

4
11

4
11

9
11

9
11

10
11

10
11

6
11

6
11

8
11

8
11

7
11

7
11

2
11

2
11

1
11

5
11

3
11

4
11

9
11

10
11

6
11

8
11

7
11

2
11

jsc

jsc

jsc

jsc

jsc

jsc

jsc

jsc

jsc

jsc

jsc

jsc

jsc

jsc

jsc

jsc

jsc

jsc

jsc

jsc

W

W

W

W

W

W

W

W

W

W

 (3.16)

Then, we can re-write T((2k)11) in (3.15) as follows:

 47

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−
+
−

−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−−−−−−
−−−−−−−−−−
−−−−−−−−−−
−−−−−−−−−−
−−−−−−−−−−

−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
+
+
−
+
−
−
−
+
−

×

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

10
11

6
11

8
11

4
11

2
11

10
11

6
11

8
11

4
11

2
11

10
11

6
11

8
11

4
11

2
11

10
11

6
11

8
11

4
11

2
11

10
11

10
11

6
11

6
11

8
11

8
11

4
11

4
11

2
11

2
11

10
11

10
11

6
11

6
11

8
11

8
11

4
11

4
11

2
11

2
11

)10()6()8()7()2()1()5()3()4()9(
)2()10()6()8()7()9()1()5()3()4(
)7()2()10()6()8()4()9()1()5()3(
)8()7()2()10()6()3()4()9()1()5(
)6()8()7()2()10()5()3()4()9()1(

)10()6()8()7()2()1()5()3()4()9(
)2()10()6()8()7()9()1()5()3()4(
)7()2()10()6()8()4()9()1()5()3(
)8()7()2()10()6()3()4()9()1()5(
)6()8()7()2()10()5()3()4()9()1(

)10()6()8()7()2()1()5()3()4()9(
)2()10()6()8()7()9()1()5()3()4(
)7()2()10()6()8()4()9()1()5()3(
)8()7()2()10()6()3()4()9()1()5(
)6()8()7()2()10()5()3()4()9()1(
)10()6()8()7()2()1()5()3()4()9(
)2()10()6()8()7()9()1()5()3()4(
)7()2()10()6()8()4()9()1()5()3(
)8()7()2()10()6()3()4()9()1()5(
)6()8()7()2()10()5()3()4()9()1(

)1()5()3()4()9()10()6()8()7()2(
)9()1()5()3()4()2()10()6()8()7(
)4()9()1()5()3()7()2()10()6()8(
)3()4()9()1()5()8()7()2()10()6(
)5()3()4()9()1()6()8()7()2()10(
)10()6()8()7()2()1()5()3()4()9(
)2()10()6()8()7()9()1()5()3()4(
)7()2()10()6()8()4()9()1()5()3(
)8()7()2()10()6()3()4()9()1()5(
)6()8()7()2()10()5()3()4()9()1(

)1(
)5(
)3(
)4(
)9(
)10(
)6(
)8(
)7(
)2(

s
s
s
s
s

s
s
s
s

s

xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx

xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx

j

c
c
c
c
c
c
c
c
c
c

xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx

jsc
jsc
jsc
jsc
jsc
jsc
jsc
jsc
jsc
jsc

xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx

T
T
T
T
T
T
T
T
T
T

(3.17)

From (3.17), we see that

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

)1(
)5(
)3(
)4(
)9(

)10(
)6(
)8(
)7(
)2(

R

R

R

R

R

R

R

R

R

R

T
T
T
T
T

T
T
T
T
T

 and
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

)1(
)5(
)3(
)4(
)9(

)10(
)6(
)8(
)7(
)2(

I

I

I

I

I

I

I

I

I

I

T
T
T
T
T

T
T
T
T
T

. (3.18)

Then, we can respectively express TR(.) and TI(.) in (14) as

 48

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

)10(
)6(
)8(
)7(
)2(

)10(
)6(
)8(
)7(
)2(

)10()6()8()7()2(
)2()10()6()8()7(
)7()2()10()6()8(
)8()7()2()10()6(
)6()8()7()2()10(

)1()5()3()4()9(
)9()1()5()3()4(
)4()9()1()5()3(
)3()4()9()1()5(
)5()3()4()9()1(

)10()6()8()7()2()1()5()3()4()9(
)2()10()6()8()7()9()1()5()3()4(
)7()2()10()6()8()4()9()1()5()3(
)8()7()2()10()6()3()4()9()1()5(
)6()8()7()2()10()5()3()4()9()1(

)10(
)6(
)8(
)7(
)2(

2

2

2

2

2

1

1

1

1

1

10
11

6
11

8
11

4
11

2
11

10
11

6
11

8
11

4
11

2
11

10
11

6
11

8
11

4
11

2
11

10
11

6
11

8
11

4
11

2
11

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

T
T
T
T
T

T
T
T
T
T

c

c

c

c

c

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

c

c

c

c

c

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

c

c

c

c

c

c

c

c

c

c

xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx

T
T
T
T
T

 (3.19)

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

−

⋅

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

−

⋅

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

−

−

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

)10(
)6(
)8(
)7(
)2(

)10(
)6(
)8(
)7(
)2(

)10()6()8()7()2(
)2()10()6()8()7(
)7()2()10()6()8(
)8()7()2()10()6(
)6()8()7()2()10(

)1()5()3()4()9(
)9()1()5()3()4(
)4()9()1()5()3(
)3()4()9()1()5(
)5()3()4()9()1(

)10()6()8()7()2()1()5()3()4()9(
)2()10()6()8()7()9()1()5()3()4(
)7()2()10()6()8()4()9()1()5()3(
)8()7()2()10()6()3()4()9()1()5(
)6()8()7()2()10()5()3()4()9()1(

)10(
)6(
)8(
)7(
)2(

2

2

2

2

2

1

1

1

1

1

10
11

6
11

8
11

4
11

2
11

10
11

6
11

8
11

4
11

2
11

10
11

6
11

8
11

4
11

2
11

10
11

6
11

8
11

4
11

2
11

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

T
T
T
T
T

T
T
T
T
T

s

s

s

s

s

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

s

s

s

s

s

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

s

s

s

s

s

s

s

s

s

s

xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx

T
T
T
T
T

 (3.20)

 49

Observing (3.19) and (3.20), we find that the real part of T((2k)11) is composed of the

same upper and lower halves, and the imaginary part of T((2k)11) is composed of the

upper and the lower halves with the same absolute value, but different signs. Hence,

only the unique constant multiplications in {T(i), i=1, 2, …., (N-1)/2} need to be

calculated. Therefore, we can calculate two output values simultaneously through

(3.17) with the same hardware. This feature facilitates the hardware sharing in

computing T((gk)N) with even and odd indices such that only half the hardware is

needed as compared with the direct realization on (3.15).

3.1.4 Architecture design and evaluation

Architecture design

By exploiting the symmetrical properties of both the cosine and sine functions

shown in (3.17) in the DFT computation, we find that the output with odd indices can

easily be obtained by means of hardwiring, which facilitates the reduction of memory

cost by a factor of two. Considering the example of 1-D 11-point DFT and referring to

the reformulation of 1-D DFT in (3.19) and (3.20), we can realize the 10-point cyclic

convolution required in 1-D 11-point DFT through the hardware architectures

designed for the 5-point cyclic convolution as shown in Fig. 3.3. The proposed GDA

architecture is composed of the group distributed arithmetic units (GDAU), address

decoder, adders/subtractors, accumulators, and parallel-to-serial (P/S) converters.

According to the rule of group mapping shown in Table 2.1, the candidate of DA input

Xq= {xq(1), xq(9), xq(4), xq(3), xq(5)} or {xq(10), xq(2), xq(7), xq(8), xq(6)} is first fed

into the address decoder to determine which group it should belong to, and then

compute the group address Gq = {gq(1), gq(2), gq(3)} and the rotating factor Rq =

{rq(1), rq(2), rq(3)} used for the GDAU. The GDAUc and GDAUs are used to

respectively realize the operations specified in (3.19) and (3.20) for computing 5-point

cyclic convolution. The contents of the memory modules corresponding to GDAUc

and GDAUs are shown in Table 3.4 and Table 3.5 respectively, which illustrate the

distribution of the partial products when computing different DFT outputs according

to the candidate of DA input.

 50

Address
decoder

Address
decoder

P/S

P/S

P/S

P/S

P/S

P/S

P/S

P/S

P/S

P/S

5

x(10)

x(9)

x(8)

x(7)

x(6)

x(5)

x(4)

5

x(3)

x(2)

x(1)

x(0)

GDAU
c

GDAU
c

GDAU
s

GDAU
s

P/S

+ +/-

+ +/-

+ +/-

+ +/-

+ +/-

- +/-

- +/-

- +/-

- +/-

- +/-

D

D

D

D

D

+

x(0)

Computing T((gk)N)

+ D

YR(0)
YR(2)
YR(7)
YR(8)
YR(6)

YR(10)
YR(9)
YR(4)
YR(3)
YR(5)
YR(1)

t:
0:
1:
2:
3:
4:
5:
6:
7:
8:
9:

10:

D

D

D

D

D

MUX

-1

YI(0)
YI(2)
YI(7)
YI(8)
YI(6)

YI(10)
YI(9)
YI(4)
YI(3)
YI(5)
YI(1)

t:
0:
1:
2:
3:
4:
5:
6:
7:
8:
9:

10:

x(10)
x(9)
x(8)
x(7)
x(6)
x(5)
x(4)
x(3)
x(2)
x(1)
x(0)

t:
10:
9:
8:
7:
6:
5:
4:
3:
2:
1:
0:

Fig. 3.3: Architecture design of the 1-D 11-point DFT with GDA approach.

 51

Table 3.4: The 8 groups of memory content used for computing the 5-point cyclic

convolution in GDAUc.
Grouped

candidates of DA
input (Xq)

Group address
(Gq)

TR1(2)/ TR2(2)/
TR1(9)/ TR2(9)

TR1 (7) / TR2(7)
/ TR1(4)/ TR2(4)

TR1 (8) / TR2(8)
/ TR1(3)/ TR2(3)

TR1 (6) / TR2(6) /
TR1(5)/ TR2(5)

TR1 (10) /
TR2(10) / TR1(1)/

TR2(1)
0 0 0 0 0 0

1, 2, 4, 8, 16 1 c11
10 c11

2 c11
4 c11

8 c11
6

3, 6, 12, 24, 17 2 c11
6+c11

10 c11
10+c11

2 c11
2+c11

4 c11
4+c11

8 c11
8+c11

6
5, 10, 20, 9, 18 3 c11

8+c11
10 c11

6+c11
2 c11

10+c11
4 c11

2+c11
8 c11

4+c11
6

7, 14, 28, 25, 19 4 c11
8+ c11

6+c11
10 c11

6+ c11
10+c11

2 c11
10+ c11

2+c11
4 c11

2+ c11
4+c11

8 c11
4+ c11

8+c11
6

11, 22, 13, 26, 21 5 c11
4+ c11

6+c11
10 c11

2+ c11
8+c11

10 c11
2+c11

4+ c11
6 c11

4+c11
8+ c11

10 c11
2+ c11

8+c11
6

15, 30, 29, 27, 23 6 c11
4+ c11

8+
c11

6+c11
10

c11
8+ c11

6+
c11

10 +c11
2

c11
6+ c11

10

+c11
2+c11

4
c11

10+ c11
2

+c11
4+c11

8
c11

2+ c11
4+

c11
8+c11

6

31 7 c11
2+ c11

4+
c11

8+c11
6+c11

10
c11

2+ c11
4+

c11
8+c11

6+c11
10

c11
2+ c11

4+
c11

8+c11
6+c11

10
c11

2+ c11
4+

c11
8+c11

6+c11
10

c11
2+ c11

4+
c11

8+c11
6+c11

10

Table 3.5: The 8 groups of memory content used for computing the 5-point cyclic

convolution in GDAUs.
Grouped

candidates of DA
input (Xq)

Group address
(Gq)

TI1(2)/ TI2(2)/
TI1(9)/ TI2(9)

TI1 (7) / TI2(7) /
TI1(4)/ TI2(4)

TI1 (8) / TI2(8) /
TI1(3)/ TI2(3)

TI1 (6) / TI2(6) /
TI1(5)/ TI2(5)

TI1 (10) / TI2(10)
/ TI1(1)/ TI2(1)

0 0 0 0 0 0
1, 2, 4, 8, 16 1 -s11

10 -s11
2 s11

4 -s11
8 -s11

6
3, 6, 12, 24, 17 2 -s11

6-s11
10 -s11

10-s11
2 -s11

2+s11
4 s11

4-s11
8 -s11

8-s11
6

5, 10, 20, 9, 18 3 -s11
8-s11

10 -s11
6-s11

2 -s11
10+s11

4 -s11
2-s11

8 s11
4-s11

6
7, 14, 28, 25, 19 4 -s11

8- s11
6-s11

10 -s11
6- s11

10-s11
2 -s11

10- s11
2+s11

4 -s11
2+ s11

4-s11
8 s11

4- s11
8-s11

6
11, 22, 13, 26, 21 5 s11

4- s11
6-s11

10 -s11
2- s11

8-s11
10 -s11

2+s11
4- s11

6 s11
4-s11

8- s11
10 -s11

2- s11
8-s11

6

15, 30, 29, 27, 23 6 s11
4-s11

8-
s11

6-s11
10

-s11
8- s11

6 -
s11

10 -s11
2

-s11
6- s11

10

-s11
2+s11

4
-s11

10- s11
2

+s11
4-s11

8
-s11

2+ s11
4-

s11
8-s11

6

31 7 -s11
2+ s11

4-
s11

8-s11
6-s11

10
-s11

2+ s11
4-

s11
8-s11

6-s11
10

-s11
2+ s11

4-
s11

8-s11
6-s11

10
-s11

2+ s11
4-

s11
8-s11

6-s11
10

-s11
2+ s11

4-
s11

8-s11
6-s11

10

Design evaluation

In this section, we will illustrate the performance evaluation on the proposed

GDA design and some existing DFT designs. The existing DFT designs in the

evaluation include systolic array designs [10][33], memory-based DA designs

[34][35], and adder-based DA designs [38]. For a fair comparison, we evaluate the

hardware cost and average cycle time (ACT) of these existing designs and the

proposed design based on Avant 0.35 μm, 3.3-volt CMOS cell-library [43]. Besides,

we adopt the logic synthesis to obtain the measures of hardware cost and ACT for the

component whose measures cannot be found from the cell-library, such as the address

decoders, the specific memory cells, and RAM cells. According to the measures of

area cost and ACT for the used components, we can fairly evaluate the performance

of these designs in terms of delay-area products with respect to different values of N.

 52

Table 3.6 and Table 3.7 respectively show the models to estimate the area cost of 1-D

N-point DFT modules with or without partitioned cyclic convolution. Table 3.8

shows the corresponding models to estimate the ACT for the existing systolic arrays,

DA-based designs, and the proposed GDA design with real input data. The ACT

denotes the time needed to perform a 1-D N-point DFT. Besides, we carefully decide

the data word-length of the components for evaluating the different designs,

respectively.

In the case of 8-bit real input data and complex coefficients, the existing

systolic array design [10] requires 2(N+1) PEs to process the real part and imaginary

part of 1-D N-point DFT, where each PE requires one 16-bit multiplier, one 20-bit

adder, one 8-bit register, and two 20-bit registers. The design in [33] is a

memory-based systolic array design, which uses a different way to implement the

multipliers. It needs an 8-bit multiplexer and demultiplexer for the preprocessing,

and each PE is composed of two 12-bit memorys, 8-bit 2-to-1 multiplexers, and one

20-bit adder. The designs in [34][35] are the DA-based designs. The design [35] uses

the technique of offset binary coding (OBC) to reduce the memory size required in

the design [34]. Due to the fact that the two designs are constructed by the same DA

architecture, they are composed of 8-bit and 20-bit registers respectively for the

input buffer and output buffer, 12-bit memory modules, 20-bit adders, and 20-bit

registers for processing stage. The extra XOR gates and 16-bit 2-to-1 multiplexers

are needed in the design [35].

As for the adder-based DA design [38], the issue in this design is how to find

the common terms from the nonzero sub-expressions in order to reduce the hardware

cost of the summation network. Extracting the common terms is similar to the

problem of logic optimization. Since this is a NP complete problem [39], it is almost

impossible to exactly estimate the hardware cost of the adder-based DA design. Thus

the worst-case estimation for the common terms of the adder-based DA design has

been adopted here.

Fig. 3.4, Fig. 3.5, and Fig. 3.6 respectively show the comparison of area cost,

ACT, and area-delay product of the existing designs and the proposed GDA design in

realizing the 1-D DFT, where the 5-point and 7-point 1-D DFTs are realized by using

the GDA design, and the 11-point 1-D DFT is realized by using the BGDA design

with the partition factors of 2 x 5 for the 10-point cyclic convolution required in the

 53

1-D 11-point DFT. As shown in Fig. 3.6, the delay-area product of the proposed

design is much smaller than the traditional memory-based DA design. Precisely, the

proposed GDA design can save averagely 68%, 49%, and 29% of the delay-area

product, respectively, as compared with the systolic array designs [10][33],

memory-based DA designs [34][35], and adder-based DA design [38] in the case that

the length of cyclic convolution is smaller than nine. Generally, the length of cyclic

convolution should be smaller than nine for obtaining a reasonable memory size in

DA-based designs.

0

10000

20000

30000

40000

50000

60000

70000

5 7 11

Transform length (N)

A
re

a
co

st
 (g

at
es

)

Systolic array [Murthy]

Memory-based systolic
array [Guo]
Traditional DA [White]

OBC-based DA [Choi]

Adder-based DA
[Chang]
GDA [Ours]

Fig. 3.4: Comparison of the area cost of the existing DFT designs and the proposed

GDA design in realizing the 1-D N-point DFT.

 54

0

40

80

120

160

200

5 7 11

Transform length (N)

A
ve

ra
ge

 c
yc

le
 ti

m
e

(n
s)

Systolic array [Murthy]

Memory-based systolic
array [Guo]
Traditional DA [White]

OBC-based DA [Choi]

Adder-based DA
[Chang]
GDA [Ours]

Fig. 3.5: Comparison of the ACT for the existing designs and the proposed GDA

design in realizing the 1-D N-point DFT.

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

5 7 11

Transform length (N)

D
el

ay
-a

re
a

pr
od

uc
t (

ga
te

s*
ns

)

Systolic array [Murthy]

Memory-based systolic
array [Guo]
Traditional DA [White]

OBC-based DA [Choi]

Adder-based DA
[Chang]
GDA [Ours]

Fig. 3.6: Comparison of the delay-area product for the existing designs and the

proposed GDA design in realizing the 1-D N-point DFT.

 55

Table 3.6: Area cost models to estimate the 1-D N-point DFT modules in the existing systolic

array designs, DA-based designs, and the proposed GDA design with real input data.

 Module name

Address
decoder
(coded

addresses)

XOR
(bit)

Mux/Demux
(words)

RAM
(words)

memory
(double-
words)

(N-1)-bit
Barrel
rotator
(double-
words)

Adder
(double-
words)

Mul
(double-
words)

Reg
(words)

P/S
(words)

Murthy [10]
(Systolic array)

Array
processing

stage
 2(N+1) 2(N+1) 3(N+1)

Input-buffer,
output-buffer,

and
Preprocessing

stage

N 2-to-1: 2
1-to-2: 1 N 2N

Guo [33]
(Memory-based
systolic array)

Array
processing

stage

2*[(N-1)*
2L/2*2] 2 to 1:

2*[(N-1)+3] 2*[(N-1)*
2L/2*2] 2*[2(N-1)+

2]

 totally N+2*[(N-1
)* 2L/2*2] 2N+7 N (N-1)*2L/2*

4 4N 2N

 Input and
output buffers 1 2N

White [34]
(Traditional

DA)

DA processing
stage 2(N-1) 2*2(N-1)*

(N-1)/2 2*(N-1)/2 2*(N-1)/2 N-1

 Y(0)
computation 1 1

 totally 2(N-1) 2(N-1)*
(N-1) N+1 3N N-1

 Input and
output buffers 1 2N

Choi [35]
(OBC-based

DA)

DA processing
stage

(coeff-add,
sum, acc)

2(N-1) -2 2(2(N-2
)+2)

2 to 1:
2*2*(N-1)/2
+2*(N-1)/2 2*2(N-1)-2 *

(N-1)/2 2*(N-1)/2 2*(N-1)/2 N-1

 Y(0)
computation 1 1

 totally 2(N-1) -2 4(N-1) 3(N-1) 2(N-1)-2 *
(N-1) N+1 3N N-1

 Input and
output buffers 1 2N

Chang [38]
(Adder-based

DA)

DA processing
stage

(DA, sum)

2*[(N-1)
+L+1]*
(N-1)/2

 2*(N-1)/2

 Y(0)
computation 1 1

 totally N2+N(L-1)-
L 3N

 Input and
output buffers 1 2N

Proposed GDA
design

DA processing
stage G(N-1) 2*G(N-1)*

(N-1)/2
42 2*(N-1)/2 2*(N-1)/2 N-1

 Y(0)
computation 1 1

 totally G(N-1) G(N-1)*
(N-1) 2 N+1 3N N-1

Note:
1. L denotes the word length that equals to 16 in the design example, and N denotes

the transform length.

 56

Table 3.7: Area cost models to estimate the 1-D N-point DFT modules with the partitioned

cyclic convolution in the existing systolic array designs, DA-based designs, and the proposed

BGDA design with real input data.

 Module name

Address
decoder
(coded

addresses)

XOR
(bit)

Mux/Demux
(words)

RAM
(words)

memory
(double-
words)

(N-1)/2-bit
Barrel
rotator
(double-
words)

Adder
(double-
words)

Mul
(double-
words)

Reg
(words)

P/S
(words)

Murthy [10]
(Systolic array)

Array
processing

stage
 2(N+1) 2(N+1) 3(N+1)

Input-buffer,
output-buffer,

and
Preprocessing

stage

N 2-to-1: 2
1-to-2: 1 N 2N

Guo [33]
(Memory-based
systolic array)

Array
processing

stage

2*[(N-1)*
2L/2*2] 2 to 1:

2*[(N-1)+3] 2*[(N-1)*
2L/2*2] 2*[2(N-1)+

2]

 totally N+2*[(N-1
)* 2L/2*2] 2N+7 N (N-1)*2L/2*

4 4N 2N

 Input and
output buffers 1 2N

White [34]
(Traditional

DA)

DA processing
stage 2*2(N-1)/2 2*2*2(N-1)/2

* (N-1)/2 2*(N-1)/2+
2*(N-1)/2 2*(N-1)/2 N-1

 Y(0)
computation 1 1

 totally 2(N+1)/2 2(N+1)/2 *
(N-1) 2N 3N N-1

 Input and
output buffers 1 2N

Choi [35]
(OBC-based

DA)

DA processing
stage

(coeff-add,
sum, acc)

2*2(N-1)/2 -2

2*2*(2
*((N-1)
/2-2)+2

)

2 to 1:
2*2*2*(N-1)
/2+2*(N-1)/2 2*2*2(N-1)/2-

2 * (N-1)/2 2*(N-1)/2
+2*(N-1)/2 2(N-1)/2 N-1

 Y(0)
computation 1 1

 totally 2(N-1)/2-1 4(N-3) 5(N-1) 2*2(N-1)/2-2
* (N-1) 2(N-1) 3N N-1

 Input and
output buffers 1 2N

Chang [38]
(Adder-based

DA)

DA processing
stage

(DA, sum)

2*[2*[(N-1
)/2

+L]+1]*
(N-1)/2

 2*(N-1)/2

 Y(0)
computation 1 1

 totally N2+N(2L-1
)-2L 3N

 Input and
output buffers 1 2N

Proposed
BGDA design

DA processing
stage

2*G((N-1)/
2)

2*2*G((N-
1)/2)*

(N-1)/2
42*2 2*(N-1)/2+

2*(N-1)/2 2*(N-1)/2 N-1

 Y(0)
computation 1 1

 totally 2*G((N-1)/
2) 2G((N-1)/2

)* (N-1) 4 2N 3N N-1

 57

Table 3.8: Average cycle time (ACT) models to estimate the not partitioned and

partitioned 1-D N-point DFT modules in the existing systolic array designs, DA-based

designs, and the proposed GDA design with real input data.

 Not partitioned Partitioned
Murthy [10]

(Systolic array) N * (Tmul + Tadd + Tlatch) N * (Tmul + Tadd + Tlatch)

Guo [33]
(Memory-based
systolic array)

N * (Trom1 + 2Tadd + Tlatch) N * (Trom1 + 2Tadd + Tlatch)

White [34]
(Traditional DA) L * (Trom2 + Tadd + Tlatch) L * (Trom2 + 2Tadd + Tlatch)

Choi [35]
(OBC-based DA) L * (Txor + 2Tmux + Trom3 + 2Tadd + Tlatch) L * (Txor + 2Tmux + Trom3 + 3Tadd + Tlatch)

Chang [38]
(Adder-based DA) ((N-1)+2log2L) * Tadd + Tlatch (((N-1)/2-1)+2log2L+1) * Tadd + Tlatch

Proposed GDA design L * (Trom5 + Tbar + Tadd + Tlatch) L * (Trom5 + Tbar + 2Tadd + Tlatch)

Note:

1. Tmul denotes the delay time of multiplier, Tmux denotes the delay time of multiplexer, Tadd
denotes the delay time of adder, Trom denotes the access time of memory, and Tbar denotes
the delay time of Barrel shifter with N-word width.

2. Since the required memory sizes of the designs except for the adder-based DA are
different, the access time of memory in these designs is also different.

3. The timing costs of memory are the sum of delay in both the address decoder and
memory -cell.

4. L denotes the word length of the candidate of DA input, and N denotes the transform
length of 1-D DFT.

3.2 Design of 1-D DHT

3.2.1 Cyclic Convolution Formulation

Prime-length case

The 1-D N-point DHT of an input sequence {x(n), n = 0, 1, …., N-1} is defined as

1,,1,0 ;)()(
1

0
−=⋅=∑

−

=

NkHnxkY
N

n

nk
N L (3.21)

where)2sin)2cos2(nkα(nk()nkcasH nk
N +== αα , α=π/N, and N denotes the

transform length. If N is prime, we can rewrite (3.21) in a cyclic convolution by

exploiting the property of input/output (I/O) data permutation as

 58

∑
−

=

=
1

0
)()0(

N

n
nxY ,

)0())((

1,....,1);0()])(2())(([))((
1

1

-n

xgT

Nkxg
N

casgxgY

N
k

N
n

N

n
N

k
N

k

+=

−=+⋅= ∑
−

=

π

 (3.22)

∑
−

=

− ⋅=
1

1
))(2()()(

N

n
N

n
N

kn
N

k g
N

cas)gx()gT(π

 (3.23)

where (gk)N denotes the result of “gk modulo N” for short and g is a primitive element.

T((gk)N) in (3.22) is the kernel of the N -point DHT that is written in cyclic

convolution formulation.

Non-prime length case

According to (3.21) and utilizing the Chirp-Z transform [50][51], we illustrate

the derivation of cyclic convolution algorithm for non-prime length DHT in the

following. By introducing two sequences {C(k)}and {S(k)} defined as follows:

])2sin[()()(

])2cos[()()(
1

0

2

1

0

2

α

α

⋅−⋅=

⋅−⋅=

∑

∑
−

=

−

=
N

n

N

n

nkknxkS

nkknxkC
 (3.24)

we can express DHT equation in (3.21) as

1,,1,0)];()2()2()([
)cos(2

1)(2 −=−−+−+
⋅

= NkkSkNSkNCkC
k

kY L
α

 (3.25)

Then, suitably evaluating the term C(k) + C(2N-k) + S(2N-k) - S(k) yields

1,1,0)];()([
)cos(2

1)(2 −=+
⋅

= NkkTkT
k

kY sc L
α

 (3.26)

where

 59

1,,1,0);sin())(()(

1,,1,0);cos())(()(
1

0

2

1

0

2

−=⋅+=

−=⋅+=

∑

∑
−

=

−

=

NknknykT

NknknxkT
N

n
Nfs

N

n
Nfc

L

L

α

α
 (3.27)

and

))(()1())(())((
))(()1())(())((

''

''

N
N

NNf

N
N

NNf

Nknyknykny
Nknxknxknx

++⋅−++=+
++⋅−++=+

 (3.28)

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−+=
=

−=

−
⋅−=

12,,1

1,,1,0

)2(
),0()1(

),(
)('

NNn
Nn

Nn

nNx
x
nx

nx

n

n
N

p

L

L

 (3.29)

12,,1

1,,1,0

)2(
),0()1(

),(
)('

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−+=
=

−=

−
⋅−

−
=

NNn
Nn

Nn

nNx
x
nx

ny

p

p
N

n

L

L

 (3.30)

)]sin()[cos()()(
)]sin()[cos()()(

22

22

αα
αα
⋅+⋅⋅=
⋅−⋅⋅=

nnnxnx
nnnxnx

p

n (3.31)

In the above equations, (A)N denotes the result of A modulo N operation for short. It is

seen that both DHT kernel operations, i.e. Tc(k) and Ts(k) in (3.27), are expressed in

cyclic convolution forms and thus can be efficiently implemented by GDA. However,

the non-prime length DHT algorithm requires pre-processing as indicated in (3.28) ~

(3.31) and post-processing as indicated in (3.26). This algorithm is useful in realizing

the DHT with any length, which can cover the applications with broader ranges in the

transform length than the fast algorithms being developed for 2p-point DHT and other

prime-length DHT algorithms.

3.2.2 Numerical stability

For the above mentioned algorithms with non-prime length, the issue of division

operation involves in them to evaluate the transform values. This will cause numerical

instability of some results as the denominator in division operation may equal to zero

for specific values of k. In the following, we illustrate the remedy for this issue to

ensure the correctness of non-prime length 1-D DHT algorithm.

 60

Since 0)cos(2 =N
k π implies 1or 1)sin(2 −=N

k π , we can overcome this issue by

first reformulating (3.25) as

1,,1,0)];()2()2()([
)sin(2

1)(2 −=+−+−−
⋅

= NkkSkNSkNCkC
k

kY L
α

 (3.32)

Then, evaluating the term C(k) - C(2Nj-k)+ S(2Nj-k) + S(k) based on the same

procedure shown in before yields

1,1,0)];()([
)sin(2

1)(2 −=+
⋅

= NkkUkU
k

kY sc L
α

 (3.33)

where

1,,1,0);sin())(()(

1,,1,0);cos())(()(
1

0

2

1

0

2

−=⋅+=

−=⋅+−=

∑

∑
−

=

−

=

NknknxkU

NknknykU
N

n
Nfs

N

n
Nfc

L

L

α

α
 (3.34)

Compared with the procedure mentioned before, the sequences {Uc(k)} and {Us(k)}

are similar to {Tc(k)} and {Ts(k)}, and the operands yf((N+k)N) and xf((N+k)N) are

exchanged with different signs. This phenomenon reveals that this issue of numerical

instability can be solved by using simple control in hardware realization.

3.2.3 Symmetry exploration of the DHT in cyclic convolution

Let us take an example of 1-D 11-point DHT with the real input sequence {x(n),

n=0, 1, …, 10}. The cyclic convolution form of T((gk)N) can be expressed as

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

×

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

1
11

6
11

3
11

7
11

9
11

10
11

5
11

8
11

4
11

2
11

)1()6()3()7()9()10()5()8()4()2(
)2()1()6()3()7()9()10()5()8()4(
)4()2()1()6()3()7()9()10()5()8(
)8()4()2()1()6()3()7()9()10()5(
)5()8()4()2()1()6()3()7()9()10(
)10()5()8()4()2()1()6()3()7()9(
)9()10()5()8()4()2()1()6()3()7(
)7()9()10()5()8()4()2()1()6()3(
)3()7()9()10()5()8()4()2()1()6(
)6()3()7()9()10()5()8()4()2()1(

)1(
)6(
)3(
)7(
)9(
)10(
)5(
)8(
)4(
)2(

H
H
H
H
H
H
H
H
H
H

xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx

T
T
T
T
T
T
T
T
T
T

.

(3.35)

 61

As shown in (3.36), the coefficient matrix in (3.35) can be expanded as the

even symmetries of cosine function 1,...2,1, −== − Nicc iN
N

i
N , where)cos(2 N

ii
Nc π= , and

the odd symmetries of sine function 1,...2,1, −=−= − Niss iN
N

i
N , where)sin(2 N

ii
Ns π= .

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−
+
−
+
+
+
−
+

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
+
+
+
+
+
+
+
+
+

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

10
11

10
11

6
11

6
11

8
11

8
11

4
11

4
11

2
11

2
11

10
11

10
11

6
11

6
11

8
11

8
11

4
11

4
11

2
11

2
11

1
11

1
11

5
11

5
11

3
11

3
11

4
11

4
11

9
11

9
11

10
11

10
11

6
11

6
11

8
11

8
11

7
11

7
11

2
11

2
11

1
11

5
11

3
11

4
11

9
11

10
11

6
11

8
11

7
11

2
11

sc
sc
sc
sc
sc
sc
sc
sc
sc
sc

sc
sc
sc
sc
sc
sc
sc
sc
sc
sc

H
H
H
H
H
H
H
H
H
H

 (3.36)

Then, we can re-write T((2k)11) in (3.35) as follows:

 62

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−−−−−−
−−−−−−−−−−
−−−−−−−−−−
−−−−−−−−−−
−−−−−−−−−−

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−
+
−
+
+
+
−
+

×

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

10
11

6
11

8
11

4
11

2
11

10
11

6
11

8
11

4
11

2
11

10
11

6
11

8
11

4
11

2
11

10
11

6
11

8
11

4
11

2
11

10
11

10
11

6
11

6
11

8
11

8
11

4
11

4
11

2
11

2
11

10
11

10
11

6
11

6
11

8
11

8
11

4
11

4
11

2
11

2
11

)10()6()8()7()2()1()5()3()4()9(
)2()10()6()8()7()9()1()5()3()4(
)7()2()10()6()8()4()9()1()5()3(
)8()7()2()10()6()3()4()9()1()5(
)6()8()7()2()10()5()3()4()9()1(

)10()6()8()7()2()1()5()3()4()9(
)2()10()6()8()7()9()1()5()3()4(
)7()2()10()6()8()4()9()1()5()3(
)8()7()2()10()6()3()4()9()1()5(
)6()8()7()2()10()5()3()4()9()1(

)10()6()8()7()2()1()5()3()4()9(
)2()10()6()8()7()9()1()5()3()4(
)7()2()10()6()8()4()9()1()5()3(
)8()7()2()10()6()3()4()9()1()5(
)6()8()7()2()10()5()3()4()9()1(
)10()6()8()7()2()1()5()3()4()9(
)2()10()6()8()7()9()1()5()3()4(
)7()2()10()6()8()4()9()1()5()3(
)8()7()2()10()6()3()4()9()1()5(
)6()8()7()2()10()5()3()4()9()1(

)1()5()3()4()9()10()6()8()7()2(
)9()1()5()3()4()2()10()6()8()7(
)4()9()1()5()3()7()2()10()6()8(
)3()4()9()1()5()8()7()2()10()6(
)5()3()4()9()1()6()8()7()2()10(
)10()6()8()7()2()1()5()3()4()9(
)2()10()6()8()7()9()1()5()3()4(
)7()2()10()6()8()4()9()1()5()3(
)8()7()2()10()6()3()4()9()1()5(
)6()8()7()2()10()5()3()4()9()1(

)1(
)5(
)3(
)4(
)9(
)10(
)6(
)8(
)7(
)2(

s
s
s
s

s
s
s
s
s

s

xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx

xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx

c
c
c
c
c
c
c
c
c
c

xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx

sc
sc
sc
sc
sc
sc
sc
sc
sc
sc

xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx

T
T
T
T
T
T
T
T
T
T

(3.37)

From (3.37), we see that

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

)1(
)5(
)3(
)4(
)9(

)10(
)6(
)8(
)7(
)2(

C

C

C

C

C

C

C

C

C

C

T
T
T
T
T

T
T
T
T
T

 and

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

)1(
)5(
)3(
)4(
)9(

)10(
)6(
)8(
)7(
)2(

S

S

S

S

S

S

S

S

S

S

T
T
T
T
T

T
T
T
T
T

. (3.38)

Then, we can respectively express TR(.) and TI(.) in (3.38) as

 63

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

)10(
)6(
)8(
)7(
)2(

)10(
)6(
)8(
)7(
)2(

)10()6()8()7()2(
)2()10()6()8()7(
)7()2()10()6()8(
)8()7()2()10()6(
)6()8()7()2()10(

)1()5()3()4()9(
)9()1()5()3()4(
)4()9()1()5()3(
)3()4()9()1()5(
)5()3()4()9()1(

)10()6()8()7()2()1()5()3()4()9(
)2()10()6()8()7()9()1()5()3()4(
)7()2()10()6()8()4()9()1()5()3(
)8()7()2()10()6()3()4()9()1()5(
)6()8()7()2()10()5()3()4()9()1(

)10(
)6(
)8(
)7(
)2(

2

2

2

2

2

1

1

1

1

1

10
11

6
11

8
11

4
11

2
11

10
11

6
11

8
11

4
11

2
11

10
11

6
11

8
11

4
11

2
11

10
11

6
11

8
11

4
11

2
11

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

T
T
T
T
T

T
T
T
T
T

c
c
c
c
c

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

c
c
c
c
c

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

c
c
c
c
c

c
c
c
c
c

xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx

T
T
T
T
T

 (3.39)

 64

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
⋅

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
⋅

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

−

−

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

)10(
)6(
)8(
)7(
)2(

)10(
)6(
)8(
)7(
)2(

)10()6()8()7()2(
)2()10()6()8()7(
)7()2()10()6()8(
)8()7()2()10()6(
)6()8()7()2()10(

)1()5()3()4()9(
)9()1()5()3()4(
)4()9()1()5()3(
)3()4()9()1()5(
)5()3()4()9()1(

)10()6()8()7()2()1()5()3()4()9(
)2()10()6()8()7()9()1()5()3()4(
)7()2()10()6()8()4()9()1()5()3(
)8()7()2()10()6()3()4()9()1()5(
)6()8()7()2()10()5()3()4()9()1(

)10(
)6(
)8(
)7(
)2(

2

2

2

2

2

1

1

1

1

1

10
11

6
11

8
11

4
11

2
11

10
11

6
11

8
11

4
11

2
11

10
11

6
11

8
11

4
11

2
11

10
11

6
11

8
11

4
11

2
11

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

T
T
T
T
T

T
T
T
T
T

s
s
s
s

s

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

s
s
s
s

s

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

s
s
s

s
s

s
s
s
s

s

xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx

T
T
T
T
T

 (3.40)

Observing (3.39) and (3.40), similar to the DFT, we find that the cosine part of

T((2k)11) is composed of the same upper and lower halves, and the sine part of

T((2k)11) is composed of the upper and the lower halves with the same absolute value,

but different signs. We can also calculate two output values simultaneously through

(3.37) with the same hardware. This feature facilitates the hardware sharing in

computing T((gk)N) with even and odd indices such that only half the hardware is

needed as compared with the direct realization on (3.35).

3.2.4 Architecture design and evaluation

Architecture design

By exploiting the symmetrical properties of both the cosine and sine functions

shown in (3.37) in the DHT computation, the outputs with odd indices can also be

obtained by means of hardwiring to achieve the reduction of memory cost by a factor

 65

of two. With the example of 1-D 11-point DHT and referring to the reformulation of

1-D DHT in (3.39) and (3.40), we can realize the 10-point cyclic convolution in

11-point DHT through the architectures designed for the 5-point cyclic convolution

as shown in Fig. 3.7. The architecture is composed of GDAUs, address decoder,

adders/subtractors, accumulators, and parallel-to-serial converters. The GDAUc and

GDAUs are used to respectively realize the operations specified in (3.39) and (3.40)

for computing 5-point cyclic convolution. According to the rule of group mapping

shown in Table 2.1, the contents of the memory corresponding to GDAUc and

GDAUs are shown in Table 3.9 and Table 3.10 respectively, which illustrate the

distribution of partial products in the memory of GDA design.

Address
decoder

Address
decoder

P/S

P/S

P/S

P/S

P/S

P/S

P/S

P/S

P/S

P/S

5

x(10)

x(9)

x(8)

x(7)

x(6)

x(5)

x(4)

5

x(3)

x(2)

x(1)

x(0)

GDAUc

GDAUc

GDAUs

GDAUs

P/S

+

+

+

+

+

-

+/-

-

+/-

-

+/-

-

+/-

-

+/-

T(2), T(9)

T(7), T(4)

T(8), T(3)

T(6), T(5)

T(10), T(1)

+

x(0)

Computing for

+ D

Y(0)
Y(2)
Y(7)
Y(8)
Y(6)
Y(10)
Y(9)
Y(4)
Y(3)
Y(5)
Y(1)

t:
0:
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:

D

D

D

D

D

x(10)
x(9)
x(8)
x(7)
x(6)
x(5)
x(4)
x(3)
x(2)
x(1)
x(0)

t:
10:
9:
8:
7:
6:
5:
4:
3:
2:
1:
0:

+/-

+/-

+/-

+/-

+/-

Fig. 3.7: The architecture of the GDA design realizing the 1-D 11-point DHT.

 66

Table 3.9: The 8 groups of memory content used for computing the 5-point cyclic

convolution in GDAUc.
Grouped

candidates of DA
input (Xq)

Group address
(Gq)

TC1(2)/ TC2(2)/
TC1(9)/ TC2(9)

TC1 (7) / TC2(7)
/ TC1(4)/ TC2(4)

TC1 (8) / TC2(8)
/ TC1(3)/ TC2(3)

TC1 (6) / TC2(6) /
TC1(5)/ TC2(5)

TC1 (10) /
TC2(10) / TC1(1)/

TC2(1)
0 0 0 0 0 0

1, 2, 4, 8, 16 1 c11
10 c11

2 c11
4 c11

8 c11
6

3, 6, 12, 24, 17 2 c11
6+c11

10 c11
10+c11

2 c11
2+c11

4 c11
4+c11

8 c11
8+c11

6
5, 10, 20, 9, 18 3 c11

8+c11
10 c11

6+c11
2 c11

10+c11
4 c11

2+c11
8 c11

4+c11
6

7, 14, 28, 25, 19 4 c11
8+ c11

6+c11
10 c11

6+ c11
10+c11

2 c11
10+ c11

2+c11
4 c11

2+ c11
4+c11

8 c11
4+ c11

8+c11
6

11, 22, 13, 26, 21 5 c11
4+ c11

6+c11
10 c11

2+ c11
8+c11

10 c11
2+c11

4+ c11
6 c11

4+c11
8+ c11

10 c11
2+ c11

8+c11
6

15, 30, 29, 27, 23 6 c11
4+ c11

8+
c11

6+c11
10

c11
8+ c11

6+
c11

10 +c11
2

c11
6+ c11

10

+c11
2+c11

4
c11

10+ c11
2

+c11
4+c11

8
c11

2+ c11
4+

c11
8+c11

6

31 7 c11
2+ c11

4+
c11

8+c11
6+c11

10
c11

2+ c11
4+

c11
8+c11

6+c11
10

c11
2+ c11

4+
c11

8+c11
6+c11

10
c11

2+ c11
4+

c11
8+c11

6+c11
10

c11
2+ c11

4+
c11

8+c11
6+c11

10

Table 3.10: The 8 groups of memory content used for computing the 5-point cyclic

convolution in GDAUs.
Grouped

candidates of DA
input (Xq)

Group address
(Gq)

TS1(2)/ TS2(2)/
TS1(9)/ TS2(9)

TS1 (7) / TS2(7) /
TS1(4)/ TS2(4)

TS1 (8) / TS2(8) /
TS1(3)/ TS2(3)

TS1 (6) / TS2(6) /
TS1(5)/ TS2(5)

TS1 (10) /
TS2(10) / TS1(1)/

TS2(1)
0 0 0 0 0 0

1, 2, 4, 8, 16 1 s11
10 s11

2 -s11
4 s11

8 s11
6

3, 6, 12, 24, 17 2 s11
6+s11

10 s11
10+s11

2 s11
2-s11

4 -s11
4+s11

8 s11
8+s11

6
5, 10, 20, 9, 18 3 s11

8+s11
10 s11

6+s11
2 s11

10-s11
4 s11

2+s11
8 -s11

4+s11
6

7, 14, 28, 25, 19 4 s11
8+ s11

6+s11
10 s11

6+ s11
10+s11

2 s11
10+ s11

2-s11
4 s11

2- s11
4+s11

8 -s11
4+ s11

8+s11
6

11, 22, 13, 26, 21 5 -s11
4+ s11

6+s11
10 s11

2+ s11
8+s11

10 s11
2-s11

4+ s11
6 -s11

4+s11
8+ s11

10 s11
2+ s11

8+s11
6

15, 30, 29, 27, 23 6 -s11
4+s11

8+
s11

6+s11
10

s11
8+ s11

6 +
s11

10 +s11
2

s11
6+ s11

10

+s11
2-s11

4
s11

10+ s11
2

-s11
4+s11

8
s11

2- s11
4+

s11
8+s11

6

31 7 s11
2- s11

4+
s11

8+s11
6+s11

10
s11

2- s11
4+

s11
8+s11

6+s11
10

s11
2- s11

4+
s11

8+s11
6+s11

10
s11

2- s11
4+

s11
8+s11

6+s11
10

s11
2- s11

4+
s11

8+s11
6+s11

10

Design evaluation

The evaluation of GDA-based DHT design and some existing DHT designs

involves in the subsequent section of long length DSST’s designs.

3.3 Design of 1-D DCT

3.3.1 Cyclic Convolution Formulation

Prime-length case

If transform length N is prime, we can write the 1-D N-point DCT of an input

sequence {y(n), n = 0, 1, …., N-1} in cyclic convolution form by exploiting the

property of I/O data permutation as

 67

∑
−

=

=
1

0

)()0(
N

n

nyY

1,....,1));)((cos()]0())((2[))((2 −=⋅⋅+⋅= NkgxgTgY N
k

NN
k

N
k π (3.41)

))(cos()1())(())((1
1

1

1
N

n
N

m
N

n
N

kn
N

k ggxgT +
−

=

+− ⋅⋅−⋅=∑ π

, where (gk)N denotes the result of “gk modulo N” for short, g is a primitive element,

and the sequence {x(n)} is defined as

.
201)

 11

⎩
⎨
⎧

⎭
⎬
⎫

−=+−=
−=−

,....N);nx(ny(n)x(n
)y(N)x(N

 (3.42)

By using the symmetry property of cosine kernel as

))(cos()))((cos())(cos(2
1

N
n

NN
k

NN
k

N
N

ggNg
−+⋅−=−⋅=⋅ πππ

, (3.43)

we can re-write the T((gk)N) in (3.41) as

1,....,1;)(cos(])1())(()1())(([))((1)1(
2/)1(

1

1 2
1

2
1

−=⋅×−⋅+−⋅= ++++−
−

=

+−
−−

∑ NkggxgxgT N
n

N
m

N
knm

N

n
N

kn
N

k
NN

π

 (3.44)

To describe the proposed algorithm in more detail, we can write the kernel T((3k)7) in

a design example of 1-D 7-point DCT in matrix form as

,

)3cos(
)1cos(
)5cos(
)4cos(
)6cos(
)2cos(

)3()1()5()4()6()2(
)2()3()1()5()4()6(
)6()2()3()1()5()4(
)4()6()2()3()1()5(
)5()4()6()2()3()1(

)1()5()4()6()2()3(

)1(
)5(
)4(
)6(
)2(
)3(

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

×

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−−
−−−
−−−

−−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

a
a
a
a
a
a

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

xxxxxx

T
T
T
T
T
T

 (3.45)

where a denotes
7
π . However, the input data elements of the kernel possess different

signs so that it is not easy to apply the proposed memory efficient approach directly to

DCT realization. According to the symmetry property of DCT coefficients as that we

show in (3.43), we can write (3.45) as

 68

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

×

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−−
−−−
−−−

−−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

)4cos(
)6cos(
)2cos(

)4cos(
)6cos(
)2cos(

)3()1()5()4()6()2(
)2()3()1()5()4()6(
)6()2()3()1()5()4(
)4()6()2()3()1()5(
)5()4()6()2()3()1(

)1()5()4()6()2()3(

)1(
)5(
)4(
)6(
)2(
)3(

a
a
a

a
a
a

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

xxxxxx

T
T
T
T
T
T

, (3.46)

and the data elements in the matrix of (3.46) can be merged as

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
×

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−
−−−
+++
+++
+++
−−−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

)4cos(
)6cos(
)2cos(

)3()4()1()6()5()2(
)5()2()3()4()1()6(
)1()6()5()2()3()4(
)3()4()1()6()5()2(
)5()2()3()4()1()6(
)1()6()5()2()3()4(

)1(
)5(
)4(
)6(
)2(
)3(

a
a
a

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

T
T
T
T
T
T

. (3.47)

To separate the even and odd outputs in (3.47), we can obtain two smaller perfect

cyclic convolution forms as following:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
×
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+++
+++
+++

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

)4cos(
)6cos(
)2cos(

)1()6()5()2()3()4(
)3()4()1()6()5()2(
)5()2()3()4()1()6(

)4(
)6(
)2(

a
a
a

xxxxxx
xxxxxx
xxxxxx

T
T
T

 (3.48)

and

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
×

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
−−−
−−−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

a)(
a)(
a)(

4cos
6cos
2cos

x(1)x(6)x(5)x(2)x(3)x(4)
x(3)x(4)x(1)x(6)x(5)x(2)
x(5)x(2)x(3)x(4)x(1)x(6)

T(3)
T(1)
T(5)

. (3.49)

From (3.46), (3.47), (3.48), and (3.49), we find that exploiting the symmetry

property of the DCT coefficient can help merging the input data elements in the DCT

kernel and separating the kernel into two perfect cyclic forms, which facilitates the

efficient realization of the DCT through the proposed design approach. Fig. 3.8 shows

the area reduction of the memory cost when applying the symmetry property of the

DCT coefficients (shown in (3.48) and (3.49)) or not (shown in (3.45)). We find that it

is helpful in reducing the memory size greatly when using the symmetry property of

the DCT coefficients.

 69

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

5 7 11

transform length

ar
ea

 c
os

t (
K

 u
m

2
)

0

10

20

30

40

50

60

70

80

90

100

ar
ea

 re
du

ct
io

n
(%

)

no separated
separated
area reduction

Fig. 3.8: The area reduction of the memory cost when applying the symmetry property

of DCT coefficients or not.

For facilitating the proposed memory efficient design approach, we further

formulate the T((gk)N) specified in (3.44) as

,
112cos

 12cos
))((

2
11

21

1
2

1

2
11

21

1
1

11

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−+=⋅⋅⋅

=⋅⋅⋅

=
−−+

−

=

−

=

−−+
−

=

−

=+

∑∑

∑∑

,....,N;k)))(g()))((g(xG(

 ,....,;k)))(g()))((g(xG(
gT

Nj
N

n
N
π

)/(N

n
N

kn
j

L

j

Nj
N

n
N
π

)/(N

n
N

kn
j

L

j
N

k

 (3.50)

where L denotes the data word length of the variable x, N denotes the transform length,

the variable G())((gx N
kn

j
−) denotes the jth-bit group address of the memory access

operations, and the preprocessed input sequence {x(n)} is defined as

,
01);)((

01);)((
))(()1()1(

1
1

⎭
⎬
⎫

⎩
⎨
⎧

<+−
≥+−

=
+−+−

+−
+−

knifgx
knifgx

gx
N

knN
N

kn

N
kn

(3.51)

.
01);)((

01);)((
))((

2
1

)1()1(
2

1
1

1

2
1

2
1

2
1

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

<++−

≥++−
=

−
++−+−

−
++−

++−

−

−
−

N
N

knN

N
N

kn

N

kn

knifgx

knifgx
gx N

N
N

 (3.52)

 70

The value of m is determined by

1,....,1,;)()()(11 −=⋅=⋅+ +−+ NknggNmg N
k

N
kn

N
n

. (3.53)

Non-prime length case

By introducing a indirect sequence {x(n)}, we can express the non-prime length

1-D DCT as

1,....,1);
2

cos()]0()(2[)(−=⋅+⋅= Nk
N
kxkTkY π

 (3.54)

)cos()()(
1

1 N
nknxkT

N

n

π
⋅=∑

−

=

∑
−

=

=
1

0

)()0(
N

n

nyY

The sequence {x(n)} is defined as

.
201)

 11

⎩
⎨
⎧

⎭
⎬
⎫

−=+−=
−=−

,....N);nx(ny(n)x(n
)y(N)x(N

 (3.55)

By introducing a new sequence {C(k)} as

])2cos[()()(
1

1

2 βnkknxkC
N

n

−⋅=∑
−

=

 (3.56)

with
N2
πβ = , we can express {T(k)} as

1,1)];2()([
)cos(2

1)(2 −=−+
⋅

= NkkNCkC
k

kT L
β

 (3.57)

Now appropriately evaluating the term C(k)+C(2N-k)

1,1)];()([
)cos(2

1)(2 −=+
⋅

= NkkTkT
k

kT sc L
β

 (3.58)

where

1,,1);sin())(()(

1,,1);cos())(()(
1

0

2

1

0

2

−=⋅+=

−=⋅+=

∑

∑
−

=

−

=

NknknskT

NknknckT
N

n
Nfs

N

n
Nfc

L

L

β

β
 (3.59)

 71

and

mNif
Nknsknskns
Nknckncknc

N
nm

NNf

N
nm

NNf 2 ;
))(()1())(())((
))(()1())(())((

2
'

2
'

2
'

2
'

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++⋅−++=+
++⋅−++=+

+

+

 (3.60)

12 ;
))(()1())(())((

))(()1())(())((

2
'1

2
'

2
'

2
'

+=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++⋅−++=+
++⋅−++=+

++

+

mNif
Nknsknskns

Nknckncknc

N
nm

NNf

N
nm

NNf (3.61)

where

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−+=
=

−=

−
=

12,,1
,0

1,,1

)2(
 ,0

),(
)('

NNn
Nn
Nn

nNx

nx
nc

c

c

L

L

 (3.62)

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−+=
=

−=

−
=

12,,1
,0

1,,1

)2(
 ,0

),(
)('

NNn
Nn
Nn

nNx

nx
ns

s

s

L

L

 (3.63)

and the sequences {xc(n)} and {xs(n)} are defined respectively as

)sin()()(
)cos()()(

2

2

β
β

nnxnx
nnxnx

s

c

⋅=
⋅=

 (3.64)

In the above equations, the both DCT kernel operations Tc(k) and Ts(k), are

expressed in cyclic convolution forms and thus can be efficiently implemented by

GDA. However, the non-prime length DCT algorithm also requires pre-processing as

indicated in (3.60) ~ (3.64) and post-processing as indicated in (3.54). This algorithm

is useful in realizing the DCT with any length, which can cover the applications with

broader ranges in the transform length than the algorithms being developed for

2p-point DCT.

3.3.2 Numerical stability

Similar to the non-prime length 1-D DHT, the issue of numerical instability is

also involved in the non-prime length 1-D DCT algorithm, and causes numerical

instability of some results as the denominator in division operation may equal to zero

for specific values of k. For ensuring the correctness of non-prime length 1-D DCT,

we first introduce a sequence {S(k)} that is different from the {C(k)} mentioned above.

That is,

 72

1,,1,0];)2sin[()()(
1

0

2 −=−⋅= ∑
−

=

NknkknxkS
N

n
Lβ

Using this sequence, we can first express the sequence {T(k)} as

1,1,0)];2()([
)sin(2

1)(2 −=−+
⋅

= NkkNSkS
k

kT L
β

Then, based on the similar procedures shown in before, we can rewrite the T(k) as

1,1,0)];()([
)sin(2

1)(2 −=+
⋅

= NkkUkU
k

kT SC L
β

 where

1,,1,0);sin())(()(

1,,1,0);cos())(()(
1

0

2

1

0

2

−=⋅+=

−=⋅+−=

∑

∑
−

=

−

=

NknknckU

NknknskU
N

n
Nfs

N

n
Nfc

L

L

β

β
 (3.65)

The sequences {Uc(k)} and {Us(k)} are similar to {Tc(k)} and {Ts(k)}, and the

operands cf((N+k)N) and sf((N+k)N) are exchanged with different signs. Thus we also

can solve this issue of numerical instability by using simple control in hardware

realization.

3.3.3 Architecture design and evaluation

Architecture design

Fig. 3.9 shows the proposed pipeline architecture that realizes the 1-D N-point DCT.

It consists of the pre-processing stage, DA processing stage, and post-processing stage.

For the 1-D 7-point DCT design example, the input buffer and pre-processing in the

preprocessing stage shown as Fig. 3.10 are designed by using the bidirectional shift

registers and an accumulator, which is used to generate the data sequence x(n) from

input sequence y(n). The detail cycle information shows that the latency consumed by

input data sampling and x(n) computation is 14 cycles. The DA processing stage

shown as Fig. 3.11, named group distributed arithmetic unit (GDAU), is designed

with the proposed memory efficient approach to carry out the computation of T((3k)7)

in the design example of 1-D 7-point DCT. Due to the same content of group memory,

only one group memory in the GDAU is required to compute the outputs of the

 73

separated cyclic operations. In Fig. 3.11, the candidate of DA input for qth bit Xq={x3,q,

x2,q, x1,q} is first fed into an address decoder to determine which group it should

belong to. The address decoder will compute the seed-value X’q={x’3,q, x’2,q, x’1,q},

group address Gq={g2,q, g1,q}, and the rotating factor Rq={r2,q, r1,q} by decoding the

input vector according to Table 3.11. Table 3.12 shows the original partial product

distributions for computing the outputs of DCT kernel under the same input value.

From Table 3.12, the rotation relationship between these partial products is also

visible, and then the memory content arrangement in the proposed design is shown in

Table 3.13. It is noted that we only need one small group memory module of size

(N-1)/2 × Gnum words for computing T((3k)7). In above, Gnum denotes the number of

groups in the group memory modules, which is dependent on the transform length N.

The post-processing stage shown in Fig. 3.12(a) is used to perform the post

computation for GDAU outputs, including the operations of multiplying by two,

adding with x(0), and multiplying serially by the cosine coefficients in formulation.

Since the operation of multiplying by two is performed by the manner of hardwiring,

it has no hardware cost required. The output buffer shown in Fig. 3.12(b) in

post-processing stage is used to perform the operations of pre-loadable shifting for

serially generating the results of DCT in order.

P
re-

processing

G D A U

P
ost-processing

)))((c o s (2 N
k

N g⋅π
))((N

kgT))((N
kngx −

)((ny

A C C
)0(Y

)((nY

)0(x

Input buffer

O
utput buffer

P r e p r o c e s s i n g s t a g e D A p r o c e s s i n g s t a g e P o s t p r o c e s s i n g s t a g e

Fig. 3.9: Block diagram of the proposed pipeline architecture for computing the 1-D

N-point DCT.

 74

y(n)

-

D

D

D

D

D

D

D x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

y(0)

y(1)

y(2)

y(3)

y(4)

y(5)

y(6)

Cycle-based timing information for input data sampling and preprocessing Input

buffer 1 2 3 4 5 6 7 8 9 10 11 12 13 14
D y(0) y(1) y(2) y(3) y(4) y(5) y(6) y(5) y(4) y(3) y(2) y(1) y(0) x(6)
D y(0) y(1) y(2) y(3) y(4) y(5) y(4) y(3) y(2) y(1) y(0) x(6) x(5)
D y(0) y(1) y(2) y(3) y(4) y(3) y(2) y(1) y(0) x(6) x(5) x(4)
D y(0) y(1) y(2) y(3) y(2) y(1) y(0) x(6) x(5) x(4) x(3)
D y(0) y(1) y(2) y(1) y(0) x(6) x(5) x(4) x(3) x(2)
D y(0) y(1) y(0) x(6) x(5) x(4) x(3) x(2) x(1)
D y(0) x(6) x(5) x(4) x(3) x(2) x(1) x(0)

Fig. 3.10: Design of the preprocessing stage in the 1-D 7-point DCT.

Barrel shifter

Group ROM

cos(2a)+
cos(4a)+ cos(6a)

000

cos(2a)+ cos(6a)cos(2a)+ cos(4a)cos(6a)+ cos(4a)

cos(2a)cos(4a)

T(5) T(1) T(3)

cos(6a)

cos(2a)+
cos(4a)+ cos(6a)

cos(2a)+
cos(4a)+ cos(6a)

T(2) T(6) T(4)

+/- sh +/- sh +/- sh

ADD
/SUB

ADD
/SUB

ADD
/SUB

x(6)

x(1)

p/m

x(4)

x(3)

x(2)

x(5)

x3: x(6)+x(1)/x(6)-x(1): msb … lsb
x2: x(4)+x(3)/x(4)-x(3): msb … lsb
x1: x(2)+x(5)/x(2)-x(5): msb … lsb Group

address

A
dd

re
ss

de
co

de
r

{r2,q, r1,q}

PI
SO

x3,q

x2,q
x1,q

Fig. 3.11: Design of the DA processing stage that is used to compute the kernel of

T((3k)7) in the 1-D 7-point DCT.

 75

Table 3.11: The seed-value, group address, and rotating factor used in the design of

group address decoder of 1-D 7-point DCT.

Grouped DA input value (Xq)
{x3,q, x2,q, x1,q}

Seed-value (X’q)
{x’3,q, x’2,q, x’1,q}

1Rotating
factor (Rq)
{r2,q, r1,q}

Group
address (Gq)

{g2,q, g1,q}

001 0
010 1
100

001
2

0

011 0
110 1
101

011
2

1

000 000 0 2
111 111 0 3

Note:
1. Rotating factor denotes the number of position of the output data,

corresponding to the candidate of DA input value in a group, should be
rotated.

Table 3.12: The partial products distribution for different DCT outputs under the same

input value.

Input
(Xp,q)/(Xm,q)

T(2)/ T(5) T(6) / T(1) T(4) / T(3) Group
address

000 0 0 0 2
001 cos(4a) cos(2a) cos(6a) 0
010 cos(6a) cos(4a) cos(2a) 0
011 cos(6a)+

cos(4a)
cos(2a)+
cos(4a)

cos(2a)+
cos(6a) 1

100 cos(2a) cos(6a) cos(4a) 0
101 cos(2a)+

cos(4a)
cos(2a)+
cos(6a)

cos(6a)+
cos(4a) 1

110 cos(2a)+
cos(6a)

cos(6a)+
cos(4a)

cos(2a)+
cos(4a) 1

111 cos(2a)+ cos(4a)+
cos(6a)

cos(2a)+ cos(4a)+
cos(6a)

cos(2a)+ cos(4a)+
cos(6a) 3

Note:
1. Xp,q denotes the sum of inputs for the qth bit.
2. Xm,q denotes the difference of inputs for the qth bit.

 76

Table 3.13: 8-word memory contents arranged into groups.
Original
address

Group
address

1, 2, 4 0 cos(4a) cos(2a) cos(6a)

3, 5, 6 1 cos(6a)+
cos(4a)

cos(2a)+
cos(4a)

cos(2a)+
cos(6a)

0 2 0 0 0

7 3 cos(2a)+ cos(4a)+
cos(6a)

cos(2a)+ cos(4a)+
cos(6a)

cos(2a)+ cos(4a)+
cos(6a)

ADD

ADD

ADD

x(0)

P
IS

O

T(5)

T(1)

T(3)

T(2)

T(6)

T(4)

*2

*2

*2

)cos(14
2π

+ S
H

+ S
H

+ S
H

)cos(14
5π

)cos(14
6π

)cos(14
π

)cos(14
4π

)cos(14
3π

0

msb lsb

msb

lsb

Y(5)

Y(1)

Y(3)

Y(2)

Y(6)

Y(4)

hardwired

(a)

Y(n)

Y(0)

D

Y(5)

Y(1)

Y(3)

Y(2)

Y(6)

Y(4)

D
m
u
x

D
m
u
x

D
m
u
x

D
m
u
x D

m
u
x

D
m
u
x

(b)

Fig. 3.12: Design of the post-processing stage in the 1-D 7-point DCT including (a)

the post-processing, and (b) the output buffer.

 77

Design evaluation

In this section, we will illustrate the performance evaluation of the design

using the proposed design approach and some existing DCT designs. The existing

DCT designs used in this evaluation include memory-based systolic array design [33],

direct DA design [34], OBC DA design [35] and adder-based DA design [52]. For a

fair comparison, we also adopt the Avanti 0.35 μm, 3.3-volt CMOS cell-library [43]

in the performance evaluation in terms of the delay time and area cost. According to

these two measures, we can evaluate these designs in terms of delay-area product with

respect to different values of N. Table 3.14 shows the comparisons of these designs.

The design in [33] is a memory-based systolic array design. It needs about N adders,

N-1 16-bit Flip-Flop and (N-1)⋅2(L/2) words of memory if the memory tables in the

design are partitioned once. The silicon area of this design is equal to 1237N-1217

Kum2. The design in [34] is the conventional memory-based DA design; it requires

about N 16-bit adders, N 16-bit Flip-Flops used for PISO and 2N N words of memory.

The silicon area of this design is equal to 13.7N+4.75 2N N Kum2. The design in [35]

is the modified memory-based DA design using the reduction technique of OBC, it

requires about 2N 16-bit adders, N 16-bit Flip-Flop and 2(N-2) N words of memory.

The silicon area of this design is equal to 19.6N+4.75 2(N-2) N Kum2. The design in

[52] is the adder-based DA design; it requires about four 16-bit multipliers, 2N+2L+5

16-bit adders, 4N+3 16-bit Flip-Flops and 4N words of RAM. The silicon area of this

design is equal to 73N+380 Kum2. Fig. 3.13 shows the delay-area product of the

proposed design and the existing designs [33]-[35][52] in realizing the 1-D DCT with

various values of N. As shown in Fig. 3.13, in case of 16-bit data word-length, the

delay-area product of the proposed design is much smaller than the memory-based

systolic array DCT design [33] and the other DA-based designs [34][35][52].

 78

Table 3.14: The comparison of the proposed design and the existing DCT designs

[33]-[35][52] in realizing the 1-D N-point DCT in terms of delay and silicon area.

 Cycle time (T) Mul
(16-bit)

Adder
(16-bit)

FF
(16-bit)

memory
(16-bit)

Barrel shifter
(16-bit)

RAM
(16-bit) Delay*Area (ns * Kum2)

Guo [33]
(Memory-based
systolic array)

T=tmux+trom
+tadd+tadd 5.9N 7.8(N-1) 1216 (N-1) 7.4 (N-1) [(N-1)T/N] (1237N-1217)

White [34]
(directly DA) T = trom+ tadd 5.9N 23.4N 4.75 2N N [(16T)/N]*(29.3N+4.75 2N N)

Choi [35]
(OBC-based DA) T = trom+2 tadd 11.8N 23.4N 4.75 2(N-2) N [(16T)/N]* (35.2N+4.75 2(N-2) N)

Guo [52]
(Adder-based DA)

T =max{tmul, tadd+tff} 34.6*4 5.9(2N+37) 7.8(4N+3) 7.4(4N) [(NT)/N]*(73N+380)

The proposed
design T= trom+tbr+tadd 11.8N 23.4(N-1))275.4 2

1(2
)1(

7
6 −⋅⋅

− NN 12* [-0.072 + 0.435 *
(N-1) + 0.053 * (N-1)2]

[(32T)/N]*[-28.8 + 39.1N + 0.64N2

+ [)275.4 2
1(2

)1(
7
6 −⋅⋅

− NN
]

Note:
1. tmul denotes the delay time of multiplier.
2. tmux denotes the delay time of multiplexer.
3. tadd denotes the delay time of adder.
4. trom denotes the access time of memory associated with N for DA-based

design or associated with wordlength for memory-based systolic array design.
5. tbr denotes the delay time of barrel shifter associated with N.

0

20000

40000

60000

80000

100000

4 5 6 7 8 9 10 11 12

transform length

de
la

y-
ar

ea
 p

ro
du

ct
 (n

s*
K

um
2

)

memory-based systolic array [Guo]

direct ROM-based DA [White]

OBC-based DA [Choi]

adder-based DA [Guo]

The proposed design [Ours]

Fig. 3.13: The delay-area product of the proposed design and the existing DCT

designs [33]-[35][52] in realizing the 1-D DCT.

 79

3.3.4 Chip implementation

We have verified the proposed design for 1-D 7-point DCT in VERILOG

modeling. According to the synthesis result with Avanti 0.35um cell-library, this

design consumes 7485 gates, and possesses the maximum path delay of 12.1ns. The

working frequency of the chip is above 82.6 MHz. In other words, the chip can

maintain the throughput rate of 18.1 M samples/second, i.e., (82.6 MHz / 32 cycles) *

7 samples. Fig. 3.14 shows the layout view of the 1-D 7-point GDA-based DCT

design fabricated using TSMC 0.35um CMOS 1P4M process. The core size of

proposed DCT design is equal to 1734 * 1732 um2.

Fig. 3.14: Layout view of the 1-D 7-point GDA-based DCT design.

 80

Chapter 4
Long-length DSST’s designs

Regarding the long length DSST’s design, we adopt the methodology of two

level decomposition for realization of the long length DSST’s with short ones. In our

research, we not only partition the cyclic convolution in DSST’s kernel with

Agwal-Cooley algorithm and pseudocirculant factorization algorithm for the cases of

prime-length and non-prime length respectively but also combine with the other

decomposition algorithms [53]-[56] for different cases of transform length, such as

the Cooley-Tukey algorithm for the case of (a, b) > 1, where the transform length N =

a ⋅ b, prime factor algorithm (PFA) for the case of (a, b) = 1, and Rader’s algorithm

for the case of N = pc, where p is prime, and c > 1, to decompose the long length

DSST’s for short ones.

4.1 Decomposition of long-length DSST’s

4.1.1 Cooly-Tukey Algorithm

For the long-length 1-D DFT with non-prime length, firstly we can apply

Cooly-Tukey FFT Algorithm to decompose a 1-D N-point DFT into a 2-D DFT with

the lengths of N1 by N2. Based on the common factor map (CFM) [57], this algorithm

can map the time index n and frequency index k in 1-D DFT into the time indices n1,

n2 and frequency indices k1, k2 as

211

212
kNkk
nnNn
⋅+=
+⋅=

 (4.1)

where 1,0 111 −≤≤ Nkn , 1,0 222 −≤≤ Nkn . Thus, the 1-D N-point DFT can be

decomposed into a 2-D N1 x N2 DFT as shown in the following

 81

∑

∑

∑ ∑

∑

−

=

−

=

−

=

−

=

−

=

⋅=

⋅⋅=

⋅⋅⎥
⎦

⎤
⎢
⎣

⎡
⋅+=

+=

−=⋅=

1

0
12

1

0
12

1

0

1

0
212

211

1

0

2

2

22

2

2

2

22

2

12

2

2

22

2

12
1

1

11

1

),(~

]),([

)(

)(

1,1,0;)()(

N

n

kn
N

N

n

kn
N

kn
N

N

n

kn
N

kn
N

N

n

kn
N

N

n

nk
N

WknG

WWknG

WWWnnNx

kNkY

NkWnxkY L

 (4.2)

 where 12
1

11

1
),(),(~,)(),(1212

1

01
21212

kn
N

N

n

kn
N WknGknGWnnNxknG ⋅=⋅+= ∑

−

=

In the above derivation, we can see that Y(k) can be viewed as a 1-D N2-point

DFT with input),(~
12 knG , and),(12 knG can be viewed as a 1-D N1-point DFT with

input x(N2n1+n2). We can obtain),(~
12 knG by multiplying),(12 knG with a twiddle

factor 12kn
NW . These twiddle factors multiplications can be absorbed into the

post-processing in the cyclic convolution formulation of 1-D N1-point DFT. By

realizing the computation of),(~
12 knG and),(12 knG based on the proposed GDA

approach, we can achieve the design of long-length 1-D DFT

4.1.2 Prime Factor Algorithm

Prime Factor Decomposition of 1D DFT

A design example of decomposing 1-D N-point DFT into 2-D N0 x N1 DFT is

illustrated in the following. Based on prime factor map (PFM) [57], the mapping of

1-D indices n and k to 2-D indices n1, n2, k1, and k2 are typically given by:

NNN

N

kNNkNNk

nNnNn

))()((

) (

1
1

000
1

11

1001

10
⋅+⋅=

⋅+⋅=
−− (4.3)

where 10 000 −≤≤ N,kn , 1,0 111 −≤≤ Nkn , with N0 and N1 the relatively prime

factors of the transform length N. Then, the 1-D N-point DFT shown in (4.2) can be

 82

decomposed into the 2-D N0 x N1 DFT as

11
1

00
0

1

1

0

0

1

0

1

0
0101],[],[kn

N
kn

N

N

n

N

n

WWnnxkkY ⋅⋅= ∑ ∑
−

=

−

=
 (4.4)

Using the index mappings, we can express the DFT in (4.4) as

11
1

00
0

1

1

0

0

10
))) ((()))()(((

1

0

1

0
10011

1
000

1
11

kn
N

kn
N

N

n

N

n
NNNN WWnNnNxkNNkNNY ⋅⋅⋅+⋅=⋅+⋅ ∑ ∑

−

=

−

=

−−

(4.5)

Now, according to the PFA, the 1-D N-point DFT is decomposed into a 2-D N0

x N1 DFT with no twiddle factor such that the GDA design can directly be applied to

realize each of the 1-D N0-point DFT and N1-point DFT computation.

Prime Factor Decomposition of 1D DHT

For the long length DHT design, we firstly exploit the prime factor algorithm

(PFA) to decompose the long length DHT into shortened ones and then implement

each of the shortened DHT [53][56][58][59]. Based on PFA, the computation of the

long length DHT can be effectively achieved, whereby a 1-D DHT of N = N1×N2

samples can be formulated into a separable 2-D N1×N2 DHT. The decomposition of

1-D N-point DHT is briefly illustrated in the following.

For input index n and output index k, the mapping of 1-D indices n and k to 2-D

indices n1, n2, k1, and k2 are typically given by

NNN

N

kNNkNNk

nNnNn

))()((

) (

2
1

111
1

22

2112

21
⋅+⋅=

⋅+⋅=
−− (4.6)

where 1,0 111 −≤≤ Nkn , 1,0 222 −≤≤ Nkn , with N1 and N2 the prime factors of

the transform length N. Thus, the 1-D N-point DHT can be decomposed into a 2-D N1

x N2 DHT as shown in the following

)],(),(),(),([
2
1),(221142213211221121 kNkNYkNkYkkNYkkYkk −−+−+−+=Ψ (4.7)

 83

where)
2

()
2

(),(),(22
2

1

0
11

1

1

0
2121

2

2

1

1

kn
N

caskn
N

casnnxkkY
N

n

N

n
i

ππ
⋅

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
⋅= ∑ ∑

−

=

−

=
,

and θθθ sincos +=cas .

Now, the 1-D N-point DHT is decomposed into a 2-D N1 x N2 DHT. In this case,

the shortened DHTs are much more efficient in the hardware realization than the

direct realization of long length DHT.

4.1.3 Rader’s Algorithm

 [53][61] have shown that the DFT/DHT can be converted to convolution when the

transform length N is a power of the odd prime, i.e., N = pr for a prime p ≠ 2. For the

conversion with this algorithm, we must first remove all integers which contain a

factor p from the set {1, 2, ..., N-1} to get a cyclic group with pr-1(p-1) elements. This

cyclic group leads to a circular convolution of length pr-1(p-1) as before. The

remaining computation consists of two DFT’s of length pr-1. The generalized

algorithm shows that if N = pr the length N transform is computed with one length

pr-1(p-1) circular convolution, two pr-2(p-1) circular convolutions, four pr-3(p-1)

circular convolutions, ..., terminating 2r-1(p-1) circular convolutions, An example of

DFT with the length N = 9 = 32 illustrates this algorithm in detail begin with the

matrix representation as

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

)8(
)7(
)6(
)5(
)4(
)3(
)2(
)1(
)0(

1
1

111
1
1

111
1
1

111111111

)8(
)7(
)6(
)5(
)4(
)3(
)2(
)1(
)0(

1
9

2
9

3
9

4
9

5
9

6
9

7
9

8
9

2
9

4
9

6
9

8
9

1
9

3
9

5
9

7
9

3
9

6
9

3
9

6
9

3
9

6
9

4
9

8
9

3
9

7
9

2
9

6
9

1
9

5
9

5
9

1
9

6
9

2
9

7
9

3
9

8
9

4
9

6
9

3
9

6
9

3
9

6
9

3
9

7
9

5
9

3
9

1
9

8
9

6
9

4
9

2
9

8
9

7
9

6
9

5
9

4
9

3
9

2
9

1
9

x
x
x
x
x
x
x
x
x

WWWWWWWW
WWWWWWWW
WWWWWW
WWWWWWWW
WWWWWWWW
WWWWWW
WWWWWWWW
WWWWWWWW

Y
Y
Y
Y
Y
Y
Y
Y
Y

 (4.8)

We remove rows and columns corresponding to the indices of 0, 3, and 6, and

compute the remaining length six transform

 84

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

)8(
)7(
)5(
)4(
)2(
)1(

)8('
)7('
)5('
)4('
)2('
)1('

1
9

2
9

4
9

5
9

7
9

8
9

2
9

4
9

8
9

1
9

5
9

7
9

4
9

8
9

7
9

2
9

1
9

5
9

5
9

1
9

2
9

7
9

8
9

4
9

7
9

5
9

1
9

8
9

4
9

2
9

8
9

7
9

5
9

4
9

2
9

1
9

x
x
x
x
x
x

WWWWWW
WWWWWW
WWWWWW
WWWWWW
WWWWWW
WWWWWW

Y
Y
Y
Y
Y
Y

 (4.9)

using the permutation

5,4,3,2,1,0
5,7,8,4,2,1

 ,9 mod2
=
=

=
m
n

n m

to obtain the circular convolution (with input reversed as before)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

)2(
)4(
)8(
)7(
)5(
)1(

)5('
)7('
)8('
)4('
)2('
)1('

1
9

2
9

4
9

8
9

7
9

5
9

5
9

1
9

2
9

4
9

8
9

7
9

7
9

5
9

1
9

2
9

4
9

8
9

8
9

7
9

5
9

1
9

2
9

4
9

4
9

8
9

7
9

5
9

1
9

2
9

2
9

4
9

8
9

7
9

5
9

1
9

x
x
x
x
x
x

WWWWWW
WWWWWW
WWWWWW
WWWWWW
WWWWWW
WWWWWW

Y
Y
Y
Y
Y
Y

 (4.10)

and

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++
++
++

⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

)8()5()2(
)7()4()1(
)6()3()0(

1
1

111

)8(
)7(
)6(
)5(
)4(
)3(
)2(
)1(
)0(

111
111

111111111

)6(
)3(
)0(

1
3

2
3

2
3

1
3

3
9

6
9

3
9

6
9

3
9

6
9

6
9

3
9

6
9

3
9

6
9

3
9

xxx
xxx
xxx

WW
WW

x
x
x
x
x
x
x
x
x

WWWWWW
WWWWWW

Y
Y
Y

 (4.11)

where 2
3

6
9

1
3

3
9 , WWWW == .

For the deleted column we have

 85

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

)6(
)3(
)0(

1
1

111
1
1

111
1
1

111

)8("
)7("
)6("
)5("
)4("
)3("
)2("
)1("
)0("

3
9

6
9

6
9

3
9

3
9

6
9

6
9

3
9

3
9

6
9

6
9

3
9

x
x
x

WW
WW

WW
WW

WW
WW

Y
Y
Y
Y
Y
Y
Y
Y
Y

 (4.12)

and the equivalent form as

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

)6(
)3(
)0(

1
1

111

)8("
)7("
)6("

)5("
)4("
)3("

)2("
)1("
)0("

1
3

2
3

2
3

1
3

x
x
x

WW
WW

Y
Y
Y

Y
Y
Y

Y
Y
Y

 (4.13)

Only the last two entries Y”(1) and Y”(2) are needed from (4.13) to compute the

rest of (4.8) as

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

)2("
)1("
)2("
)1("
)2("
)1("

)5('
)7('
)8('
)4('
)2('
)1('

)5(
)7(
)8(
)4(
)2(
)1(

Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
Y
Y

 (4.14)

As for the DHT with the length of power of odd prime, the derivation of cyclic

convolution formulation is similar to that of the DFT.

4.2 Long length DHT Design and Evaluation

Architecture design

To facilitate the GDA realization of the shortened DHT without suffering from

exponential memory size, after algorithm decomposition of the long-length DHT, we

need to further partition these shortened DHTs, where the cyclic property must be

preserved in each partition of them. We recall the kernel T((gk)N) of 1-D DHT in

(3.23), and further partition it into short ones by the Agarwal-Cooley algorithm. With

this algorithm, we can preserve the cyclic property in each of the partitions and thus

 86

apply GDA design approach efficiently to the implementation of the shortened 1-D

DHT. It means that the original (N-1)-point cyclic convolution can be partitioned into

s * s short-length cyclic convolutions with the size of t * t, where s and t denote the

partitioning factors, i.e., N-1 = s * t. Thus, the permutated T((gk)N) in 1-D DHT

formulation can be written as the sum of some short-length cyclic convolutions. That

is,

∑∑

∑∑
−

+=

−

+=

−

+=

−

=

−

−−

−

−−

−

−

−

⋅+⋅+

⋅+⋅=

+++++=

1

1

)(

1

)(

1

)(

1

)(

21

)1)(1(

'''
)1(

)1)(1(

'''

)1(2

)1(
2

'
2''

2

)1(

1

'
1''

1

'''''

)()(

)()(

)(......)(........)()()(

N

n

g
NN

kn

n

g
NN

kn

n

g
NN

kn

n

g
NN

kn

N
k

sN
k

iN
k

N
k

N
k

s
Ns

s

N
sn

s
s

Ni

s
Ni

i

N
in

i

s
N

s
N

N
ns

N

N
n

H)gx(H)gx(

H)gx(H)gx(

)g(T)g(T)g(T)g(T)gT(

LL

LL

(4.31)

where n’i=1+(ni-1)t+t(ni-1)t+t(s-int((ni-1)/t))s and k’=1+(k-1)t+t(k-1)t+t(s-int((k-1)/t))s

denote the mapped indices for maintaining the partitioned matrix still preserves the

cyclic property. Let us examine an example of 1-D 29-point DHT with the real input

sequence {x(n), n=0, 1,… 28}. The cyclic convolution form of T((gk)N) can be

expressed as

 87

2 1 2 4 8 16 3 6 12 24 19 9 18 7 14 28 27 25 21 13 26 23 17 5 10 20 11 22 15 2
4 15 1 2 4 8 16 3 6 12 24 19 9 18 7 14 28 27 25 21 13 26 23 17 5 10 20 11 22 4
8 22 15 1 2 4 8 16 3 6 12 24 19 9 18 7 14 28 27 25 21 13 26 23 17 5 10 20 11 8
16 11 22 15 1 2 4 8 16 3 6 12 24 19 9 18 7 14 28 27 25 21 13 26 23 17 5 10 20 16
3 20 11 22 15 1 2 4 8 16 3 6 12 24 19 9 18 7 14 28 27 25 21 13 26 23 17 5 10 3
6 10 20 11 22 15 1 2 4 8 16 3 6 12 24 19 9 18 7 14 28 27 25 21 13 26 23 17 5 6
12 5 10 20 11 22 15 1 2 4 8 16 3 6 12 24 19 9 18 7 14 28 27 25 21 13 26 23 17 12
24 17 5 10 20 11 22 15 1 2 4 8 16 3 6 12 24 19 9 18 7 14 28 27 25 21 13 26 23 24
19 23 17 5 10 20 11 22 15 1 2 4 8 16 3 6 12 24 19 9 18 7 14 28 27 25 21 13 26 19
9 26 23 17 5 10 20 11 22 15 1 2 4 8 16 3 6 12 24 19 9 18 7 14 28 27 25 21 13 9
18 13 26 23 17 5 10 20 11 22 15 1 2 4 8 16 3 6 12 24 19 9 18 7 14 28 27 25 21 18
7 21 13 26 23 17 5 10 20 11 22 15 1 2 4 8 16 3 6 12 24 19 9 18 7 14 28 27 25 7
14 25 21 13 26 23 17 5 10 20 11 22 15 1 2 4 8 16 3 6 12 24 19 9 18 7 14 28 27 14
28 = 27 25 21 13 26 23 17 5 10 20 11 22 15 1 2 4 8 16 3 6 12 24 19 9 18 7 14 28 • 28
27 28 27 25 21 13 26 23 17 5 10 20 11 22 15 1 2 4 8 16 3 6 12 24 19 9 18 7 14 27
25 14 28 27 25 21 13 26 23 17 5 10 20 11 22 15 1 2 4 8 16 3 6 12 24 19 9 18 7 25
21 7 14 28 27 25 21 13 26 23 17 5 10 20 11 22 15 1 2 4 8 16 3 6 12 24 19 9 18 21
13 18 7 14 28 27 25 21 13 26 23 17 5 10 20 11 22 15 1 2 4 8 16 3 6 12 24 19 9 13
26 9 18 7 14 28 27 25 21 13 26 23 17 5 10 20 11 22 15 1 2 4 8 16 3 6 12 24 19 26
23 19 9 18 7 14 28 27 25 21 13 26 23 17 5 10 20 11 22 15 1 2 4 8 16 3 6 12 24 23
17 24 19 9 18 7 14 28 27 25 21 13 26 23 17 5 10 20 11 22 15 1 2 4 8 16 3 6 12 17
5 12 24 19 9 18 7 14 28 27 25 21 13 26 23 17 5 10 20 11 22 15 1 2 4 8 16 3 6 5
10 6 12 24 19 9 18 7 14 28 27 25 21 13 26 23 17 5 10 20 11 22 15 1 2 4 8 16 3 10
20 3 6 12 24 19 9 18 7 14 28 27 25 21 13 26 23 17 5 10 20 11 22 15 1 2 4 8 16 20
11 16 3 6 12 24 19 9 18 7 14 28 27 25 21 13 26 23 17 5 10 20 11 22 15 1 2 4 8 11
22 8 16 3 6 12 24 19 9 18 7 14 28 27 25 21 13 26 23 17 5 10 20 11 22 15 1 2 4 22
15 4 8 16 3 6 12 24 19 9 18 7 14 28 27 25 21 13 26 23 17 5 10 20 11 22 15 1 2 15
1 2 4 8 16 3 6 12 24 19 9 18 7 14 28 27 25 21 13 26 23 17 5 10 20 11 22 15 1 1

T() x() HNj
()

(4.32)

Exploiting the Agarwal-Cooley algorithm, we can convert the cyclic convolution

with long length to a four by four short-length cyclic convolutions, and express (4.32)

as

 88

 GDAU1 GDAU2 GDAU3 GDAU4

2 1 24 25 20 16 7 23 17 2 19 21 11 3 14 28 5 4 9 13 22 6 12 27 10 8 18 26 15 2
19 23 1 24 25 20 16 7 14 17 2 19 21 11 3 6 28 5 4 9 13 22 15 12 27 10 8 18 26 19
21 7 23 1 24 25 20 16 3 14 17 2 19 21 11 22 6 28 5 4 9 13 26 15 12 27 10 8 18 21
11 16 7 23 1 24 25 20 11 3 14 17 2 19 21 13 22 6 28 5 4 9 18 26 15 12 27 10 8 11
3 20 16 7 23 1 24 25 21 11 3 14 17 2 19 9 13 22 6 28 5 4 8 18 26 15 12 27 10 3
14 25 20 16 7 23 1 24 19 21 11 3 14 17 2 4 9 13 22 6 28 5 10 8 18 26 15 12 27 14
17 24 25 20 16 7 23 1 2 19 21 11 3 14 17 5 4 9 13 22 6 28 27 10 8 18 26 15 12 17

5 12 27 10 8 18 26 15 1 24 25 20 16 7 23 17 2 19 21 11 3 14 28 5 4 9 13 22 6 5
4 15 12 27 10 8 18 26 23 1 24 25 20 16 7 14 17 2 19 21 11 3 6 28 5 4 9 13 22 4
9 26 15 12 27 10 8 18 7 23 1 24 25 20 16 3 14 17 2 19 21 11 22 6 28 5 4 9 13 9
13 18 26 15 12 27 10 8 16 7 23 1 24 25 20 11 3 14 17 2 19 21 13 22 6 28 5 4 9 13
22 8 18 26 15 12 27 10 20 16 7 23 1 24 25 21 11 3 14 17 2 19 9 13 22 6 28 5 4 22
6 10 8 18 26 15 12 27 25 20 16 7 23 1 24 19 21 11 3 14 17 2 4 9 13 22 6 28 5 6
28 = 27 10 8 18 26 15 12 24 25 20 16 7 23 1 2 19 21 11 3 14 17 5 4 9 13 22 6 28 • 28

27 28 5 4 9 13 22 6 12 27 10 8 18 26 15 1 24 25 20 16 7 23 17 2 19 21 11 3 14 27
10 6 28 5 4 9 13 22 15 12 27 10 8 18 26 23 1 24 25 20 16 7 14 17 2 19 21 11 3 10
8 22 6 28 5 4 9 13 26 15 12 27 10 8 18 7 23 1 24 25 20 16 3 14 17 2 19 21 11 8
18 13 22 6 28 5 4 9 18 26 15 12 27 10 8 16 7 23 1 24 25 20 11 3 14 17 2 19 21 18
26 9 13 22 6 28 5 4 8 18 26 15 12 27 10 20 16 7 23 1 24 25 21 11 3 14 17 2 19 26
15 4 9 13 22 6 28 5 10 8 18 26 15 12 27 25 20 16 7 23 1 24 19 21 11 3 14 17 2 15
12 5 4 9 13 22 6 28 27 10 8 18 26 15 12 24 25 20 16 7 23 1 2 19 21 11 3 14 17 12

24 17 2 19 21 11 3 14 28 5 4 9 13 22 6 12 27 10 8 18 26 15 1 24 25 20 16 7 23 24
25 14 17 2 19 21 11 3 6 28 5 4 9 13 22 15 12 27 10 8 18 26 23 1 24 25 20 16 7 25
20 3 14 17 2 19 21 11 22 6 28 5 4 9 13 26 15 12 27 10 8 18 7 23 1 24 25 20 16 20
16 11 3 14 17 2 19 21 13 22 6 28 5 4 9 18 26 15 12 27 10 8 16 7 23 1 24 25 20 16
7 21 11 3 14 17 2 19 9 13 22 6 28 5 4 8 18 26 15 12 27 10 20 16 7 23 1 24 25 7
23 19 21 11 3 14 17 2 4 9 13 22 6 28 5 10 8 18 26 15 12 27 25 20 16 7 23 1 24 23
1 2 19 21 11 3 14 17 5 4 9 13 22 6 28 27 10 8 18 26 15 12 24 25 20 16 7 23 1 1

T() x() HNj
()

 (4.33)

For facilitating the utilization of GDA approach, we can express each of the

shortened cyclic convolutions in (4.33) as

sigTgTgT q
L

q
N

Rk
qN

Rk
N

k
i

q L1 ;2))(())(())((
1

1
0

'
0

''

=⋅+−= −
−

=

++ ∑ (4.34)

where ∑
−

+−−=

−−+ ⋅=
sNi

sNin
NN

Rkn
qN

Rk
q

i

Ningqiq HgxgT
/)1(

1]/)1)(1[(

)
'

(
'''

))(())((. (4.35)

where L denotes word length of the input data x, N denotes the transform length, and

Rq denotes the rotating factor.

In the following, we intend to illustrate the hardware realization in detail

through a 1-D 29-point DHT. We make use of the partitioning scheme of cyclic

convolution such that the length of cyclic convolution can be partitioned into the

 89

composition of short ones that can be realized efficiently by the proposed GDA design

for achieving low hardware cost. Referring to the reformulation of 1-D DHT in (4.33),

we can realize the 28-point cyclic convolution used in 1-D 29-point DHT through the

summation of four 7-point cyclic convolutions four times since four sets of the

outputs in the 28-point cyclic convolution can be computed by using identical four

7-point GDA units (i.e., GDAU1~GDAU4), where the blocks of input data should be

rotated for each of the summation computations. The idea of exploiting computation

sharing on the content of memory not only efficiently reduces the memory cost with

the trade-off in slowing down the data throughput rate, but also achieves good

performance of the proposed design in terms of the hardware cost and average

computation time as we shall illustrate later.

 90

P/S

P/S

P/S

P/S

P/S

P/S

P/S

P/S

P/S

P/S

Address
decoder

D

D

D

D

D

D

D

D

D

D

Address
decoder

Address
decoder

Address
decoder GDAU3

+/-

+/-

+/-

+/-

+/-

P/SD
+/-

+/-
T(24), T(27), T(5), T(2)

GDAU4

GDAU2

GDAU1

C
SA

C
S

A
C

SA
C

SA
C

SA
C

SA
C

SA

T(25), T(10), T(4), T(19)

T(20), T(8), T(9), T(21)

T(16), T(18), T(13), T(11)

T(7), T(26), T(22), T(3)

T(23), T(15), T(6), T(14)

T(1), T(12), T(28), T(17)

+

x(0)

+ D

D

D

D

D

D

D

D

D

x(28)
x(27)
x(26)
x(25)
x(24)
x(23)

x(7)
x(6)
x(5)
x(4)
x(3)
x(2)
x(1)
x(0)

x(0)

Y(0)
Y(2)
Y(19)
Y(21)
Y(11)
Y(3)
Y(14)
Y(17)

Y(24)
Y(25)
Y(20)
Y(16)
Y(7)
Y(23)
Y(1)

Computing T((gK)N)

1

Fig. 4.1: The GDA-based architecture design for 1-D 29-point DHT example

With the derivation mentioned above, Fig. 4.1 shows the GDA-based

architecture of 1-D 29-point DHT. It is composed of the GDA unit (GDAU), address

decoders, adders/subtractors, accumulators, and parallel-to-serial (P/S) converters.

The computation of this design is illustrated as follows. The input vector Xq, which

can be {xq(1), xq(24), xq(25), xq(20), xq(16) , xq(7), xq(23)}, {xq(17), xq(2), xq(19),

xq(21), xq(11) , xq(3), xq(14)}, {xq(28), xq(5), xq(4), xq(9), xq(13) , xq(22), xq(6)}, or

 91

{xq(12), xq(27), xq(10), xq(8), xq(18) , xq(26), xq(15)}, is first fed into the address

decoder to determine which group the DA input belongs to and how many positions

the outputs should be rotated. The rotating factor Rq = {rq(1), rq(2), rq(3)} decoded

from the address decoder is used to control how many bits the barrel shifter should be

rotated left, where LROM 7-bit barrel shifters are involved in the GDAU and LROM

denotes the word length of memory. Table 4.1 shows the relationship between the

original DA input address and the group address as well as the rotating factor.

Table 4.1: Function of the address decoders in the 1-D 29-point DHT design

Group
number

Grouped candidates of DA input (Xq)
{xq(1), xq(24), xq(25), xq(20), xq(16) ,

xq(7), xq(23)},
{xq(17), xq(2), xq(19), xq(21), xq(11) ,

xq(3), xq(14)},
{xq(28), xq(5), xq(4), xq(9), xq(13) ,

xq(22), xq(6)}, or
{xq(12), xq(27), xq(10), xq(8), xq(18) ,

xq(26), xq(15)}

Rotating-left
factor

(Rq)
{rq(1), rq(2) ,

rq(3)}

Group address (Gq)
{gq(1), gq(2), gq(3), gq(4), gq(5)}

Group
number

Grouped candidates of DA input (Xq)
{xq(1), xq(24), xq(25), xq(20), xq(16) ,

xq(7), xq(23)},
{xq(17), xq(2), xq(19), xq(21), xq(11) ,

xq(3), xq(14)},
{xq(28), xq(5), xq(4), xq(9), xq(13) ,

xq(22), xq(6)}, or
{xq(12), xq(27), xq(10), xq(8), xq(18) ,

xq(26), xq(15)}

1Rotating-left
factor

(Rq)
{rq(1), rq(2) ,

rq(3)}

Group address (Gq)
{gq(1), gq(2), gq(3), gq(4), gq(5)}

0 10000000 0 00000 10
0001111,0011110,0111100,1000111,

1100011,1110001, 1111000
0,1,2,6,5,4,3 01010

1
0000001,0000010,0000100,0001000,

0010000,0100000, 1000000
0,1,2,3,4,5,6 00001 11

0010111,0101110,0111001,1001011,
1011100,1100101, 1110010

0,1,3,6,2,5,4 01011

2
0000011,0000110,0001100,0011000,

0110000,1000001,1100000
0,1,2,3,4,6,5 00010 12

0011011,0110011,0110110,1001101,
1011001,1100110, 1101100

0,4,1,6,3,5,2 01100

3
0000101,0001010,0010100,0100001,

0101000,1000010, 1010000
0,1,2,5,3,6,4 00011 13

0011101,0100111,0111010,1001110,
1010011,1101001, 1110100

0,5,1,6,4,3,2 01101

4
0001001,0010010,0010001,0100010,

0100100,1000100, 1001000
0,1,4,5,2,6,3 00100 14

0101011,0101101,0110101,1010101,
1010110,1011010, 1101010

0,2,4,6,1,3,2 01110

5
0000111,0001110,0011100,0111000,

1000011,1100001, 1110000
0,1,2,3,6,5,4 00101 15

0011111,0111110,1001111,1100111,
1110011,1111001, 1111100

0,1,6,5,4,3,2 01111

6
0001011,0010110,0101100,0110001,

1000101,1011000, 1100010
0,1,2,4,6,3,5 00110 16

0101111,0111101,1010111,1011110,
1101011,1110101, 1111010

0,2,6,1,5,4,3 10000

7
0001101,0011010,0100011,0110100,

1000110,1010001, 1101000
0,1,5,2,6,4,3 00111 17

0110111,0111011,1011011,1011101,
1101101,1101110,1110110

0,3,6,2,5,1,4 10001

8
0010011,0100110,0011001,0110010,

1001001,1001100, 1100100
0,1,3,4,6,2,5 01000 18

0111111,1011111,1101111,1110111,
1111011,1111101, 1111110

0,6,5,4,3,2,1 10010

9
0010101,0100101,0101001,0101010,

1001010,1010010, 1010100
0,5,3,1,6,4,2 01001 19 1111111 0 10011

Note:
1. Binary value with Boldface font denotes the seed-value of the group

Design evaluation

Table 4.2 lists the comparison of performance of the proposed design with the

existing designs [22][26]-[29]. The I/O channel of the proposed design is just a single

input/output and independent of the transform length N. Based on Avant 0.35μm

cell-library [43], we respectively show the comparison of area, cycle time, and

area-delay product in Fig. 4.2, Fig. 4.3 and Fig. 4.4 to illustrate the advantages of the

 92

proposed design. The results show that the normalized area cost of the proposed

design is not always improved significantly if the length of partitioned cyclic

convolution is not short enough. However, when we consider the cycle time effect

together with the hardware cost, we find in Fig. 4.4 that the proposed design possesses

better performance than the other designs [22][26]-[29] in term of reducing the

normalized area-delay product from 52% to 91%. Table 4.3 shows the decomposition

of 1-D DHT designs of different lengths in terms of short-length DHTs realized by the

proposed design approach. For the DHT designs with lengths longer than 121, we use

both the Agarwal-Cooley algorithm and prime-factor algorithm in decomposing them

into short-length DHTs with cyclic convolution formulation. However, if the lengths

of DHT are not long enough, like 49, 77, and 121 shown in Table 4.3, we need only to

decompose the DHT to short ones by prime-factor algorithm (PFA), and realize them

through GDA design approach directly. Due to the shortened DHTs with lengths that

are short enough (i.e., 6-point cyclic convolution for 7-point DHT and 10-point cyclic

convolution for 11-point DHT), the process of cyclic convolution partitioning can be

omitted.

Table 4.2: The performance comparison of different designs for computing the 1-D

N-point DHT

Designs Adder
(words)

MUL
(words)

memory
(words)

Barrel shifter
(n2-bit) I/O No. Cycle time

Liu [22] 5N-2 4N 0 0 (N+1)L N*(Tmul + 2Tadd)

Kumar [26] 9N/4-6 N-4 0 0 (N+1)L 3N*(Tmul + 2Tadd)
Dhar [27] 6N-8 8(N-1) 0 0 (N+1)L 2N*(Tmul + 2Tadd)

Fang (DIT) [28] 12
)1(4 +⎥⎥

⎤
⎢⎢
⎡ +N

⎥⎥
⎤

⎢⎢
⎡ +

2
)1(4 N 0 0 4NL

[)1(2
)1(−+⎥⎥

⎤
⎢⎢
⎡ + NN]

*(Tmul + 2Tadd)
Chang [29] 5N 8N 0 0 (N+2)L 2N*(Tmul + 2Tadd)

Proposed design N+1 0 Gnum(n2)*(N-1) n1⋅LROM 2L n1*L*(Trom + Tbar + Tcsa + Tadd)
Note:

1. A CORDIC processor is equivalent to four multipliers and two adders.
2. L denotes word-length of the input data.
3.Gnum denotes the number of groups contained in the group memory modules.

Usually, Gnum is linearly related to N for small N values.
4. N-1 equals to n1*n2.
5. LROM denotes the word-length of memory.
6.Tmul denotes the delay time of a multiplier, Tadd denotes the delay time of an adder,

Trom denotes the access time of memory, Tbar denotes the delay time of a Barrel
shifter with n2-bit width, and Tcsa denotes the delay time of a carry save adder,
where Tcsa is equivalent to the delay time of n1-1 adders.

 93

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7 11 19 29 57

Transform length (N)

N
or

m
al

iz
ed

 a
re

a
co

st

proposed

Liu [11]

Chang [18]

Kumar [15]

Dhar [16]

Fang (DIF) [17]

Fig. 4.2: Comparison of the normalized area cost in the realization of 1-D N-point

DHT using the proposed design and the existing designs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7 11 19 29 57

Transform length (N)

N
or

m
al

iz
ed

 a
ve

ra
ge

 c
yc

le
 ti

m
e

The proposed

Liu [11]

Chang [18]

Kumar [15]

Dhar [16]

Fang (DIF) [17]

Fig. 4.3: Comparison of the normalized cycle time in the realization of 1-D N-point

DHT using the proposed design and the existing designs

 94

0.0001

0.001

0.01

0.1

1

7 11 19 29 57

Transform length (N)

N
or

m
al

iz
ed

 a
re

a-
de

la
y

pr
od

uc
t

The proposed

Liu [11]

Chang [18]

Kumar [15]

Dhar [16]

Fang (DIF) [17]

Fig. 4.4: Comparison of the normalized area-delay product in the realization of 1-D

N-point DHT using the proposed design and the existing designs

Table 4.3: Length of 1-D DHT constructed by the decomposed short

length DHTs

Length of the decomposed DHT
7 11 19 29 57

7 49 77 133 203 399
11 77 121 209 319 627
19 133 209 361 551 1083
29 203 319 551 841 1653

Le
ng

th
 o

f
 t

he

de
co

m
po

se
d

D
H

T

57 399 627 1083 1653 3249

For the evaluation of long length DHT decomposed by the scheme mentioned

above, we firstly evaluate the hardware cost and cycle time for the shortened DHT,

and then estimate overall architecture of the long length DHT, which is composed of

the shortened DHT, in terms of the hardware cost and cycle time parameters of the

evaluated shortened DHT. Based on the result of high level synthesis for the 1-D

29-point and 57-point DHT designs shown in Table 4.4, we can further evaluate the

DHT designs with the lengths of 841 (i.e., 29 * 29), 1653 (i.e., 29 * 57), and 3249 (i.e.,

57 * 57), respectively. Since the cycle times consumed by both the stage of 29-point

 95

DHT and the stage of 57-point DHT in the 1653-point DHT design are not the same,

we should take the largest one of them in these two stages. Comparing with the

manner of directly partitioning in the conventional DA, we show the effectiveness of

the proposed design in Fig. 4.5 in terms of the normalized area-delay products, where

DP denotes directly partitioning for conventional DA and AC denotes partitioning

with Agarwal-Cooley algorithm for GDA. In the DHT design examples of 841-point,

1653-point, and 3249-point, the proposed GDA approach combining with

Agarwal-Cooley algorithm can efficiently remove the data redundancy to achieve

66.1% better in terms of area-delay product averagely.

Table 4.4: The evaluation result of GDA-based DHT designs

The length of DHT
Area cost1

(gates)
Cycle time2

(ns)
29 44890 702.7
57 89539 2749.4
841 89780 20378.3
1653 134429 79732.6
3249 179078 156715.8

Note:
1. The area cost of the DHT with composed length (i.e. 841-point, 1653-point,

and 3249-point) does not include the transpose memory.
2. The cycle time denotes the time consumed by the computation of N DHT

outputs.

0.339

1

0 0.2 0.4 0.6 0.8 1

Normalized area-delay product

PFA + DP + DA

PFA + AC +

Fig. 4.5: Average improvement of the normalized area-delay product in the designs of

841-point DHT, 1653-point DHT, and 3249-point DHT using the proposed design

approach

 96

4.3 Variable-length DFT Design to Communication System
Application

4.3.1 Overview of Communication system

The orthogonal frequency division multiplexing (OFDM) technique has been

widely adopted in high-speed data transmission, such as asymmetry digital subscriber

lines (ADSL), very high speed digital subscriber lines (VDSL), and digital

audio/video broadcasting (DAB/DVB) systems. In these systems, the discrete Fourier

transform (DFT) plays a main role. Table 4.5 shows the lengths of DFT required in

these systems, where the required length of DFT is proportional to the data-rate as

well as the distance. Thus a configurable dedicated hardware for the DFT computation

with variable length would be desired in the various high data-rate communication

applications.

There are many high-speed applications [16][17][19][21][62][63] that address

the use of dedicated hardware designs for computing the long length DFT/IDFT. The

designs with fast algorithms are attractive for low computational complexity.

However, hardware design of the algorithm is communication intensive and

computation intensive to complicate the realizations of controller and arithmetic

operation. In addition, most of the designs with fast algorithms exploit a butterfly

datapath and a global memory in storing all of input/output data as well as the

intermediate results. The mass data access from the global memory wastes a large

percentage of power in this kind of designs. Besides, the cascaded structure in the fast

algorithm makes the designs have poor numerical accuracy such that longer data

wordlength in the datapath is needed. This fact will reduce the low complexity

advantages of the fast algorithm and thus increase the hardware cost of the designs

with fast algorithm. Thus, the efficient hardware design of DFT is still a challenging

problem due to its high computational complexity and the requirement of real-time

processing. The popular designs based on the distributed arithmetic (DA) have the

benefit to exploit both constant and bit-level computation. However, the traditional

DA technique suffers from large memory cost for long length designs. To solve this

problem, we have proposed the GDA design approach that further reduces the

 97

memory cost efficiently with the numerical property. In this part of research, we

intend to extend the GDA design approach to long- and any-length design, and its

application to the popular power-of-two variable-length DFT.

Fig. 4.6: Transceiver /Receiver architecture in the communication system

Table 4.5: DFT lengths for several communication systems

Communication
system DFT length application

IEEE 802.11a 64 Wireless Ethernet

HIPERLAN/2 64 Wireless ATM

ADSL 256/512 Internet access

VDSL 512/1024/2048/4096/8192 Internet access

DAB 256/512/1024/2048 Digital Audio Broadcasting

DVB-T 8192/2048 Digital Video Broadcasting

4.3.2 Hardware Cost Analysis

Before designing the DFT architecture with GDA approach, we intend to

analyze the complexities of the FFT algorithm and the proposed GDA algorithm first.

With the Cooley-Tukey algorithm, the computation complexity of FFT algorithm is

 98

around Nlog2
N [64], including 1/2Nlog2

N computations of complex-multiplication and

Nlog2
N computations of complex-addition, that is equivalent to 2Nlog2

N computations

of real-multiplication and 2Nlog2
N computations of real-addition. Based on

Cooley-Tukey algorithm, there are two popular architecture designs. One is single

processing element (PE) design which provides adequate performance with low

hardware cost. The other is pipeline based design for the application with high

throughput. Because of regularity, modularity, locality, and high throughput with

moderate hardware cost, one dimensional linear array is more popular [65]. Besides,

in order to compute DFT via FFT, the input data and the intermediate results need to

be buffered and reordered by using some memory buffers, where the size of the

memory buffers is around N(N-1) words. There are two existing buffering strategies

proposed for the pipeline FFT architecture [66]. One is delay-commutator (DC)

architecture. The other is delay-feedback (DF) architecture.

Table 4.6: The computation complexity of various DFT algorithms

Algorithm Complexity

DFT (Mul-Add) N2

Cooley-Tukey DFT (Mul-Add) 2
3

2N

DA-based decomposed
Cooley-Tukey DFT with cyclic

partitioning (memory-word)
14

4
5

2 +⋅ NN

GDA-based decomposed
Cooley-Tukey DFT with cyclic
partitioning (memory -word)

14
2 +⋅ NN

Based on Cooley-Tukey algorithm for DFT decomposition, cyclic convolution

and pseudocirculant matrix factorization algorithm for cyclic convolution partitioning,

and GDA design approach, Table 4.6 shows the derivation of computation complexity

of the proposed long length DFT algorithm from the original DFT algorithm. The

 99

complexity of original DFT is N2. With Cooley-Tukey decomposition, the complexity

is reduced to 2
3

2N (i.e., 2)(2 NN). And then combining with the pseudocirculant

matrix factorization algorithm, we can realize the long length DFT with conventional

DA, and the complexity can be changed into 14
4
5

2 +NN (i.e.,

]22 4444

)NN()N[(N N ⋅⋅⋅⋅). If we replace the conventional DA with the

proposed GDA in the DFT design, the complexity can be reduced to 14
2 +NN (i.e.,

)]NN()N
N

[(N
N

444
4

4

22 ⋅⋅⋅⋅). Thus it is possible that the hardware cost of DFT

with the proposed DFT algorithm is smaller than the existing FFT algorithms. For

example of 4096-point DFT, according the Table 4.7, the estimated hardware costs of

FFT and proposed GDA-based DFT are shown as Fig. 4.7. We can see that the

hardware cost of the proposed design is better than FFT when the length of DFT is

smaller than 4096, where the multiplier is four times the hardware cost of adder, and

the transistor count of memory is proportional to memory word-length. However,

actually due to some of the multiplications in FFT butterfly can be omitted, the

hardware complexity in Table 4.7 should be changed into Table 4.8. As for the

estimations of the delay time consumed by each sample, shown as Table 4.9, they are

respectively sum of the delay time of multiplier, adder, and memory access in FFT,

and L2 times the sum of the delay time of memory access, barrel-shifter, and

accumulator divided by the length of cyclic convolution in GDA-based DFT, where L2

denotes the maximal one of the word-length of parallel-in-serial-out module in the

two stages of GDA-based DFT design. As shown in Fig. 4.8, the area-delay product of

GDA-based DFT is smaller than that of FFT when the transform length is smaller than

256, where sum of memory access time and barrel-shifter delay time is around half

delay time of the adder for the partitioned small size memory in GDAU, and the delay

time of multiplier in FFT is assumed as four times delay time of the adder. Thus the

GDA-DFT takes around 0.32 time delay time of FFT for each sample, where L2 and

N1/4 equal 12 and 8 respectively in our design).

 100

Table 4.7: The estimation of hardware costs of the FFT and the

proposed GDA-DFT

Algorithm Hardware cost

FFT 0.5Nlog2
N Amul + Nlog2

N Aadd

GDA-based DFT 14
22 +⋅⋅ NN AROM-word

Note:

1. Assume overall GDAU is two times hardware cost of ROM while
N1/4 equals 8.

2. Amul denotes the hardware cost of multiplier in unit of equivalent
gate count.

3. Aadd denotes the hardware cost of adder in unit of equivalent gate
count.

4. AROM-word denotes the hardware cost of the word of ROM in unit of
equivalent gate count.

Table 4.8: The estimation of hardware costs of the FFT with actual

complexity and the proposed GDA-DFT

Algorithm Hardware cost (gates)

FFT (radix-2 SDF) 3(log2
N -2)Amul + 6(log2

N -2)Aadd +2(N-1)Amem
+ 9(log2

N -2)Amux

GDA-based DFT 14
22 +⋅⋅ NN AROM-word

 101

Table 4.9: The estimation of cycle times of the FFT and the

proposed GDA-DFT for each sample

Note:

1. tmul denotes delay time of the multiplier.
2. tadd denotes delay time of the adder.
3. tacc denotes access time of the memory used in GDA-based

DFT design.
4. tbr denotes delay time of the barrel-shifter used in

GDA-based DFT design.
5. L2 denotes the word-length of input data.

100

1000

10000

100000

1000000

10000000

100000000

0 512 1024 1536 2048 2560 3072 3584 4096

Length of DFT

ha
rd

w
ar

e-
co

st
(g

at
es

)

FFT

GDA-DFT

Fig. 4.7: Hardware cost of the original FFT versus the proposed GDA-based

DFT

Algorithm Delay time

FFT tadd +2 tmux + tmul

GDA-based DFT L2 (tacc + tbr + tadd)/N1/4

 102

100

1000

10000

100000

1000000

0 256 512 768 1024

Length of DFT

ar
ea

-d
el

ay
 p

ro
du

ct

FFT

GDA-DFT

Fig. 4.8: Delay-area product of the FFT versus the proposed

GDA-based DFT

4.3.3 GDA-based Variable Length DFT Design and Evaluation

Exploiting the Cooley-turkey decomposition algorithm, we first decompose the

long length 1-D DFT into 2-D short length DFT, and form the shortened DFTs in each

dimension in cyclic convolution. Then, with the pseudocirculant factorization

algorithm, we factorize the cyclic convolutions as the sum of the shortened cyclic

convolutions, and apply the proposed GDA design to realize of the short-length cyclic

convolutions for achieving a hardware efficient long-length DFT design. Table 4.10

shows the proposed design can flexibly be used to compute the 1-D

64/128/256/512/1024/2048/4096-point DFT by cascading the decomposed short

length DFT.

 103

Table 4.10: Length of 1-D DFT constructed by the decomposed

short length DFTs

Length of the decomposed DFT
8 16 32 64

8 64 128 256 512
16 128 256 512 1024
32 256 512 1024 2048

Le
ng

th
 o

f
th

e
de

co
m

po
se

d
D

FT

64 512 1024 2048 4096

Architecture design

Fig. 4.9 shows the block diagram of the proposed GDA-based DFT architecture with

variable length with the Cooley-Turkey decomposition. This architecture consists of

two configurable GDA units for respectively computing the row and column 1-D

8/16/32/64-point DFT, a multiplier for performing the twiddle factor multiplications

serially, and a transpose memory for data transposition. Fig. 4.10 shows the block

diagram more detail with real input data and complex output data. For efficiently

realizing the twiddle factor multiplications, the complex number multiplier with serial

manner, such as CORDIC processor or the serial multiplier set, can be a proper choice

combined with DA-based design. In cyclic convolution formulation, the architecture

in Fig. 4.10 can be redrawn as Fig. 4.11. It is composed of serial multiplication for

preprocessing, GDA computation for Tij (), and serial multiplication for

post-processing. Each the Tij () block can be configured for the 1-D DFT computation

with different length, where i, j denote the computation with real part of input data

and real part of DFT coefficient (i.e., RR), imaginary part of input data and imaginary

part of DFT coefficient (i.e., II), real part of input data and imaginary part of DFT

coefficient (i.e., RI), or imaginary part of input data and real part of DFT coefficient

(i.e., IR). In Fig. 4.11, we can see that the output data of Tij () is sequentially

multiplied by the post-processing coefficient of row 1-D DFT, the twiddle factor, and

preprocessing coefficient of column 1-D DFT. Thus we can combine the three

multiplications, and replace with one multiplication only. According to the tradeoff

between word-length of the transpose memory and word-length of the multiplier, as

shown in Fig. 4.12 and Fig. 4.13, this multiplication can selectively be located in front

or real of the transpose memory.

 104

),(~
12 knG),(12 knG

)(212 nnNx +
)(211 kNkY +

21nk
NW

Fig. 4.9: Block diagram of the proposed variable-length DFT architecture.

Fig. 4.10: Architecture of 2-D DFT with real input.

GDA-based

Variable-length

TII()
Serial

multiplier

GDA-based

Variable-length

TRR()

GDA-based

Variable-length

TIR()

GDA-based

Variable-length

TRI()

+

+

C
O

R
D

IC
/S

M
U

L

Transpose
memory

Transpose
memory

C
O

R
D

IC
/S

M
U

L

GDA-based

Variable-length

TII()

GDA-based

Variable-length

TRR()

GDA-based

Variable-length

TIR()

GDA-based

Variable-length

TRI()

+

+

C
O

R
D

IC
/S

M
U

L

Real
input

Complex
input

C
O

R
D

IC
/S

M
U

L

Row 1-D DFT Column 1-D DFTTwiddle factor

Fig. 4.11: Architecture design of the 2-D DFT in cyclic convolution formulation.

 105

GDA-based

Variable-length

TII()
Serial

multiplier

GDA-based

Variable-length

TRR()

GDA-based

Variable-length

TIR()

GDA-based

Variable-length

TRI()

+

+

Transpose
memory

Transpose
memory

GDA-based

Variable-length

TII()

GDA-based

Variable-length

TRR()

GDA-based

Variable-length

TIR()

GDA-based

Variable-length

TRI()

+

+

C
O

R
D

IC
/S

M
U

L

Real
input

Complex
input

M
erged C

O
R

D
IC

/S
M

U
L

Row 1-D DFT Column 1-D DFT

Fig. 4.12: Version 1 of the reduced architecture of 2-D DFT in cyclic convolution

formulation.

M
erged C

O
R

D
IC

/S
M

U
L

C
O

R
D

IC
/S

M
U

L

Fig. 4.13: Version 2 of the reduced architecture of 2-D DFT in cyclic convolution

formulation.

For the purpose of performing the variable-length DFT computation with

identical hardware, we adopt the pseudocirculant matrix factorization algorithm to

factorize the cyclic convolution Tij() in 1-D DFT with different length as the

composition of 8-point cyclic convolutions. For the case of 64-point cyclic

convolution, as shown in Fig. 4.14, the matrix of input data can be decomposed as an

eight by eight blocked matrix. Since each block in the matrix has preserved as an

8-point cyclic convolution, we can allocate the computation of every eight row blocks

into eight 8-point GDAU and sum up the outputs of GDAUs to have eight outputs of

 106

the 64-point cyclic convolution. Observing the matrix form in left side of the Fig. 4.14,

we can see that each computation of eight row blocks with rotated order can be folded

onto the identical eight 8-point GDAUs. Totally, eight iterations are needed to

compute all the outputs of 64-point cyclic convolution. For the case of 32-point cyclic

convolution, due to it is composed of four by four blocked matrix with

pseudocirculant, as shown in Fig. 4.15, we can compute every eight outputs of the

32-point cyclic convolution by summing up the results of four 8-point cyclic

convolution. With the same amount of GDA computation hardware resource, it needs

two iterations to compute all the 32 outputs of 32-point cyclic convolution. With the

same way, the case of 16-point cyclic convolution can also be composed of two by

two blocked matrix with pseudocirculant. In the proposed design, we have constructed

the hardware with eight 8-point cyclic convolution modules for the computation of

cyclic convolution in the variable-length DFT. This hardware can compute the 64

outputs of 64-point cyclic convolution by eight iterations, the 32 outputs of 32-point

cyclic convolution by two iterations, the 16 outputs of 16-point cyclic convolution by

one-second iteration, and the 8 outputs of 8-point cyclic convolution by one-eighth

iteration. Thus for the computation of 64/256/1024/4096-point 1-D DFT, the lengths

of row DFT and column DFT are respectively 8/16/32/64, and the number of

iterations with the identical hardware is 1/8/64/512.

Fig. 4.14: Folding of the computation of each eight row blocks in 64-point cyclic

convolution.

 107

C
oe

ff
ic

ie
nt

 v
ec

to
r

1

O
ut

pu
t
ve

ct
or

 1

Fig. 4.15: Folding of the computation of each four row blocks in 32-point cyclic

convolution.

With the identical hardware, due to the numbers of iterations for the

computations of DFT with different lengths are not the same, the variable-length DFT

design must be worked with different control states. Since the hardware resource in

the proposed design can compute eight 8-point 1-D DFTs in each iteration, the

64-point 1-D DFT needs only one iteration to compute all the output data in row and

column DFT. For the computation of 256-point 1-D DFT, each of the iterations can be

used for the computation of two 16-point DFTs in each dimension so that 16 16-point

DFT computations need totally eight iterations, as well as 64 iterations needed for

1024-point 1-D DFT and 512 iterations needed for 4096-point 1-D DFT. Due to the

coefficients of 8, 16, 32, and 64-point DFT are different, we use RAM instead of

ROM for replacing the contents of memory needed for computing the variable-length

DFT. The partial products stored in this memory for DA computation can be

downloaded in the initialization phase from the main frame. Since there are thirty-six

memory entries in the 8-point GDAUs, thirty-six write cycles are consumed in each of

the initial phases. Due to the data rate and the length of DFT in a communication

system is fixed while the condition of environment is remained, once for loading

coefficients of the DFT with decided length into the memory of variable-length DFT

core is required. However, if the length of DFT is decided larger than 64, there are

 108

required respectively 4, 16, and 64 initial phases for 256-, 1024-, and 4096-point DFT.

All the coefficients of DFTs with different lengths can be stored previously in the low

cost memory of main frame.

1-bit 3-D
 rotator

2
2
1

i

i

n
NW

Pre-processingInput buffer

PISO
 groups

C
O

R
D

IC
/SM

U
L groups

IB
U

F groups

Input data

Re[Output data]

+

Computing

GDA-based
Variable-length

TII()

GDA-based
Variable-length

TRR()

GDA-based
Variable-length

TIR()

GDA-based
Variable-length

TRI()

+

Im[Output data]

(a)

 109

1-bit 3-D
 rotator

2
2
1

i

i

k
NW

Post-processing

PISO
 groups

Re[Output data]

+

Computing

GDA-based
Variable-length

TII()

GDA-based
Variable-length

TRR()

GDA-based
Variable-length

TIR()

GDA-based
Variable-length

TRI()

+

Im[Output data]
Im[Input data]Re[Input data]

O
B

U
F groups

O
B

U
F groups

C
O

R
D

IC
/SM

U
L groups

(b)

Fig. 4.16: Detail architecture of (a) the row 1-D DFT with input buffer and (b) the

column 1-D DFT with output buffer.

Fig. 4.16 shows the proposed variable-length DFT design more detail in row stage

and column stage, including input buffer (IBUF), serial multiplier (SMUL),

parallel-in-serial-out (PISO), 1-bit three-dimension (3-D) rotator, variable-length

GDA-based module, and output buffer (OBUF). The length of DFT in each stage can

be configured with 8/16/32/64-point. In the following, we will illustrate detail design

of the modules in the proposed variable-length DFT.

Similar to most of the DA-based designs, Fig. 4.17 (a), (b), and (c) show the

input buffer for serially storing input data, the parallel-in serial-out (PISO) module for

issuing the input data of DA with word-parallel-bit-serial manner, and the output

buffer for serially outputting the output data.

 110

IB
U

F7
IB

U
F6

IB
U

F0

IBUF

D

D

D

D

D

Input data

(a)

PISO
group7

PISO
group6

PISO
group0

(b) (c)

Fig. 4.17: Detail design of (a) input buffer groups, (b) PISO groups, and (c) output

buffer groups in the proposed 1-D DFT architecture.

 111

On the consideration of input data permutation for GDAUs, according to the

formulation of any-length cyclic convolution in (2.6), the input data of the eight

8-point GDAUs in each of the iterations is block rotated and in-block rotated. Then a

1-bit rotator is needed for preparing the exact data on the inputs of GDAUs. Since the

rotator needs to work with different lengths for variable-length DFT, a specific 1-bit

3-D barrel rotator is designed as Fig. 4.18 (a). The mode of 1-bit 3-D rotator can be

decided by three variables for how many bits are rotated in a block, how many blocks

are rotated in cyclic convolution for the chosen length of DFT, and which length of

DFT is chosen. It performs the in-block rotation with 8-bit barrel rotator (BR) in stage

1. For the block rotation, in the stage 2, the barrel rotator group (BRG) with eight

2-bit barrel rotators is used in 16-point DFT in each dimension of the 256-point DFT.

In the stage 3, the barrel rotator group (BRG) with eight 4-bit barrel rotators is used in

32-point DFT in each dimension of the 1024-point DFT. In the stage 4, the barrel

rotator group (BRG) with eight 8-bit barrel rotators is used in 64-point DFT in each

dimension of the 4096-point DFT. Table 4.11 shows the condition of BR in each stage

for DFT with the lengths of 64, 256, 1024, and 4096. This specific 1-bit 3-D rotator

design provides to permute the exact data on the inputs of GDAUs for computation of

the proposed variable-length DFT design.

Table 4.11: Condition of BR in each stage for DFT with the

lengths of 64, 256, 1024, and 4096.

length of DFT stage 1 stage 2 stage 3 stage 4

64 P P P P

256 R R P P

1024 R P R P

4096 R P P R

Note:
1. D denotes the BR works on bypass mode.
2. R denotes the BR works on rotation mode.

 112

(a)

(b) (c) (d)

Fig. 4.18: (a) design of the 1-bit 3-D rotator and the routing for (b) 2-bit BRG in stage

2, (c) 4-bit BRG in stage 3, and (d) 8-bit BRG in stage 4.

 113

Following the 1-bit 3-D barrel-rotator, with identical hardware, the module with

GDAUs is used to compute all the output data or part of the output data in each of the

iterations for DFT with variable length. As shown in Fig. 4.19, each of the GDAUs

performs the computation of 8-point cyclic convolution. In the following stage, shown

in Fig. 4.20, an adder-group tree is used to sum up the partial outputs from these

GDAUs for the shortened cyclic convolutions in case of the length of row or column

DFT is larger than eight, where the different dash lines respectively denote the

data-flows in the row or column DFT with different lengths. In each of the iterations

for DFT computation, the numbers of output data computed by the identical

computation resource for the 1-D DFT with lengths of 64/256/1024/4096 are

64/32/16/8. With the limitation of the number of GDAUs, we place the multiplexers

with different width to select out the different number of output data for the 1-D DFT

with different length.

Fig. 4.19: Detail design of variable-length GDA-based module used for the

computation of Tij() in the proposed 1-D DFT architecture.

 114

From the eight GDAUs

Adder-group

Adder-group

Adder-group

M
U

X
M

U
X

To
SMUL group7

Adder-group

Adder-group

Adder-group

M
U

X
M

U
X

Adder-group

To
SMUL group6

To
SMUL group5

To
SMUL group4

To
SMUL group3

To
SMUL group2

To
SMUL group1

To
SMUL group0

Fig. 4.20: Data-flow of the adder-group tree follows the GDAUs in the proposed

variable-length DFT design.

As the formulation mentioned in the chapter 3, the multiplications need for pre-

and post- processing of the 1-D DFT in cyclic convolution. For reducing hardware

cost of the multiplications, we combine the multiplication of pre-processing in row

DFT and the multiplication of post-processing in column DFT with the multiplication

of twiddle-factor processing such that only one multiplier is remained between row

DFT and column DFT. With the feature of serial manner in DA computation, the

complex multiplier with serial manner should be a proper choice for the

multiplication.

 115

SM
U

L
group7

SM
U

L
group6

SM
U

L
group0

SMUL7

SMUL6

SMUL5

SMUL1

SMUL0

SMUL
group

Fig. 4.21: Detail design of serial multiplier groups in the proposed 1-D DFT

architecture.

Since the output data is out of order in the row DFT, shown as Fig. 4.22, for the

usage of column DFT, we can reorder these data while writing them into the transpose

memory by using a specific address generator.

Fig. 4.22: The transpose memory with the specific address generator

 116

Design evaluation

Based on the proposed GDA-based 1-D variable length DFT architecture as Fig.

4.16, the number of cycle consumed for computing the 64/256/1024/4096-point DFT

with the 8/16/32/64-point DFT in two dimensions is proportional to)8(3log2 LO N ×− ,

where N denotes the length of 1-D DFT, and L denotes the word-length of GDA input

data. Referring to the simulation results of the DFT with lengths of 8, 16, 32, and 64,

we can further evaluate the DFT designs with the lengths of 128 (i.e., 8 * 16), 512 (i.e.,

16 * 32), and 2048 (i.e., 32 * 64), respectively. However, since the cycle count

consumed in two stages of 8-point DFT and 16-point DFT in the 128-point DFT

design as well as in the 512- and 2048-point DFT designs, are not the same, we must

take the largest one of the two stages.

We have evaluated the proposed design with UMC 0.18um cell-library. For

fairly compared with the existing long-length and variable-length FFT designs

[67]-[71], we eliminate the factor of different technology by normalizing all the

design areas with the normalized index [72] as (4.36). As the simulation result, except

for the advantages of short latency and high hardware utilization efficiency in the

GDA-based design, checked with the hardware cost analysis mentioned above, Table

4.12 also reveals that the power of two variable-length DFT realized with the

proposed decomposition approach and GDA design can achieve competitive hardware

cost under the same throughput rate, especially the length of DFT is ranged between

64 and 512. Thus the proposed variable-length DFT can be a more efficient dedicated

design to the application of ADSL system.

2)18.0/log(

umyTechno
AreaAreaNormalized = (4.36)

 117

Table 4.12: Comparison of the existing FFT designs and our DFT design

 Bidgt [67] Jia [68] Kuo [69] Pao [70] Lin [71] ours

DFT size 8192 8192 64 ~ 2048 512 ~ 8192 512~2048 64 ~ 4096

Algorithm Radix-4 FFT Radix-2/4/8
FFT Cached FFT

Radix-4
DHT-based

FFT

Radix-2/4/8
FFT

Cooly-Turkey/
cyclic convolution/

Pseudocirculant
factorization/GDA DFT

Word-length
(bit) 12 12 16 22 12 20

Process (um) 0.5 0.6 0.35 0.25 0.35 0.18
Clock rate

(MHz) 20 20 60 35 45 85

Throughput
(sample/cycle) 1 1 1 1 1 5.33 ~ 0.67

Latency (cycle) N N N N N 60
Area (mm2) 100 107 12.25 25 13.05 7.79

Normalized area 12.96 13.87 3.24 12.96 3.45 7.79
Normalized

area/throughput 12.96 13.87 3.24 12.96 3.45 1.46 ~ 11.62

 118

Chapter 5
Conclusion

In this chapter, we summarize with some useful results and contributions

presented in this dissertation, and point out some future research directions.

5.1 Contributions

In this dissertation, an entire bit-level hardware-efficient group distributed

arithmetic (GDA) design approach has been presented for Discrete Sinusoidal

transform (DSST’s). A new hardware-efficient GDA datapath and the essential

partitioning schemes are involved in the development of the proposed new DA

design approach for long-length cyclic convolution of the DSST’s, where

Agarwal-Cooley algorithm and Pseudocirculant matrix factorization algorithm are

respectively adopted for the cyclic convolution with prime length and non-prime

length. Furthermore, for the long-length DSST’s designs, we combine the proposed

design approach with the fast transform algorithms, such as Cooley-Tukey algorithm

and prime factor algorithm, to achieve the low hardware cost.

In the proposed bit-level design approach, we adopt the way of distributed

arithmetic (DA) computation and exploit the good features of the cyclic convolution

to facilitate an efficient DA realization of 1-D N-point DSST,s using a very small

memory module, a barrel shifter, and N accumulators. The proposed GDA design is

achieved by re-arranging the contents of the memory into few groups such that all

the elements in a group can be accessed simultaneously in accumulating all the

DSST’s outputs for increasing the memory utilization. This design reveals that the

complexity of DA design is improved from)2(NO to)22(2log ++− NO NN .

For the purpose of further reducing the hardware cost in DSST’s design, we

exploit the symmetrical property of DFT coefficients with the proposed GDA design

approach such that the DFT requires only half the contents to be stored, which

further reduces the memory size by a factor of two. For the DCT design, we exploit

the symmetry property of DCT coefficients, merge the elements in the matrix of

DCT kernel, separate the kernel of DCT to be two perfect cyclic forms, and partition

the content of memory into groups to facilitate an efficient realization of 1-D N-point

 119

DCT kernel using (N-1)/2 adders or substractors, one small memory module, a

(N-1)/2-bit barrel shifter, and (N-1)/2+1 accumulators. Compared with the existing

systolic array designs and DA-based designs, the realizations of 1-D DFT, DHT, and

DCT with the proposed GDA-based design approach reduce the delay-area product

more than 29% according to Avanti 0.35 um CMOS cell library. However, observing

the DCT and DHT in cyclic convolution algorithm with non-prime length, there

exists the inherent overhead for handling the issue of numerical instability such that

the proposed design approach is not efficient for design with this case.

Finally, combining the proposed GDA design approach with the suggested

long-length transform decomposition methodology, a variable-length DFT design has

been proposed and implemented in our studies for the popular application of DFT

with the length of power of two in the communication system. The proposed design

can flexibly be used to compute the 1-D 64/128/256/512/1024/2048/4096-point DFT

by cascading the 1-D short length DFTs and summing up the partitioned short length

cyclic convolutions for each stage of the cascaded DFT. Besides, the proposed

hardware efficient design approach can be applied to the design with any length

beyond power of two. Compared with the existing long-length and variable-length

FFT design, in addition to the advantages of short latency and high hardware

utilization efficiency, the proposed power of two variable-length DFT design can

achieve competitive hardware cost under the same throughput rate.

5.2 Future Research Directions

The presented GDA design approach involves cyclic convolution, its

partitioning scheme, and hardware efficient GDA implementation. Since the linear

convolution and correlation own similar characteristics to cyclic convolution, if any

DSP algorithm can be expressed as cyclic convolution, we can apply the proposed

GDA design approach to achieve efficient hardware cost for applications.

On the power consumption point of view, with the approach of address

grouping in the proposed GDA design, we will further explore how to decide the set

of seed partial products for groups in the memory module of GDA design to have

optimal transition activity on the bit-line of memory and achieve lower power

consumption. However, since the optimal arrangement of these seed partial products

depends on the characteristic of image sequences as well as the distribution of input

 120

data, there should exist an optimal arrangement of seed partial products for each kind

of image sequences.

For the application of prime-length DCT, since the prime length cyclic

convolution DCT algorithm has less overhead in the pre- and post- processing, the

GDA-based variable-length DCT design should be an alternative hardware-efficient

DA solution for the shape adaptive discrete cosine transform (SA-DCT) in MPEG-4

codec application. However, since there exist more overhead in non-prime length

cyclic convolution DCT, this part of realization in SA-DCT must be combined with

the existing DA design or the other efficient design.

Based on the derivation of DSST’s in cyclic convolution, a unified GDA-based

design of DSST’s should be a considerable approach for the hybrid system with the

requirements of multimedia and communication such as the portable devices. With a

commonly used memory module in the GDA design, we can preload the

corresponding partial products, and configure the design with different data flow for

computations of the involved DSST’s. Actually, with the acceptable overhead in

cyclic convolution algorithm, a unified DFT/IDFT should be the possible design for

communication applications. However, for a long time, the approaches of general

purpose design and dedicated design have been the traded-off between flexibility and

hardware cost.

 121

Bibliography

[1] T. M. Pytosh and A. M. Magnasi, “A new parallel 2-D FFT architecture,”

Proc. ICASSP1990, pp. 905-908, 1990.

[2] J. Choi and V. Boriakoff, “A new linear systolic array for FFT computation,”

IEEE Transaction on Circuits and Systems-II: Analog and Digital Signal

Processing, Vol. 39, pp. 236-239, April 1992.

[3] J. You and S. S. Wong, “Serial-parallel FFT array processor,” IEEE

Transaction on Signal Processing, Vol. 41, pp. 1472-1476, March 1993.

[4] V. Boriakoff, “FFT computation with systolic arrays, a new architecture,”

IEEE Transactions on Circuits and Systems II: Analog and Digital Signal

Processing, Vol. 41, pp. 278–284, April 1994.

[5] H. E. Shousheng and M. Torkelson, “A new approach to pipeline FFT

processor,” Proc. IPPS1996, pp. 766–770, 1996.

[6] H. T. Kung, “Why systolic architectures?” Computer Magazines, 15, pp.

37-45, Jan. 1982.

[7] L. W. Chan and M. Y. Chen, “A new systolic array for discrete Fourier

transform,” IEEE Transactions on Acoustics, Speech, and Signal Processing,

36, pp. 1665-1666, Oct. 1988.

[8] J. A. Beraldin, T. Aboulnasr, and W. Steenaart, “Efficient one-dimensional

systolic array realization of the discrete Fourier transform,” IEEE Transactions

on Circuits and Systems, Vol. 36, No. 1, pp. 95-100, Jan. 1989.

[9] E. Chan and S. Panchanathan, “A VLSI architecture for DFT,” Proc. the 36th

Midwest Symposium on Circuits and Systems, Vol. 1, pp. 292-295, 1993.

[10] N. R. Murthy and M. N. S. Swamy, “On the real-time computation of DFT and

DCT through systolic architectures,” IEEE Transactions on Signal Processing,

Vol. 42, No. 4, pp. 988-991, Apr. 1994.

[11] W. H. Fang and M. L. Wu, “An efficient unified systolic architecture for the

computation of discrete trigonometric transforms,” Proc. ISCAS1997, Vol. 3,

pp. 2092-2095, 1997.

 122

[12] C. H. Paik and M. D. Fox,”Fast Hartley transform for image processing,”

IEEE Transactions on Med. Imaging, Vol. 7, No. 6, pp. 149-153, 1988.

[13] P. Duhamel and M. Vetterli, “Improved Fourier and Hartley transform

algorithms: application to cyclic convolution of real data,” IEEE Transactions

on Acoustics, Speech, and Signal Processing, Vol. ASP-35, No. 6, pp.

818-824, 1987.

[14] R. N. Bracewell, “Discrete Hartley transform,” J. Opt. Soc. Amer., Vol.73,

No.12, pp. 1832-1835, 1983.

[15] R. N. Bracewell, “The fast Hartley transform,” Proc. IEEE, Vol. 72, No. 8, pp.

1010-1018, 1984.

[16] J. A. C. Bingham, “Multicarrier modulation for data transmission: An idea

whose time has come,” IEEE Communications Magazine, pp. 5-14, May 1990.

[17] J. S. Chow, J. C. Tu, and J. M. Cioffi, “A discrete multi-tone transceiver

system for HDSL applications,” IEEE Journals on Selected Areas and

Communications, Vol. 9, pp. 895-908, Aug. 1991.

[18] C. L. Wang and C. H. Chang, “A Novel DHT-based FFT/IFFT Processor for

ADSL Transceivers,” Proc. IEEE International Symposium on Circuits and

Systems, Vol. 1, pp. 51-54, 1999.

[19] C. L. Wang and C. H. Chang, “A DHT-based FFT/IFFT Processor for VDSL

Transceivers,” Proc. IEEE International Conference on Acoustics, Speech, and

Signal Processing, Vol. 2, pp. 1213-1216, 2001.

[20] C. L. Wang, C. H. Chang, J. L. Fan, and J. M. Cioffi, ”Discrete Hartley

transform based multicarrier modulation,” Proc. IEEE International

Conference on Acoustics, Speech, and Signal Processing, Vol. 5, pp.

2513-2516, 2000.

[21] H. Bogucka, “Effective implementation of the OFDM/CDMA base station

transmitter using joint FHT and IFFT,” Proc. IEEE Workshop on Signal

Processing Advances in Wireless Communications, pp. 162-165, 1999.

[22] K. J. R. Liu and C. T. Chiu, ”Unified parallel lattice structures for

time-recursive discrete cosine/sine/Hartley transforms,” IEEE Transactions on

 123

Acoustics, Speech, and Signal Processing, Vol. 41, No. 3, pp. 1357-1377,

March 1993.

[23] S. B. PAN and R. H. Park, ”Unified Systolic Arrays for computation of

Discrete Hartley Transform,” IEEE Trans. on Circuits and Systems Video

Technology, Vol. 7, No. 2, pp. 413-419, Apr. 1997.

[24] J. H. Hsiao, L. G. Chen, T. D. Chiueh, and C. T. Chen, “Novel systolic array

design for the discrete Hartley transform with high throughput rate,” Proc.

IEEE International Conference on Circuits and Systems, Chicago, IL, U.S.A,

pp. 1567-1570, 1993.

[25] J. I. Guo, C. M. Liu, and C. W. Jen, ”A novel CORDIC-based array

architecture for the multi-dimensional discrete Hartley transform,” IEEE

Transactions on Circuits and Systems, Vol. 42, No. 5, pp. 349-355, 1995.

[26] S. P. Kumar and K. M. M. Prabhu, “Novel CORDIC-based systolic arrays for

the DFT and the DHT,” Proc. Asia High Performance Computing on the

Information Superhighway, pp. 547-551, 1997.

[27] A. S. Dhar and S. Banerjee, “An array architecture for fast computation of

discrete Hartley transform,” IEEE Transactions on Circuits and Systems, Vol.

38, No. 9, pp. 1095-1098, 1991.

[28] W. H. Fang and J. D. Lee, “Efficient CORDIC-based systolic architectures for

the discrete Hartley transform,” IEE Proceedings, Computers and Digital

Techniques, Vol. 142, No. 3, pp. 201-207, May 1995.

[29] L. W. Chang and S. W. Lee, “Systolic arrays for the discrete Hartley

transform,” IEEE Transactions on Signal Processing, Vol. 39, No. 11, pp.

2411-2418, 1991.

[30] J. I. Guo, C. M. Liu, and C. W. Jen, “A novel VLSI array design for the

discrete Hartley transform using cyclic convolution,” Proc. IEEE International

Conference on Acoustics, Speech, and Signal Processing, Adelaide, SA,

Australia, pp. II501-II504, 1994.

[31] J. I. Guo, “A New DA-Based Array for One Dimensional Discrete Hartley

Transform,” Proc. 2001 IEEE International Symposium on Circuits and

Systems, Sydney, Australia, pp .IV662-IV665, May 2001.

 124

[32] J. I. Guo, “An Efficient Design for One Dimensional Discrete Hartley

Transform Using Parallel Additions,” IEEE Transactions on Signal

Processing, Vol. 48, No. 10, pp. 2806-2813, Oct. 2000.

[33] J. I. Guo, C. M. Liu, and C. W Jen, “The efficient memory-based VLSI array

designs for DFT and DCT,” IEEE Trans. Circuits Syst. II, Vol. 39, pp.

723-733, Oct. 1992.

[34] S.A. WHITE, “Applications of distributed arithmetic to digital sequence

processing: a tutorial review,” IEEE ASSP Magazines, Vol. 6, No. 3, pp. 5-19,

1989.

[35] J. P. Choi, S. C. Shin, and J.G. Chung, “Efficient ROM size reduction for

distributed arithmetic,” Proc. ISCAS2000, pp. II61-II64, May 2000.

[36] K. Nourji and N. Demassieux, “Optimal VLSI Architecture for Distributed

Arithmetic-based Algorithm,” ICASSP1994, Vol. 2, pp. 509-512, 1994.

[37] M. T. SUN, T. C. Chen, and A. M. Gotlieb, “VLSI implementation of a 16 x

16 discrete cosine transform,” IEEE Transactions on Circuits and Systems,

CAS-36, pp. 610-617, Apr. 1989.

[38] T. S. Chang, J. I. Guo, and C. W. Jen, “Hardware Efficient DFT Designs with

Cyclic Convolution and Subexpression Sharing,” IEEE Transactions on

Circuits and Systems II, Vol. 47, No. 9, pp. 886-892, Sep. 2000.

[39] T. S. Chang, C. Chen, and C. W. Jen, “New distributed arithmetic algorithm

and its application to IDCT,” IEE Proc. on Circuits, Devices, and Systems,

Vol. 146, No. 4, pp. 159-163, 1999.

[40] J. I. Guo, “An Efficient Parallel Adder Based Design for One Dimensional

Discrete Fourier Transform,” Proceedings of the National Science Council,

ROC, Part A, Vol. 24, No. 3, pp. 195-204, May 2000.

[41] R. C. Agarwal and J. W. Cooley, “New Algorithms for Digital Convolution,”

IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol.

ASSP-25, pp. 392-410, Oct. 1977.

[42] M. Teixeira and D Rodriguez, “A class of fast cyclic convolution algorithms

based on block pseudocirculant,” IEEE Signal Processing Letters, Vol. 2, No.

5, pp. 92-94, May 1995.

 125

[43] AVANT “0.35 micron 3.3-volt high performance standard cell library,” 1996.

[44] A. P. Chandrakasan and R. W. Brodersen, “Minimizing power consumption in

digital CMOS circuit,” Proceeding of the IEEE, Vol. 83, No. 4, pp. 498-523,

April, 1995.

[45] T. Xanthopoulos and A. P. Chandrakasan, “A low power DCT core using

adaptive bandwidth and arithmetic activity exploiting signal correlations and

quantization,” IEEE Journal of Solid-State Circuits, Vol. 35, No. 5, pp.

740-750, 2000.

[46] H. K. Garg, “Digital signal processing algorithms - number theory,

convolution, fast fourier transforms, and application,” CRC Press, 1998.

[47] J. E. Volder, “The CORDIC trigometric compution technique,” IRE Tran.

Electron. Comput., Vol. EC-8, pp. 330-334, Sep. 1959.

[48] J. S. Walther, “A unified algorithm for elementary functions,” AFIPS Spring

Joint Comput. Conf., pp. 379-385, 1971.

[49] K. Hwang, “Computer Arithmetic principles, architecture, and design,” John

Wiley & Sons, Inc., New York, 1979.

[50] A. V. Oppenheim and R. W. Schafer, “Discrete-time Signal Processing,”

Prentice-Hall, Englewood Cliffs, NJ, U.S.A, 1989.

[51] Y. H. Chan and W. C. Siu, “Generalized approach for the realization of

discrete cosine transform using cyclic convolution,” Proc. IEEE International

Conference on Acoustics, Speech, and Signal Processing, Minneapolis, MN,

U.S.A, Vol. 3, pp. III277-III280, 1993.

[52] J. I. Guo, "Efficient parallel adder based design for one dimensional discrete

cosine transform," IEE Proceedings Circuits, Devices, and Systems, Vol. 147,

No. 5, pp. 276-282, Oct. 2000.

[53] J. H. Mcclellan, and C. M. Rader, “Number Theory in Digital Signal

Processing,” Prentice-Hall, 1979.

[54] B. Arambepola, “Discrete Fourier transform processor based on the

prime-factor algorithm,” IEE Proc., 130, Pt. G, No. 4, pp. 138-144, 1983.

 126

[55] H. Lim, and E. E. Swartzlander, “Multidimensional systolic arrays for the

implementation of discrete Fourier transforms,” IEEE Transactions on Signal

Processing, Vol. 47, No. 5, pp. 1359-1370, May 1999.

[56] C. S. Burrus, “Index mappings for multidimensional formulation of the DFT

and convolution,” IEEE Transactions on Acoustics, Speech, and Signal

Processing, ASSP-25, pp. 239-242, 1977.

[57] C. S. Burrus and T. W. Parks, “DFT/FFT and Convolution Algorithms,” John

Wiley & Sons, 1985.

[58] H. V. Sorensen, D. L. Jones, C. S. Burrus, and M. T. Heideman, “On

Computing the Discrete Hartley Transform,” IEEE Transactions on Acoustics,

Speech, and Signal Processing, Vol. ASSP-33, pp. 239-242, Oct. 1985.

[59] C. Chakrabarti and J. Ja’Ja’, “Systolic Architectures for the Computation of the

Discrete Hartley and the Discrete Cosine Transforms Based on Prime Factor

Decomposition,” IEEE Transactions on Computer, Vol.39, No.11, pp.

1359-1368, Nov. 1990.

[60] B. G. Lee, ”Input and output mappings for a prime-factor-decomposed

computation of discrete cosine transform,” IEEE Transactions on Acoustics,

Speech, and Signal Processing, Vol. 37, No. 2, pp. 237-244, Feb. 1989

[61] J. McClellan and C. M. Rader, “There is something much faster than the fast

Fourier transform,” Seminar Notes, Oct. 21, 1976.

[62] C. H. Chang, C. L. Wang, and Y. T. Chang, ”Efficient VLSI architectures for

fast computation of the discrete Fourier transform and its inverse,” IEEE

Transactions on Signal Processing, Vol. 48, No. 11, pp. 3206-3216, Nov.

2000.

[63] S. F. Hsiao and W. R. Shiue, ” Design of low-cost and high-throughput linear

arrays for DFT computations: algorithms, architectures, and implementations,”

IEEE Transactions on Circuits and Systems—II: Analog and Digital Signal

Processing, Vol. 47, No. 11, pp.1188-1203, Nov. 2000.

[64] L. R. Rabiner and B. Gold, Theory and Application of Digital Signal

Processing, Prentice-Hall, Inc. 1975.

 127

[65] E. H. Wold and A. M. Despain, “Pipeline and Parallel pipeline FFT processors

for VLSI implementation,” IEEE Transaction on Computers, Vol. C-33, No. 5,

pp. 414-426, 1984.

[66] S. He and M. Torkelson, “Designing Pipeline FFT Processor for OFDM

(de)Modulation,”1998 URSI International Symposium on Signals, Systems,

and Electronics, pp. 257 -262, 1998.

[67] E. Bidet, D. Castelain, C. Joanblanq, and P. Senn, “A fast single-chip

implementation of 8192 complex point FFT,” IEEE Journal of Solid-State

Circuits, Vol. 30, No. 3, pp. 300-305, Mar. 1995.

[68] L. Jia, “A new VLSI-oriented FFT algorithm and implementation,” IEEE ASIC

Conference, pp. 337-341, 1998.

[69] J. C. Kuo, C. H. Wen, C. H. Lin, and A. Y. Wu, “VLSI Design of a

Variable-Length FFT/IFFT Processor for OFDM-based Communication

Systems,” in Special Issue on “Signal Processing for Broadband Access

Systems: Techniques and Implementations,” EURASIP Journal on Applied

Signal Processing, No. 13, pp. 1306-1316, Dec. 2003

[70] T. C. Pao, C. C. Chang, and C. K. Wang, “A variable-length DHT-based

FFT/IFFT processor for VDSL/ADSL systems,” IEEE Asia-Pacific

Conference on Circuits and Systems, pp. 381-384, 2004.

[71] Y. T. Lin, P. Y. Tsai, and T. D. Chiueh, “Low-power variable-length fast

Fourier transform processor,” IEE Proc. Comput. Digit. Tech., Vol. 152, No. 4,

pp. 499-506, 2005.

[72] B. M. Bass, “A low-power high performance, 1024-point FFT processor,”

IEEE Journal of Solid-State Circuit, Vol. 34, No. 3, pp. 380-387, Mar. 1999.

VITA
Hun-Chen Chen was born in Taiwan in 1961. He received the B.S. and M.S degrees,

all in electronics engineering, from National Taiwan Technology University, and

National Chiao-Tung University, Taiwan, in 1990 and 1998, respectively. He is

currently pursuing the Ph.D. degree in low-cost bit-level DSP VLSI design and its

applications to multimedia and communication systems. His research interests include

VLSI digital signal processing and computer architecture.

	Chapter 1 Introduction
	1.1 Motivation
	1.2 Current status of DSST’s designs
	1.3 Review of DA-based designs
	1.4 Overview of the proposed design approach
	1.5 Considerations to the DSST’s designs
	1.6 Outline of this dissertation
	Chapter 2 The Group Distributed Arithmetic (GDA) Design Approach
	2.1 Algorithm point of view
	2.2 Architecture point of view
	2.2.1 Memory-based Group Distributed Arithmetic design
	2.2.2 Analysis of Barrel shifter
	2.2.3 Evaluation of hardware cost

	2.3 Consideration of low power design
	2.3.1 Analysis of transition activity
	2.3.2 Address morphing approach
	2.3.3 Exploration of dynamic range of the input data
	2.3.4 Low Power Design with pre-computation scheme
	2.3.5 Evaluation of power cost

	2.4 Partitioning of cyclic convolution
	2.4.1 Agarwal-Cooley algorithm
	2.4.2 Pseudocirculant matrix factorization algorithm
	2.4.3 Long length cyclic convolution design
	2.4.4 Evaluation of long length cyclic convolution GDA design

	Chapter 3 GDA-based Design for 1-D DSST’s
	3.1 Design of 1-D DFT
	3.1.1 Cyclic Convolution Formulation
	3.1.2 CORDIC (CO-ordinate Rotation Digital Computer)
	3.1.3 Symmetry exploration of the DFT in cyclic convolution
	3.1.4 Architecture design and evaluation

	3.2 Design of 1-D DHT
	3.2.1 Cyclic Convolution Formulation
	3.2.2 Numerical stability
	3.2.3 Symmetry exploration of the DHT in cyclic convolution
	3.2.4 Architecture design and evaluation

	3.3 Design of 1-D DCT
	3.3.1 Cyclic Convolution Formulation
	3.3.2 Numerical stability
	3.3.3 Architecture design and evaluation
	3.3.4 Chip implementation

	Chapter 4 Long-length DSST’s designs
	4.1 Decomposition of long-length DSST’s
	4.1.1 Cooly-Tukey Algorithm
	4.1.2 Prime Factor Algorithm
	4.1.3 Rader’s Algorithm

	4.2 Long length DHT Design and Evaluation
	4.3 Variable-length DFT Design to Communication System Application
	4.3.1 Overview of Communication system
	4.3.2 Hardware Cost Analysis
	4.3.3 GDA-based Variable Length DFT Design and Evaluation

	Chapter 5 Conclusion
	5.1 Contributions
	5.2 Future Research Directions

	 Bibliography

