AT Ak SR R R iR

A Novel Bit-level Design Approeach and its Application to Discrete

Sinusoidal Transforms

A Novel Bit-level Design Approach and its Application to Discrete

Sinusoidal Transforms

Student: Hun-Chen Chen

Advisors: Prof. Chein-Wei Jen
Prof. Tian-Sheuan Chang

A Dissertation
Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical and Computer Engineering
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy
in
Electronics Engineering

January 2006
Hsinchu, Taiwan, Republic of China

%
TIORETIALE LS A ME T RH Y IR FE v A B L

AR

WP AT FIFTELFIFAMET ¢ ERFART I TTRILEH
HAEHTEL YR F MR G MBS BRI A E S GRAREA
T AP E I HAE AN B R TATN A SK
20k 2 H R st apgrsz g #e) (A Novel Bit-level Design Approach and its
Application to Discrete Sinusoidal Transforms)4= g 4p B 3 < % % 3540 !

[1]. H. C. Chen,J. I. Guo, T. S. Chang, and C. W. Jen, “A Memory Efficient
Realization of Cyclic Convolution and its Application to Discrete Cosine
Transform,” IEEE Tran. Circuits and Systems for Video Technology, vol. 15, no.
3, pp. 445-453, March 2005.

[2]. H. C. Chen, T. S. Chang, J. I. Guo, and C. W. Jen, “The Long Length DHT
Design with a New Hardware Efficient Distributed Arithmetic Approach and
Cyclic Preserving Partitioning,” IEICE Tran. Electronics, \ol. E88-C, No. 5, pp.
1061-1069, May 2005.

[3]. H._C. Chen, J. I. Guo, C. W. Jen, and .T.'S. Chang, “Distributed Arithmetic
Realisation of Cyclic Convolution and Its DFT. Application,” IEE Proceedings
Circuits, Devices and Systems, Vol. 152, No. 6, pp. 615-629, December 2005.

[4]. H.C. Chen, T. S. Chang, and C: W.Jen;-“A Low Power and Memory Efficient
Distributed Arithmetic Design-and its DCT" Application,” Proc. 2004 IEEE
Asia-Pacific Conference on Circuits and" Systems, Tainan Taiwan, pp. 805-808,
2004.

[5]. H.C. Chen,J. I. Guo, and C. W. Jen, “A Memory Efficient Realization of
Cyclic Convolution and its Application to Discrete Cosine Transform,” Proc.
2003 IEEE International Symposium on Circuits and Systems, Bankok Thailand,
pp. 1V-33-1V-36, 2003.

[6]. H. C. Chen, J. I. Guo, and C. W. Jen, “A New Group Distributed Arithmetic
Design for the One Dimensional Discrete Fourier Transform,” Proc. 2002 IEEE

International Symposium on Circuits and Systems, Arizona USA, pp.
1-421-1-424, 2002.

[7]. H._C. Chen, J. I. Guo, and C. W. Jen, “Low Power Module Designs for Video
Codec Systems,” Proc. The 10th VLSI Design/CAD Symposium, Nantou Taiwan,
pp. 275-278, 1999.

[8]. H. C. Chen, T. S. Chang, J. I. Guo, and C. W. Jen, “A Power-of-Two Variable
Length DFT Processor using Group Distributed Arithmetic for Communication
Applications,” submitted to /EEE Tran. Circuits and Systems I in Dec. 2005.

BRFT2L MEELARZRAAFTFIFALTET 2R 2 PIP0KE
HEME SRR A FTIFE A LTk v
A

v N
I
1};

i
4
L

SEAEY L &L

Frd: miEd R B 4

iF &
AT L AR S i B AT 5 e B AT iR B
.o A A ZE *}#)Lmﬁﬂi,v}gkéga 7; '
PR T e W B R e AT L G AR FRANT IR H 2 Y ok il
Frito FlUt B ooka Mo A RATERE R 2 R M R m%‘*‘f:?; o e &

A~ J‘Jﬁ’?iﬁ'if%gﬁ:figéﬁ%é/ﬁﬁ/f = Iats FE’B;‘N’# 2R ‘”ﬁti’_ﬁg‘l
Bafrl iz aes 4B OTRRFERN L FES G E "&éc'ffé
%@ﬁizai%ﬁﬁw*%%:%ﬁ»fﬁN%Mﬁ!ﬁﬁﬁﬁﬁ’”ﬂ&H\ﬁqw
OB e AR T T - il ot RS A BN B R B e
Wo-mNEAZBEEGE 2 NGRS F o PR TRz A
EATE BT A A N e ﬁﬂ%%WmW$ﬁmd$J%imﬁ”c%@ﬂ
EAF IR licfem E D] E KA RS A2 P oo 2 B2 A TN B R R
S HE N AN B R P T R Ad 0Q2Y) 1 0QVUY) %
TR AN A AR 0R2Y) E i 0V +N+2) -
B R TR FE R AR R T R R B R HE
PG B SRR A AR - BRATOAIGNE B LR g H e
BeBhfc s A RN P o W% & 0 Agarwal-Cooley %2 Pseudocirculant matrix
factorization % 4 3lis ¥ iz & (T s pff 2 4 A 0 ifRaig £ R T E R A 4G
FHE 2 M AL Bl S R - D R koL Ak

£
7] - L -)\ &I N R 3 72 N ISR
AP ABFEZATERY P2 E

ERATHEEE TR 0 F R - B RAS A RRE I E

ﬁﬁﬁﬁﬂﬂW@—ﬁﬂ*ﬁﬂﬁﬁ&L%ﬁﬁyf%*ﬁﬂ\&ﬁ$§&1$
FCEIERHR L TR - L e A A A AR R
gt A N R E B 8 E A N E B A el Y B il
Rtz P oA T grat i e ¢ Tl SRR R e Sl AR
Boafid - 2 Eon i FE i oEa R F- BRIASIH LN T K
BATAR g ﬁ@uﬁmmcﬁm—@ﬁ s R B R e
EEF PRI R - e Rl A A oA G heRES EfER H e A
BB TR RO TR 2 S AN E R R SR
5 29% cut B PE R AR A A A o

~

TR WM AL R AT T BT ER Y A2 MRS AT RS
AR B BR G R RF R B LV Rk C 2 kR EcE I E
4k o A * Cooley-Tukey /% & /2 Lytapicd I E e rfz £ &%

pseudocirculant matrix factorization i & ;% ¥4 f& s chdac &) F #w Sl fi 5
BEFE- B B F - K BB ﬂ?r AR A2 e NN E
Bode R Mot A2 3 e N A SN B ik 2 5 AT R REAACE I E
%R AR * Y 64/128/256/512/1024/2048/4096, £ R 2 AEATE I E E oo 2
Shosonpgh o B ’f#-"TLE’# W ER AR AATE QIR Y R 2R E Bk
T B FFT 4 o 5 0 R Gt e » RATAR R v FeniBEt 0 G H =
gt_gg;aw,g Bl xt 256 P RUEHTOE GATE 9.6% Al R A k5 F]
N - BEARE A A RN T#ﬁ’ﬁ”f Ty MR R R

Mo AT TR MK R G iE e g Mgy mﬁ”zui';?%i&@‘% # ch

A Novel Bit-level Design Approach and its Application to Discrete
Sinusoidal Transforms

Student: Hun-Chen Chen Advisors: Prof. Chein-Wei Jen
Prof. Tian-Sheuan Chang

Department of Electronics Engineering and Institute of Electronics,
National Chiao-Tung University

Abstract

The Discrete Sinusoidal transform (DSST’s) have been widely used in many
digital signal processing applications such as image processing, digital filtering,
digital communication, and etc. Although.many designs of the DSST’s have been
proposed in the literatures, their.designs are still not efficient enough since they
exploit only the constant property of the transform-coefficients without considering
the numerical property of these coefficients:in the reformulated algorithms to further
optimize the hardware cost. This® dissertation- proposes a novel bit-level
hardware-efficient group distributed arithmetic (GDA) design and its applications for
Discrete Sinusoidal transform (DSST’s) designs.

In the proposed GDA design approach, first we formulate the algorithm of
DSST’s into cyclic convolution form in algorithm level. Then we use the distributed
arithmetic to decompose the input data into bit-level in architecture level. Thus, the
data redundancy due to the cyclic convolution can be efficiently removed within the
bit-level input context to facilitate a hardware efficient DA realization. The proposed
GDA approach rearranges the contents of DA memory according to its cyclic property
such that redundancy of the contents can be eliminated and only a few groups of data
are needed. Thus, compared with the conventional DA design, the memory cost of the
proposed GDA design can be reduced from O(2") to O(2""%:"), and accounting
with the necessary overhead, the overall complexity is improved from O(2") to
02" =" 1 N +2). To further extend its applications to long length designs, we
further combine the Agarwal-Cooley algorithm and Pseudocirculant matrix
factorization algorithm. This can partition the long length cyclic convolution into
short ones while can still maintain its cyclic property, which avoids the non-cyclic
problem of direct partitioning. Thus the proposed GDA design can efficiently be

applied to realize each of the shortened cyclic convolution blocks to achieve low
hardware cost.

The proposed GDA design approach has been applied successfully to the DFT,
DHT and DCT designs. For DFT design, we further combine the symmetrical
property of the DFT coefficients with the proposed GDA design approach such that
this design requires only half the contents to be stored. This further reduces the
memory size by a factor of two. For the DCT design, in addition to the symmetry
property of DCT coefficients, we further reformulate the non-cyclic DCT kernel into
two perfect cyclic forms such that the DCT can be implemented by the GDA design
approach with less hardware of (N-1)/2 adders or substractors, one much small
memory module, a (N-1)/2-bit barrel shifter, and (N-1)/2+1 accumulators. Compared
with the existing systolic array designs and DA-based designs, the realizations of 1-D
DFT, DHT, and DCT with the proposed GDA design approach reduce the delay-area
product more than 29% according to a 0.35 um CMOS cell library.

In addition to the prime length design, we also apply the GDA approach to the
long length power-of-two DFT design commonly used in the communication system.
We combine the proposed hardwareéfficient GDA approach with the Cooley-Tukey
algorithm on DFT decomposition, and pSeudocirculant matrix factorization algorithm
on cyclic convolution partitioning-to facilitate thezlong- and variable-length DFT
design with low hardware cost.“The proposed design-can be flexibly used to compute
the 1-D 64/128/256/512/1024/2048/4096-point DFT by cascading two 1-D short
length DFTs and summing up the partitioned short length cyclic convolutions for each
stage of the cascaded DFT. Besides, the proposed hardware efficient design approach
can also be adopted in the design with the length beyond power of two. Compared
with the existing long-length and variable-length FFT design, in addition to the
advantages of short latency and high hardware utilization efficiency, under the same
throughput rate, the proposed variable-length DFT can be a competitive design, and
save the hardware cost more than 9.6% while the transform length is smaller than 256.
In summary, the presented GDA-based design approach provides a solution to
efficiently implement not only the DSST’s but also the DSP applications involving
convolution and correlation.

CONTENTS

(O gF- 1o (=1l R 1014 o [1 o1 (] o IS 1
1.1 IMIOTIVATION ...ttt 1

1.2 Current status Of DSST’S AESIGNScovvruieiieieierie et 2

1.3 Review Of DA-DASed AESIONS.......eeviiieiiiie ettt 3

1.4 Overview of the proposed design approach...........ccccecvevveieiieece s 4

1.5 Considerations to the DSST’S deSIgNScoverververireririsieee e 5

1.6 Outline of this diSSErtationceieieiiiiie e 6
Chapter 2 The Group Distributed Arithmetic (GDA) Design Approach............. 8
2.1 Algorithm point Of VIEWc.coviiiiiic e 8

2.2 Architecture POINE OF VIBWcooiiiiiiiie s 10
2.2.1 Memory-based Group-Distributed Arithmetic design...........c..cccvvuen. 10

2.2.2 Analysis of Barrel ShIfter .. i i 11

2.2.3 Evaluation of hardware COSE. i ... i i 16

2.3 Consideration of [ow pOWEr GeSIgN i . e, 17
2.3.1 Analysis of transitioN @CtIVILY ciicc. v 17

2.3.2 Address morphing approachcccceoeeeieninenieeieie e 19

2.3.3 Exploration of dynamic range of the input data............c.ccccevvrienennne. 20

2.3.4 Low Power Design with pre-computation scheme............ccccceevevenee. 24

2.3.5 Evaluation Of POWET COSEccviieiiieieie e 28

2.4 Partitioning of cyclic conVOIULION..........ccoiveiiiiii 29
2.4.1 Agarwal-Cooley algorithm...........ccccoveveiieiieiic e 29

2.4.2 Pseudocirculant matrix factorization algorithm............c.ccccoovinnnnen. 30

2.4.3 Long length cyclic convolution design........ccccooeveenenieneenesie e, 32

2.4.4 Evaluation of long length cyclic convolution GDA design 37

Chapter 3 GDA-based Design for 1-D DSST Scccviiveiinieniie e 39
3.1 DeSIgN OF 1-D DT ..ot 39
3.1.1 Cyclic Convolution FOrmulationcccccerieeiennneeieneeseee e 39

3.1.2 CORDIC (CO-ordinate Rotation Digital Computer)............cccccveuuenne. 41

3.1.3 Symmetry exploration of the DFT in cyclic convolution 45
3.1.4 Architecture design and evaluation.............ccccevvriinienenie e 49

3.2 DeSIgN OF 1-D DHT ..ottt 57
3.2.1 Cyclic Convolution Formulationccccoeevviiiinieiene e 57
3.2.2 Numerical Stabilitycccciiiiiiiie s 59
3.2.3 Symmetry exploration of the DHT in cyclic convolution................... 60
3.2.4 Architecture design and evaluation...........cccccoovivieiencncieneeee, 64

3.3 DESIGN OF 1-D DCT ...ttt 66
3.3.1 Cyclic Convolution FOrmulationccccceviveveiininere e 66
3.3.2 Numerical Stabilitycooeiiiiiiice e 71
3.3.3 Architecture design and evaluation...........c.ccocevinieiienenieneenceee e 72
3.3.4 Chip implementation............ccccoveiiereiieeie e 79
Chapter 4 Long-length DSST’S deSIgNSoieeiiiiieiieiieie et 80
4.1 Decomposition of 1ong-1ength DSST S ilc..c.vooveiiiiiiicc 80
4.1.1 Cooly-Tukey AlGOrithm . e i i e 80
4.1.2 Prime Factor Algorithm ... i 81
4.1.3 Rader’s AlQOrithmli. . it et 83

4.2 Long length DHT Design and Evaluation.................ccoccoveviieieniniennciene 85
4.3 Variable-length DFT Design to Communication System Application........... 96
4.3.1 Overview of Communication SYStEM.........cccvrvririeirirenene s 96
4.3.2 Hardware COSt ANAIYSIS........coiiiiiiiieiie e 97
4.3.3 GDA-based Variable Length DFT Design and Evaluation................ 102
Chapter 5 CoNCIUSIONooiiiiii s 118
5.1 CONEITBULIONS. ...ttt 118
5.2 Future Research DIreCIONS..........cueveiiiiieiiieiesis e 119

BIDIIOGIapNY ... e 121

List of Figures

Fig. 1.1: Outline of thiS reSEArCh.cccoieiiiiiiec s 7
Fig. 2.1: The proposed GDA architecture and the associated memory content
arrangement in realizing the cyclic convolution example shown in (2.2)................. 10
Fig. 2.2: Multiplexer—based barrel shifter design.cccccevvveveiieviieic e, 12
Fig. 2.3: Multiplier-based barrel shifter design.ccoocviiiniiiine e, 12
Fig. 2.4: Logarithmic number of multiplexer barrel shifter design.c...ccccceevenen. 13
Fig. 2.5: Barrel shifter with N tranSiStors.............co.eveevereeieeeesesseeeeseeessesseessesssnens 14
Fig. 2.6: Comparison of the four barrel shifters in (a) hardware cost, (b) power
consumption, and (C) delay tIMe. ..o 15
Fig. 2.7: The delay-area product comparison in the proposed GDA design and the
traditional memory-based DA design with 16-bit data word length. 17
Fig. 2.8: Trend of the improvement of transition probability versus the number of
INPUE-0ALA DI, e 19
Fig. 2.9: The description of architecture;transformation from DA to GDA............... 20
Fig. 2.10: The test image with the'size 0f.252 * 252 pixels.cccccovvviviiviiviiininnnn, 21
Fig. 2.11: gray-level of the pixels in‘the image of Fig. 2.10.cccovvivevvereinennn, 22
Fig. 2.12: histogram of the gray-level distribution inthe image of Fig. 2.10. 22
Fig. 2.13: The preprocessed gray-level:of the‘imagein Fig. 2.10...........cccccvevevnennnnn 23
Fig. 2.14: Histogram of the preprocessed-data used in the example of 7-point DCT
(0 1=1] o SRS SSRPRTPS 23
Fig. 2.15: The skipped bits in DA computation for the even outputs.ccccceeue.. 25
Fig. 2.16: The skipped bits in DA computation for the odd outputs.cc.cee..... 26
Fig. 2.17: Power consumption of the GDA-based 1-D DCT desSigns.cccecverveennnne 28
Fig. 2.18: The low cost version of BGDA design realizing the cyclic convolution
example SHOWN IN (2.19). ..o e 33
Fig. 2.19: The BGDA design on realizing the cyclic convolution example shown in
(2.19) with high performance. ..o 34
Fig. 2.20: The low cost version of GDA realization of the example shown in (2.21).
... 36
Fig. 2.21: The high performance version of GDA realization of the example shown in
(2.20). et et r ettt renne e 37
Fig. 3.1: Realization of CORDIC iterations and scaling iterations.cc.cccceveune.. 44

Fig. 3.2: Comparison of (a) area cost and (b) power consumption for the complex
multiplications realized with serial multiplier and CORDIC.cccooevvvvveiienns 45

Fig. 3.3: Architecture design of the 1-D 11-point DFT with GDA approach.............. 50

Fig. 3.4: Comparison of the area cost of the existing DFT designs and the proposed

GDA design in realizing the 1-D N-pOINt DFT. ...c.ocoiiiiiieece e 53
Fig. 3.5: Comparison of the ACT for the existing designs and the proposed GDA
design in realizing the 1-D N-pOINt DFT.......ccccoii e 54
Fig. 3.6: Comparison of the delay-area product for the existing designs and the
proposed GDA design in realizing the 1-D N-point DFT........ccccoevviiiivere e 54

Fig. 3.7: The architecture of the GDA design realizing the 1-D 11-point DHT. 65
Fig. 3.8: The area reduction of the memory cost when applying the symmetry

property of DCT COfFICIENTS OF NOL.coouiiiiiiiieee e 69
Fig. 3.9: Block diagram of the proposed pipeline architecture for computing the 1-D
N-POINE DCT. ettt et b e e sbe e s re e beenee e 73
Fig. 3.10: Design of the preprocessing stage in the 1-D 7-point DCT.cccccoene.. 74
Fig. 3.11: Design of the DA processing stage that is used to compute the kernel of
T((3)7) inthe 1-D 7-POINt DCT. ..ottt eeeeeee s esee s 74
Fig. 3.12: Design of the post-processing stage in the 1-D 7-point DCT including (a)
the post-processing, and (b) the output buffer. ..., 76
Fig. 3.13: The delay-area product of the proposed design and the existing DCT
designs [33]-[35][52] in realizing the 1=DDCT........c.cccvirerieiiiieie e e se e 78
Fig. 3.14: Layout view of the 1-D7-point. GDA-based DCT design.ccccoverveennnne 79

Fig. 4.1: The GDA-based architecture design‘for 1-D.29-point DHT example.......... 90

Fig. 4.2: Comparison of the normalized-area cost in the realization of 1-D N-point
DHT using the proposed design and-the existing designs..........cccccceevvvevecieeseennnn, 93

Fig. 4.3: Comparison of the normalized cyele time in the realization of 1-D N-point
DHT using the proposed design and the existing designS..........ccocvevevivereeieeseennenn, 93

Fig. 4.4: Comparison of the normalized area-delay product in the realization of 1-D
N-point DHT using the proposed design and the existing designscc.ccccveuee. 94

Fig. 4.5: Average improvement of the normalized area-delay product in the designs
of 841-point DHT, 1653-point DHT, and 3249-point DHT using the proposed design
1 0] 0] (0= 1o o [P SURTPRSRR 95

Fig. 4.6: Transceiver /Receiver architecture in the communication system............... 97
Fig. 4.7: Hardware cost of the original FFT versus the proposed GDA-based DFT 101
Fig. 4.8: Delay-area product of the FFT versus the proposed GDA-based DFT......102
Fig. 4.9: Block diagram of the proposed variable-length DFT architecture............. 104
Fig. 4.10: Architecture of 2-D DFT with real input..........ccccooeiiiiiineniieceee, 104
Fig. 4.11: Architecture design of the 2-D DFT in cyclic convolution formulation. .104

Fig. 4.12: Version 1 of the reduced architecture of 2-D DFT in cyclic convolution
FOrMUIALION. ...ttt 105

Fig. 4.13: Version 2 of the reduced architecture of 2-D DFT in cyclic convolution
FOrMUIALION. ...ttt 105

Fig. 4.14: Folding of the computation of each eight row blocks in 64-point cyclic

CONVOIUTION. ...t bbbttt bbbt 106
Fig. 4.15: Folding of the computation of each four row blocks in 32-point cyclic
CONVOIULION. ...ttt bbbttt b e bbb 107
Fig. 4.16: Detail architecture of (a) the row 1-D DFT with input buffer and (b) the
column 1-D DFT with output BUFer. ..o 109
Fig. 4.17: Detail design of (a) input buffer groups, (b) PISO groups, and (c) output
buffer groups in the proposed 1-D DFT architecCture.cccccvevvvivevveiesieesnenene 110

Fig. 4.18: (a) design of the 1-bit three dimensional rotator and the routing for (b)
2-bit BRG in stage 2, (c) 4-bit BRG in stage 3, and (d) 8-bit BRG in stage 4........ 112

Fig. 4.19: Detail design of variable-length GDA-based module used for the

computation of 7j;() in the proposed 1-D DFT architecture.ccccoccovveirinirnnne. 113
Fig. 4.20: Data-flow of the adder-group tree follows the GDAUSs in the proposed
variable-1ength DFT deSign.ccccvoieiieiicc s 114
Fig. 4.21: Detail design of serial multiplier groups in the proposed 1-D DFT
ATCNITECTUNE. ... bbb 115

Fig. 4.22: The transpose memory with the specific address generator..................... 115

List of Tables

Table 2.1: The rule of group MapPiNg........ccooereeriiie e 11
Table 2.2: Comparison of memory size in both the traditional memory-based DA and
the proposed GDA designs for different values of N. ... 16
Table 2.3: Transformation of transition probability for the input data of the 4-input
AALA-PALN. .o s 18
Table 2.4: The relation ship of the address morphing. ..o 20

Table 2.5: Relationship between the sum of primary inputs and the even outputs.....25
Table 2.6: Analysis for the covered lengths of cyclic convolution can be decomposed.

... 30
Table 2.7: Comparison of the hardware cost of the design examples shown in
low-cost BGDA, high performance BGDA, and conventional DA in the case of
NON-COPFIME PArTITIONING. ...eivveieeeieeiesieeie e se e e sreesae e sreebeeneesneas 38
Table 3.1: TabIe FOr G ..o s 43
Table 3.2: Determination of the s; sequence.at.the 80f 56.cccceevevviieivecnseenee, 43
Table 3.3: Hardware cost comparison of direct realization and CORDIC realization
for a complex MUItIPHCAtION. . i i i i s e 45
Table 3.4: The 8 groups of memory content used for computing the 5-point cyclic
CONVOIULION 1N GDAUC. ..o ettt shrai et seesseesteeneesreesteeneesnaeneeeneenres 51
Table 3.5: The 8 groups of memory content used far computing the 5-point cyclic
CONVOIULION 1N GDAUS. ... e s s ettt esteanee e e saeeneesre e teaneesnaeseeaneennes 51

Table 3.6: Area cost models to estimate the 1-D N-point DFT modules in the existing
systolic array designs, DA-based designs, and the proposed GDA design with real
1] oLV e - - USROS RPRSTPSN 55

Table 3.7: Area cost models to estimate the 1-D N-point DFT modules with the
partitioned cyclic convolution in the existing systolic array designs, DA-based
designs, and the proposed BGDA design with real input data.ccccccovevervnnenne. 56

Table 3.8: Average cycle time (ACT) models to estimate the not partitioned and
partitioned 1-D N-point DFT modules in the existing systolic array designs,

DA-based designs, and the proposed GDA design with real input data.................... 57
Table 3.9: The 8 groups of memory content used for computing the 5-point cyclic
CONVOIULION 1N GDAUC......c.ciiiieiecie sttt 66
Table 3.10: The 8 groups of memory content used for computing the 5-point cyclic
CONVOIULION 1N GDAUS.viiiiiieiesese ettt bt 66
Table 3.11: The seed-value, group address, and rotating factor used in the design of
group address decoder of 1-D 7-point DCT.ccccccoiiiieiieieece e 75

Table 3.12: The partial products distribution for different DCT outputs under the
SAME INPUL VAIUB. ...ttt te e e 75

Table 3.13: 8-word memory contents arranged INt0 groups.ccceeverereeneerieneenens 76

Table 3.14: The comparison of the proposed design and the existing DCT designs
[33]-[35][52] in realizing the 1-D N-point DCT in terms of delay and silicon area. 78

Table 4.1: Function of the address decoders in the 1-D 29-point DHT design........... 91
Table 4.2: The performance comparison of different designs for computing the 1-D
N-POINE DHT oot e e e e e ne e s reeteeneesneene s 92
Table 4.3: Length of 1-D DHT constructed by the decomposed short length DHTs..94
Table 4.4: The evaluation result of GDA-based DHT designsccccevevvevverivenene 95
Table 4.5: DFT lengths for several communication SyStems...........ccocevceeveneeieneennes 97
Table 4.6: The computation complexity of various DFT algorithms...............cc.c....... 98
Table 4.7: The estimation of hardware costs of the FFT and the proposed GDA-DFT
... 100
Table 4.8: The estimation of hardware costs of the FFT with actual complexity and
the PropoSed GDA-DFT ..ot sre s 100
Table 4.9: The estimation of cycle times of the FFT and the proposed GDA-DFT for
BACK SAMPIE ..o re e e e 101

Table 4.10: Length of 1-D DFT constructed by-the decomposed short length DFTs103

Table 4.11: Condition of BR in each stagejfor-DFT with the lengths of 64, 256, 1024,
and 4096.c.oevevveeeneenrene S N EIEE N B 111

Table 4.12: Comparison of the existing FFT designs and our DFT design 117

Chapter 1
Introduction

In this chapter, we illustrate the motivation, current status of DSST’s designs,
review of the existing DA-based designs, overview of the proposed memory efficient
bit-level design approach, considerations to the DSST’s designs, and outline of this
dissertation. The details of the proposed design approach and associated advantage as

well as the application in DSST’s will illustrate in the following chapters.
1.1 Motivation

The Discrete Sinusoidal transforms (DSST’s), including discrete Fourier
transform (DFT), discrete Hartley transform (DHT), and discrete cosine transform
(DCT), have been widely used in many digital signal processing applications such as
image processing, digital filtering, digitalk:.communication, etc. There are two main
solutions for realizing the high complexity-ef:the ' DSST’s in real-time. One is based
on the fast algorithms that aim at reducing the complexity of DSST’s to speed up the
computation. The other is to-directly“realize the- DSST’s formulations or their
reformulations, such as the convelution, with hardware for accelerating the DSST’s

computation.

The designs with fast algorithms are attractive for low computational complexity.
However, hardware design of the algorithm is communication intensive and
computation intensive to complicate the realizations of controller and arithmetic
operation. In addition, most of the designs with fast algorithms exploit a butterfly
datapath and a global memory in storing all of input/output data as well as the
intermediate results. The mass data access from the global memory wastes a large
percentage of power in this kind of designs. Besides, the cascaded structure in the fast
algorithm makes the designs have poor numerical accuracy such that longer data word
length in the datapath is needed. This fact will reduce the low complexity advantages
of the fast algorithm and thus increase the hardware cost of the designs with fast

algorithm, especially in the design with the length of non-power of two.

On the designs with direct manner, many existing architectures, such as the

systolic array, are still severely suffered from large hardware cost because most of the

existing designs use area-consuming multipliers as the fundamental computing
elements. Besides, these designs are not efficient enough since they only exploit the
constant property of the transform coefficients without considering the possibility on
further hardware optimization. Thus, efficient hardware design of the DSST’s is still a
challenging problem due to its high computational complexity and the requirement of

real-time processing.

The other popular architecture based on the distributed arithmetic (DA) has been
adopted in DSP applications. In the case of short length, with less hardware cost, the
memory-based DA design can instead of area-consuming multiplier for the
computation of multiple-in-multiple-out (MIMO) inner product. Thus, trading the
required performance, the DA technique shall be a hardware efficient method for the
realization with direct manner. Combining with the good feature of DA, we explore
the existing DSST’s algorithms to develop a hardware efficient DA design approach
for real-time realization of the main modules in the multimedia and communication

systems.
1.2 Current status of DSST's designs

In this subsection, we will illustrate“the current status of DSST’s designs with

fast algorithms and the direct manner respectively:

For the DFT designs, the designs [1]-[5] exploited the feature of low computation
complexity in fast Fourier transform (FFT) algorithms to achieve the goal of reducing
the number of computation. However in these design, the global interconnection
usually complicates the realization of controller. Since most of the FFT-based designs
exploit a butterfly datapath and a global memory in storing all of input/output data as
well as the intermediate results, the mass data access from the global memory wastes
a large amount of power. Besides, the cascaded structure of FFT algorithm makes
these designs have poor numerical accuracy such that longer data word-length in the
data-path is needed. This fact will reduce the low complexity advantages of the FFT
algorithm and thus increase the hardware cost of the FFT-based designs. On the
exploration of hardware solution, the systolic array designs for DFT [6]-[11] were the
major trend of realizing DFT in the past decades due to the promising VLSI features
of modularity, locality, and regularity. However, these designs are still severely

suffered from large hardware cost because most systolic array designs for DFT use

area-consuming multipliers as the fundamental processing elements (PEs).

For the Hartley transform (DHT) designs, since it is a good alternative to the
discrete Fourier transform (DFT) for its real-number operations [12][13], the discrete
Hartley transform (DHT) [14][15] also plays an important role in many DSP
applications. There are many high-speed communication applications [16]-[21] that
address the use of dedicated hardware designs for the DHT computation. For instance
of the discrete multitone modulation (DMT)-based ADSL transceiver realization, the
modulator and demodulator need to respectively compute the DFT and IDFT. The
DFT and IDFT computation can be realized effectively by using DHT and IDHT
computation for its inherent real-number operations [14]-[15]. The efficiency of using
DHT to compute the DFT/FFT becomes more apparent in the applications
encapsulating real input data than those encapsulating the complex input data. Many
hardware implementations of the DHT have been proposed, including
multiplier-based designs [22][23], Coordinate rotation digital computer
(CORDIC)-based designs [14]-[29]};:memory-based designs [30][31], and hardwired
multiplier-based design [32]. The design [22] uses a.time recursive lattice structure to
compute the 1-D DHT. The design [24] uses a fast algorithm to compute 1-D DHT.
The designs [23][25]-[29] use direct.matrix-vector multiplication algorithm to
compute the 1-D DHT. The designs [30]f32] use cyclic convolution based

matrix-vector multiplication algorithm to compute the 1-D DHT.

For the DCT designs, due to playing a key function in image and signal
processing, especially for the demanding multi-media and portable applications, the
efficient hardware implementation of DCT is still a challenging problem for the
requirements of high computational complexity and real-time processing. To achieve
efficient hardware realization, except for the multiplier-based systolic array designs,
many researches have been done on realizing the multiplications needed in the DCT
through memory. One is the memory-based systolic array design [33] in which the
proposed cyclic convolution based architecture possesses the features of simple 1/0

behavior and removes the data redundancy in the DCT coefficients.
1.3 Review of DA-based designs

To remedy the problems in the DFT, DHT, and DCT realizations with the
designs mentioned above, many researches have realized the multiplications needed in

4

the DSST’s through memory [33]-[37]. One of the popular techniques is distributed
arithmetic (DA). It has been widely used in many DSP applications such as the
DSST’s, convolution, and digital filters [34]-[37]. The DA technique is an efficient
method for computing inner products by using table look-up, shifting, and
accumulations. Therefore, some existing designs are great interests in reducing the
memory size required in the implementation of the DA-based architectures [34]-[36],
such as the partial sum techniques and the Offset Binary Coding (OBC) techniques
[34][35]. Besides, there is a different DA-based design denoted as adder-based DA
design that realizes the multiplications by using adders instead of memories
[32][38]-[40]. Chang [38]-[39] took advantage of the shared partial sum-of-products
and sparse nonzero bits in the fixed input data to reduce the computational complexity.
Guo [32][40] exploited the feature of cyclic convolution to simplify the computation
of DHT and DFT, so that the multiplications and additions can be realized by using a
small number of adders. On the algorithm point of view, these existing designs
mentioned above, cyclic convolution-based designs have the good features of simple
I/0 behavior and reduction of ceefficients-redundancy in the 1-D DFT, DHT, and
DCT. However, since they only.exploit the constant property of the transform
coefficients without considering the possibility.on further hardware optimization with
different DSST’s algorithms, they are still not efficient enough.

1.4 Overview of the proposed design approach

In this dissertation, we propose a new hardware efficient DA approach for the
1-D DSST’s design. The proposed approach can further reduce the memory size
required in the traditional DA technique [34]. For a glance of the proposed DA design
approach, first we formulate the algorithm of DSST’s into cyclic convolution form in
algorithm level, and then exploit the distributed arithmetic to decompose the input
data into bit-level in architecture level. Thus, the data redundancy due to the cyclic
convolution can be efficiently removed within the bit-level input context to facilitate a

hardware efficient DA realization.

Observing the cyclic convolution realized by DA technique, we find that different
DSST’s outputs can be computed using the same DSST’s coefficients and the same
input data samples with rotated order. If we directly realize the DSST’s in cyclic
convolution using traditional DA technique, we find that N identical memory modules

are used. It reveals a message that the redundancy still exists in the contents of the

5

memory, which implies that the memory utilization in this case is not good enough.
Therefore, we intend to reduce the memory size by re-arranging the memory contents
in different way. Combining with the cyclic property, we first group the candidates of
DA inputs with rotated order as the same candidate, and then arrange the memory
contents in this manner that the partial products for accumulating different DSST’s
outputs according to the candidates being grouped together, and accessed
simultaneously for the different outputs of DSST’s. The partial products arranged in a
group should be rotated suitably before accumulating. With this way, the memory
module contains only few groups of contents and only one memory module, instead
of N identical memory modules needed in the computation of 1-D N-point DSST’s in
conventional DA design. We named this proposed new DA design approach, Group
Distributed Arithmetic (GDA).

Because of the inherent issue of DA-based design that the memory size increases
exponentially as the length of input data increases, the partition issue must be
regarded for long length DA design..in the conventional DA design, we can arbitrarily
partition the input data of DA, and then sum up the partial sums from the different
memory modules to achieve low "hardware cost. Because of the necessity of cyclic
preserving, the manner of arbitrarily. partitioning cannot be applied to the proposed
GDA design. Otherwise, the benefit.of low hardware cost in GDA design will not
exist. To solve the problems mentioned above, we combine several algorithms to
decompose the long length DSST’s and partition the DA design in each of the
shortened DSST’s into smaller ones, which is still preserving the property of cyclic,
such that the DSST’s can efficiently be realized with GDA design. In the proposed
decomposition approach, we decompose the long length DSST’s into the short ones
with prime factor algorithm (PFA) or Cooley Turkey algorithm, and further partition
each of them by using Agarwal-Cooley algorithm [41] or pseudocirculant matrix
factorization algorithm (PMFA) [42] such that all the partitioned short DSST’s are
still composed of the shortened cyclic-convolution blocks. For such long-length
computations, dedicated hardware designs can meet both the real-time and low
hardware cost requirements in the various high-speed data communication

applications.
1.5 Considerations to the DSST's designs

For the DFT design, we further explore the symmetrical property of DFT

6

coefficients for further reducing the hardware cost of the memory by a factor of two.
Compared with the existing systolic array designs and DA-based designs, the DFT
design with the proposed GDA design approach can reduce the delay-area product
from 29% to 68% according to the 0.35 um CMOS cell library for short lengths. As
compared with the existing designs, the DHT design with the proposed GDA design
approach possesses better performance in reducing the area-delay product from 52%
to 91%. For the DCT design, due to the rotated input data in the input-data matrix of
DCT possess different signs, it is not easy to apply the GDA approach directly to
DCT realization. Exploiting the symmetry property of DCT coefficients, we merge
the elements in the matrix of DCT kernel, and separate the matrix to two perfect
cyclic forms. Then these two smaller perfect cyclic convolution forms can be realized
with the proposed GDA approach. This realization facilitates reducing the memory
size significantly. As compared with the existing DA-based designs, for an example
of 1-D 7-point DCT with 16-bit coefficients; the proposed design can save more than
57% of the delay-area product. Besides, the. 1-D DCT chip was implemented to
illustrate the efficiency associated:with thejproposed.approach.

As for the popular application of DFT with the length of power of two in the
communication system, combining ‘the-prepesed; low cost GDA design with the
suggested long-length transform decemposition-methodology, a variable-length DFT
design has been proposed and implemented in our studies. The proposed design can
flexibly be used to compute the 1-D 64/128/256/512/1024/2048/4096-point DFT by
cascading two 1-D short length DFTs and summing up the partitioned short length
cyclic convolutions for each stage of the cascaded DFT. Besides, the proposed
hardware efficient design approach can also be adopted in the design with the length
beyond power of two. Compared with the existing long-length and variable-length
FFT design [67]-[70], in addition to the advantages of short latency and high
hardware utilization efficiency (HUE), the proposed variable-length DFT design can
achieve competitive hardware cost under the same throughput rate.

1.6 Outline of this dissertation

The dissertation is organized following the research outline as Fig. 1.1. In chapter
2 we illustrate the proposed GDA design approach for cyclic convolution in detail,
including the issue of cyclic convolution partitioning, and its advantages compared
with the traditional memory-based DA approach on hardware cost and power

consumption points of view. Chapter 3 illustrates GDA for 1-D DSST’s designs,
where the optimization on algorithm level for further reducing the hardware cost is
involved. Chapter 4 illustrates long-length issues for DSST’s design and the proposed
variable-length DFT design to communication Application. Finally, we conclude this
dissertation in chapter 5, including contributions in this research and some future

research directions.

*SA-DCT
« Variable-length FFT
* Unified DFT/IDFT

Long-length

GDA (BGDA) Future work

Long-length
DHT

Ch4

Long-length
DFT

Variable-length
DFT

Ch4

Fig. 1.1: Outline of this research.

Chapter 2
The Group Distributed Arithmetic (GDA)
Design Approach

The presented Group Distributed Arithmetic (GDA) design approach mainly
consists of cyclic convolution and memory-based DA technique. The algorithm in
cyclic convolution can significantly reduce the complexity for the inner product
computation with multiple inputs and multiple outputs (MIMO). In the following, we
illustrate the proposed GDA design approach from algorithm-level to
architecture-level involving the solution of cyclic convolution partitioning for GDA
design and the evaluations of hardware cost and power consumption for design with
this approach.

2.1 Algorithm point of view

Let us first consider a cyclic convolution.example:

u, | [a b e dlfy]

U= Up | _ d a. b c 1%
Uy c d a b||v]| (2.1)
\u,| |b ¢ d a]|v,]

where {v;, v,, vs, v/} are input data, {a, b, ¢, d} are coefficients, and {u;, u,, us, us}

are output data. Using the commutative property of convolution, we can rewrite (2.1)

as follow:
u, vV, V3 v, v ||D
Uy Vs vV, v, V| |c :
Uy | |[va ViV, Vs _d_

Observing (2.2), we find that different outputs in vector U can be computed
using the same input data with rotated order and the same set of coefficients {a, b, c,
d}. According to the DA technique [34], using the same set of coefficients implies that
identical memory modules are used to compute all the different outputs. And using the

same inputs with rotated order implies that we can arrange the partial products
generated by them as a group and these partial products can be accessed

simultaneously in accumulating all the outputs.

For facilitating utilization of the GDA design approach, the general form of
GDA shows as

L1
— -q —
Up = U 14ry), 41,0 +Zu(k—l+Rq)N+1,q -2,k=12,---,N (2.3)
q=1
Where U, , = R(u,),
U o :{“(0+RO)N+1,0 1 Ui Ry) 11,007 W(k-1R,) 11,007 u(N—1+RO)N+1,0} :

u, :{“1,0’“2,0""’“k,o""’“N,o}

and
uRq,q = R(uq)l
U, z{u(O+Rq)N+l,q W) yatg? ARG 1R)y 1g0 " “(N71+RQ)N+1,q},

uq :{ul,q’uz,q’.“’uk,q’.“’uN,q}9

and

N
Uio = Zv((n—l)+(k—l)+Ro)N+1,0 *C, and
n=1

N
Uy = ZV((n—l)+(k—l)+Rq)N+l,q C, .
n=1

where L denotes the word length of the input data v, N denotes the length of cyclic
convolution, R, denotes the rotating factor for gth bit that is used for indicating the
number of position of the partial products in DA input and output should be rotated,

and ¢, are the coefficients. The rotation function R() is used to rotate the elements in

the output vector Y r,q from the input vector v rsa DY R, for the gth bit of DA

computation. In the example of 4-point cyclic convolution mentioned above, the

coefficient vector {c;, ¢, ¢3, c4} is given as {a, b, ¢, ¢, d}.

10

2.2 Architecture point of view

2.2.1 Memory-based Group Distributed Arithmetic design
Fig. 2.1 shows the proposed GDA architecture for computing the vector U in (2.2).

We arrange the memory contents (16 words) into six groups in this example. The
candidate of DA input in the g-th bit, i.e. vector V,, is first fed into an address decoder
to generate the group address ¥’ and the corresponding rotating factor R, according
to the rule of group mapping shown in Table 2.1 that performed by the specific
address decoder in the proposed GDA design when realizing the cyclic convolution
example shown in (2.2). Here, the group address G, denotes which group the
candidate of DA input belongs to. If the candidate is the seed value of a group 7, the
rotating factor is equal to 00. That means the partial products accessed from the group
memory is directly fed into the accumulators for computing the DA outputs without
performing any rotation. If the candidate is different from the seed value but belongs
to the same group, the rotating factor is the value indicating how many positions the
partial products accessed from the group memaory should be rotated before entering

the accumulators.

— 0 0 0 0
— d c b a
(N — b 2 F GDAU
— ctd b+c a+b a+d 4 - B p
Vig (msb) [b a d ¢ ctd b+c atb a+d
:ij Q (B b+d a+c b+d ate b+c+d a+b+c a+b+d atc+d
v, (sb) |8 [b+e a+b a+d ctd b+d ate b+d ate
—> % 1 btetd atbtc | atb+d atetd 0 0 0 0
S a d ¢ b a+b+c+d | a+btct+d| avbtetd | atb+c+d
§] atd ct+d b+c atb ‘
[atc b+d atc b+d Bdrrel hhlftel ‘
— atctd b+c+d a+b+ec a+b+d e T, ,} I
— a+b a+d ctd bt+c Memory
| atbtd | aterd btctd atbrc re-arrangement +/ +/ +/ -
[atb+c a+b+d a+c+d b+c+d
— atbtctd | atbtetd| atbtcetd atbtetd u,

T

Fig. 2.1: The proposed GDA architecture and the associated memory content

arrangement in realizing the cyclic convolution example shown in (2.2).

11

Table 2.1: The rule of group mapping.

Grouped candidates of DA input Seed value "Rotating factor| Group address
Vo) N (a7 (Ry) (Gy)
{Vig V2g Vg Vig) (Vg Vg Vg Vgt {T1q 724} {814 820 &34/

0001 0

0010 1

0100 0001 5 000

1000 3

0011 0

0110 1

1100 0011 5 001

1001 3

0111 0

1110 1

101 0111 5 010

1011 3

0101 0

1010 0101 1 011

0000 0000 0 100

1111 1111 0 101

Note:

1. Rotating factor denotes the number of position-of the output data, corresponding to

the candidate of DA input value in a grotip, needs to rotate.

2.2.2 Analysis of Barrel shifter

In this subsection, we will illustrate the hardware cost of barrel shifter in the
design of overhead. Four barrel shifter designs are respectively analyzed and
evaluated in the following. Fig. 2.2 shows the architecture realized with multiplexer.
This straight forward design adopts the multiplexers that switch the input data to the
selected outputs by the control signals as a rotation operation. The hardware required
of this design is N times of N log,N+1-input AND gates and one N-input OR gates.
Thus the complexity of hardware is O(N’loga(log:N+1)+log:N) in gate count. It
reveals that the design with this approach is not hardware efficient. Besides, the
number of level of the multiplexer logic will increase while the number of input is

increased. Then the delay time in this design will be not a constant.

12

A[3] A[2] A[1] A[0]

;V‘VVV VV‘V VVV¢

Sh1:0] —» MUX | —» MUX | —» MUX —» MUX

l i l i

B[3] B[2] B[1] B[0]

Fig. 2.2: Multiplexer—based barrel shifter design.

Fig. 2.3 shows the second design of barrel shifter. It adopts the multiplier with double
length of input data. The duplicated input data is multiplied by the control signals, and
then select out the 2" N-bit of the resultof multiplier as the shifted result. Although
implementation with this algorithm uses. enly: one multiplier and one-to-four
demultiplexer, the word lengthin them is the.drawback in hardware implementation.
The required hardware in this design®is one 2N-bit multiplier and one N-bit
one-to-four demultiplexer. It is equivalent to 10°%(-0.039 + 0.457 * 2N + 0.001 * 2N
+0.263 * 4N?)/58 and 2N 2-input gates (i:ei, [N'* 2 2-input gate). Thus the complexity
of hardware is O(N’+2N) in gate count .

AIN-1:0] Barrel_Out
» [4N-1:3N]

Barrel In A
[2N-1:0] Barrel_Out
A[N-1:0] [3N-1:2N]
Barrel_Out Barrel_Out

[4N-1:0] [2N-1:N] | BIN-1:0]
Barrel_In B
Sh[2N-1:0] —4——» =
[2N-1:0] Barrel_Out
> [N-1.0]

Fig. 2.3: Multiplier-based barrel shifter design.

13

Fig. 2.4 shows the third design of barrel shifter. This design consists of log;N rotators
and logoN N-bit two-to-one multiplexer. The length of these rotators are respectively
20,21 ... 2"%"7 |f the length of the barrel shifter is not power of two, the length of
most significant rotator is N- (2'°%"2+2"%"21 429 Since each of the rotators
can be realized with the manner of wiring, there is no hardware cost on these rotators.
Therefore, the hardware cost of this barrel shifter design is logaN N-bit two-to-one
multiplexer. It is equivalent to log,N times of 2N 2-input AND gates and N 2-input
OR gates. Thus the complexity of hardware is O(3Nlog,N) in gate count.

8-bit 4-bit > 2-bit 1-bit
rotator rotator rotator rotator .
A[15:0] B[15:0]
—> MUX MUX MUX MUX —»
Sh(3] Sh{2] Sh{1] Sh{0]

Fig. 2.4: Logarithmic numper;of multiplexer barrel shifter design.

Fig. 2.5 shows the fourth design*of barrel shifter. This design consists of N?
transistors and N inverter gates. The hardware cost of this barrel shifter design is
equivalent to N%/4+N/2 in gate count. Thus the complexity of hardware of this design
is O(N’/4+N/2) in gate count. Compared with the designs mentioned above, it reveals
that this design is the most efficient choice for the case that the length of input data is

smaller than 64.

14

Al4]
- - - > B
Wl S S
| i i gy B
28h[2] ___]___J'_[.___E_J I____L__J = ___L__J’_I_-__J_
Al2] . . | I
1 i
aL T T T
i uiinl e B
A OSh[Af_].___j___J . _T__rr___T_J . ___L__J'_I_.__.l_
[0] —4% | | = ; - B[0]
gl B W ey %f

Fig. 2.5: Barrel shifter with N? transistors

Fig. 2.6 (a), (b), and (c) show the comparisons of the four barrel shifters in hardware
cost, power consumption, and delay time, respectively. It is seen that the area cost,
power consumption, and delay-time of N?transistor barrel shifter are almost smaller
than the others. However, this designis—hard to implement by synthesis in the
cell-based design flow. Thus the alternative of-dogarithmic barrel shifter is chosen, and

synthesized in the implementation of the proposed GDA design and its applications.

20000 r
18000 - —&— Multiplexer - based BS
16000 —— Multiplier-based BR
14000 - —=— Logarithmic BS
— —&—N"2 Tr. BS
N [
= 12000
=)
pust 10000 r
o
< 8000
6000 -
4000 [
2000 -
0 - .=]
1 2 3 4 5 6 7

Length of BS

(@)

400
350 .
— —&— Multiplexer - based BS
% 300 - —— Multiplier-based BR
Nt
c —==— Logarithmic BS
S 20r —8—N" Tr. BS
£
S 20
[72]
c
S 150 -
]
< 100 r
[}
o
50
0
1 2 3 4 5 6 7
Length of BS
(b)
7 —
—— Multiplexer - based BS
6| —— Multiplier-based BR
Logarithmic BS
s | —=— N2 Tr. BS
o
=
v 4 F
E
=
z s
3]
()]
2 .
1 .
O [B . . | u
1 2 3 4 5 6 7
Length of BS
(c)

Fig. 2.6: Comparison of the four barrel shifters in (a) hardware cost, (b) power

consumption, and (c) delay time.

16

2.2.3 Evaluation of hardware cost

In the following, we evaluate the delay time and hardware cost of the designs with
the proposed GDA approach and the traditional DA approach for illustrating the
advantages of the proposed approach. For a fair comparison, we adopt Avant 0.35um
CMOS cell-library [43] in the performance evaluation. The delay time for accessing a
partial product from a memory module iS tuar dec + trom ace IN the traditional DA
designs, and t.air dec + trom ace T trar sy 1N the GDA design, where #,44- 4. denotes the
delay time of address decoder, #.,,» o denotes the access time of memory, and ts sy
denotes the delay time of the barrel shifter. Since the memory size required in the
GDA design is much smaller than that in the traditional DA design, the delay time of
address decoder and access time of memory in the GDA design are accordingly much
smaller than that in the traditional DA design. However, the extra delay time of the
barrel shifter must be counted in the GDA design. As a result, the total delay of the
GDA design is almost similar to that of the traditional DA design. As for the hardware
cost evaluation, the hardware for accessing a partial product is 4,.,, in the traditional
DA design, and is Agp rom + Apar sy IN-the proposed GDA design, where Ag, rom
denotes the area cost of Group:-memory, and 4. .,z tlenotes the area cost of a barrel
shifter.

Table 2.2: Comparison of memory size in both the traditional memory-based DA and

the proposed GDA designs for different values of N.

Lengthofcyc(:ll\llgconvolutlon 3 4 5 6 7 8 9 10 11 12 13 14

Traditional DA 22 2% 25 2% of 28 29 QW Hil Hlz 53 Sl

GDA
(# of group: G(N)) 4 6 8 14 20 36 60 108 188 352 632 1197

memory size reduction ratio

(DA GDA) 2 27 4 46 64 71 85 95 109116 13 137

Table 2.2 shows the comparison of memory size required in the two designs under
different N. We can see that the proposed GDA design is much more hardware
efficient than the traditional DA design. Fig. 2.7 shows the measure of delay-area
product to evaluate the performance for the proposed GDA design and the traditional

DA design. We find that the delay-area product of the proposed GDA design is much

17

smaller than that of the traditional DA design as N increases, which illustrates that the
proposed GDA design possesses better performance than the traditional DA designs in

terms of delay-area product.

40000

—e— Traditional ROM-based DA
30000

——GDA

20000 r

10000

delay-area product (ns * k um2)

4 5 6 7 8 9
length of cyclic convolution

Fig. 2.7: The delay-area product comparisonin the proposed GDA design and the
traditional memory-based-DA design with 16-bit data word length.

2.3 Consideration of low power-design

With the approach of address grouping in GDA design, the number of adress
appears on DA input has been reduced significantly such that the transition activity on
the word-line of memory in original DA design is reduced. And due to reduction of
the memory size in GDA design, the bit-line loading as well as the transition activity
on the bit-line is also reduced. Besides, the barrel-shifter is with higher driving
strength than ROM in conventional DA. On the power consumption point of view, the
proposed GDA design should be not only the low hardware cost design but also a low
power design. In the following, we will analysis and evaluate the GDA design to be a
low power design.

2.3.1 Analysis of transition activity

In general, transition activity at the output of circuitry depends on the transition

activity at the inputs and the circuitry function. The transition probability of a node

18

fromOto 1 (ie, &%,) IS pop:, Where p,and p; denote the probability of signal is

settled on logic-0 and logic-1, respectively [44]. The transition probability appeared in
the input of data-path have affected power consumption of the followed circuitry.
Considering a design example of 4-input data-path, Table 2.3 shows the comparisons
of transition probability and Hamming distance, respectively. Since grouped binary is
a subset of the complete binary, we can select to construct a subset as the distribution
of group addresses with lowest Hamming distance. Thus the transition activity on the
input nodes will be much smaller than that of complete binary such that the power
consumption of the data-path can be reduced significantly. Fig. 2.8 shows the trend of

sum of transition probability against the number of input-data bit.

Table 2.3: Transformation of transition probability for the input data of the 4-input

data-path.
Input data Complete binary Grouped binary
V3 V2 Vi Vo V3 V2 Vi Vo
0 0 0 0 olof[o]oO
0 0 0 1
0 2 = 0 0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 1
0 | L] 1 1O tolo|1]o
1 1 0 0
1 0 0 1
0 L 0 L 0 1 0 0
1 0 1 0
0 1 1 1
: 1 L 0 1 0 0 0
1 1 0 1
1 0 1 1
1 1 1 1 oo 1]1
Transition probability| 64/256 | 64/256 | 64/256 | 64/256 | 5/36 | 5/36 | 8/36 | 8/36
Sum of transition
probability 1 0.722
Average Hamming
distance 2 1.444
improvement 27.8 %

19

40
2P 33.8
s & 30 -
s 73
SZ5
S £
£ 00
g S
3315
o
g 0 ‘Il

5

) 3 4 5

The number of input data bit

Fig. 2.8: Trend of the improvement of transition probability versus the number of

input-data bit.

2.3.2 Address morphing approach

With the GDA design approach; the-gistribution of DA input address is reduced
into few groups. Shown as Table 2.4, we can realize the cyclic convolution by using
the scheme of address morphing that converts the distribution of DA input address
into a subset of it with minimal transition activity such that the transition activity on
the word lines of memory is reduced. Even in the case of never removing the unused
entries of memory, due to the lower input activity, the power consumption of memory
shown in Fig. 2.9 is reduced. Actually due to the number of memory entry is reduced
in Fig. 2.9; the bit-line loading of memory and transition activity on the bit-lines are
also reduced. Thus the power consumption of memory in the GDA design is reduced
significantly. However, the barrel shifter in the overhead of GDA design consumes
extra power such that the overall power consumption of GDA design with short length

IS improved inconspicuously.

20

Table 2.4: The relation ship of the address morphing.

. Rotating
DA input address (V) factor (R,) Ag?l,,rg;d
{ Vig V2. Vig V4,q} {l’z,q, T2y }
0001 0
0100 2
1000 3
0011 0
1100 2
1001 3
0111 0
1110 1 0111
1101 2
1011 3
1010 1
0000 0 0000
1111 0 1111
o 0 0 0 gy — ¢ ¢ 0
— d c b a
— d c b a
— b
| c‘fd e ul-lb W —l ctd I bt+e | at+b | a+d |
v, (msb, — b a d c :/7 e
| g e e [rd | o g e | e [g] e]
Vsg 3 Vei (Isb) 8
vag (50 | 8[| bre atb a+d c+d S bt | atbre | atbrd | arerd |
3 | btctd a+b+c a+btd at+c+d 3
§ 1 a d c b g
S | <<
=z at+d ctd btc ath
[atc b+d atc b+d
— atctd bte+d atbtc atbt+d
— a+tb a+d ctd b+c
— atb+d atctd b+ctd at+b+c
L1 atbtc a+btd atctd btct+d —| u+b+c+(l| u+b+c+1l| u+b+c+tl| a+b+c+4l|
—— atbtctd | atbtctd| atbtctd a+b+ct+d

| | | |
P Barrel shifter |
Ty Tog
Tt @ 5k 5 &
u, u, u; u, u, u, u,

U,

Fig. 2.9: The description of architecture transformation from DA to GDA

2.3.3 Exploration of dynamic range of the input data

The power consumption of a circuit highly depends on the transition activity of
input data. In some video codec systems, the data to be processed is the difference of
the adjacent frames such as the inter frame used in the video codec standards of

21

MPEG-2, MPEG-4, H.26X, and etc. As most of the pixels in the inter frame, the
difference is with smaller value such that some of the higher bit in DA computation
can be omitted to achieve lower power consumption. On the second concept, with the
choice of DSP algorithm, sometimes the data fed into the processing unit needs to be
processed previously such as the difference of input data. It means that we can exploit
the property of correlation for the local data such that the dynamic range of these
being processed data is reduced significantly. For example of 7-point DCT in cyclic
convolution formulation, the data on the input of processing unit is not the direct input
data. These data need to be computed previously with the combination of subtractions
and additions. Fig. 2.10, Fig. 2.11, and Fig. 2.12 show the test image, gray-level of the
pixels in this image, and histogram of the gray-level distribution, respectively. Fig.
2.13 and Fig. 2.14 respectively show the preprocessed gray-level and the histogram of
the input data of processing unit in DCT design. It reveals that most of the
preprocessed data values is small than the original one. Thus, the dynamic range is
reduced for most of the input data (;thne,g with the second concept above, the
number of cycle of DA computgﬂinn |nrt DCT*deagn will be reduced to achieve

- = ;J_ El AR

lower power consumption. o

Fig. 2.10: The test image with the size of 252 * 252 pixels.

22

The wvalue of input data

300

Fig. 2.11: gray-level 0f the pixels'in the image of Fig. 2.10.

Ll
|

A0 T T T T T

Jar

07

247

207

1ar

The number of value

1nar

D 1 1
-300 -200 -100 1] 100 200 300
The value of input data

Fig. 2.12: histogram of the gray-level distribution in the image of Fig. 2.10.

23

400~

_ 5 m Jm \!m

3an_........._..

200

100 | 1“& L| hi ' l.w]IM", % Wltl

) I|r1| [

The walue of input data
with preprocessing

300

Fig. 2.13: The preprocessed gray-level of the image in Fig. 2.10.

35 T T T T T

J0r

The number of value

L | [y L
0

-300 200 -100 0 100 200 300
The value of input data with preprocessing

Fig. 2.14: Histogram of the preprocessed data used in the example of 7-point DCT

design.

24

2.3.4 Low Power Design with pre-computation scheme

Exploiting the property of spatial correlation in natural images, for the algorithm
with the inputs formed as sum and difference of the primary inputs, the sum of inputs
are likely to have a number of equal high-order bits, and the difference inputs are
likely to have small dynamic range. Then for some cases, such as the 8-point 1-D
DCT, the cycles of DA computation for the high-order bits of sum inputs can be
skipped. On the other hand, since most of the bits in high-order bits of the difference
of inputs are the sign-extension bits, with the manner of bit-serial and word-parallel,
the cycles in DA computation for these extended sign-bits can also be skipped to
achieve lower computation power [45]. In the following, we will illustrate the
high-order bits rejection technique briefly, where this technique named most
significant bit rejection (MSBR) in [45], and explore the distribution of pre-computed
input data for the cyclic convolution formulation of prime-length DCT. For the
realization of prime-length DCT, combining the proposed GDA design with the
MSBR technique facilitates not only.‘reducing.the memory size, but also improving

the power consumption.

MSBR technique

Considering the even and odd outputs 'of the reformulated 8-point 1-D DCT as
Xo| [4 4 A4 4] [xg+x7

X9 B C —-C -B||x+xg

A -4 -4 A X2 + Xg (2.4)

Xg C -B B —-C||x3+x,

D E F G ||xg—x7
X3 E -G -D —-F||x1—xg
F -D G E ||xp-xg (2.5)

X1 G -F E —-D||x3—x4

Observing the Table 2.5, we can see that some of candidates of DA input, i.e.,
0000 and 1111, cause the even output to be zero. It means that the computation,

shown as the rejected bits in Fig. 2.15, can be skipped in DA computation.

25

Table 2.5: Relationship between the sum of primary inputs

and the even outputs.

Xo+Xx7, X;tX6,

Lot F% AENENERE
0000 0 0 0 0
0001 A -B A -C
0010 A -C -A B
0011 2A | -B+C)| 0O B-C
0100 A C -A -B
0101 2A | -(B-C) 0 | -(B+C)
0110 2A 0 -2A 0
0111 3A -B -A -C
1000 A B A C
1001 2A 0 2A 0
1010 2A B-C 0 B+C
1011 3A -C A B
1100 2A B+C 0 -(B-C)
1101 3A C A -B
1110 3A B -A C
1111 4A 0 0 0

msb Isb

X, 1.0 110 01]1}0
x,+x, |10710[1{0[0
x,+xg |10 1[10]1]1[0
xtx, |10 1) 1]1]1f0

_r r 4

Skipped bits

Fig. 2.15: The skipped bits in DA computation for the even outputs.

As for the computation of odd outputs, with the property of high spatial
correlation for the pixels in an image, shown as Fig. 2.16 the difference of primary
inputs reveals the property of small dynamic range, and thus most of the high-order
bits in these difference inputs are the sign-extension bits. Then we need only
computing for the least significant bit of sign-extension bits to have the exactly final
result of DA computation. Similar to the sum inputs, the number of cycles in DA
computation for these extended sign-bits can also be reduced significantly. However,

due to the huge amount of overhead for skippable bits detection, development of the

26

efficient detection scheme is still the issue of low power GDA-based design with
MSBR technique.

msb Isb

XX 111{10[0]10

XX, 111]10]0]01

X, 111{10[0]10

xpex,s (1T T 10[T 1
Skipped bits

Fig. 2.16: The skipped bits in DA computation for the odd outputs.

Exploration of the input data for prime-length DCT in cyclic convolution

In the following, we illustrate how the MSBR technique can apply to the
prime-length DCT design with the example of 7-point DCT. Considering the kernel of
DCT 7((3");) in (2.7), where x((3"*");s)rdenotes: the indirect inputs pre-computed
from the primary input y(n) as (2.8):

6
YO =) yn)
n=0

Y((3)7) =12 T((3")7) + x(O)]- cos(Z- ((3")7));k =1,....6 2.6)
6
7(3)7) = Y X @ F) (D" -cos(Z- @)7) 2.7
n=1

where (3"), denotes the result of “3* modulo 7” for short,

x(3"),);if n—k+1>0

, the value of m is determined b
x((36+(n—k+1))7); lf n—k+1l< O} m y

X(37),) = {

@™y +m-7=@")7 (3)7imk =1,...6 and the sequence {x(n)} is defined

x(6)=y(6) .
x(n) = y(n)—x(n+1);n=0,..5| (2.8)

as

27

We can write the kernel 7((3%),) as the matrix form

7(3)] [-x(3) x(2)
7)| | x@ x@)
)| | x6) x(Q)
T(4)| | x4 x5
T(G)| | x(6) x(4)
TQ)| | X2 x(6)

where a denotes % .

And then exploiting the
as

x(6) -x(4) x(B) x@) | [cos(2q)]

x(2) —x(6) —x(4) —x(5)| |cos(6a)

x(3) —-x(2) —x(6) —x(4) y cos(4a) 29

x() -x(8 -x(2 —x(6)| |cos(a)| (2.9)
-x(B) x@) x(3) —x(2) cos(la)

x(4) x(5) x@) x(3) | |cos(3a)

symmetry property of DCT coefficients, (2.9) is reformulated

'TR)] [-x(3) x(2)
T(2) x(1) x(3)
7(6) x(5) x(@)
TM@)| | x4) x()
T(5) x(6) x(4)

TQ@) | | x(2) x(6)

,and

[T3)| [x(4)-x(3)
72| | x(6)+x()
7(6) x(2) + x(5)
7(4)| | x(4)+x(3)
T(®6)| | x(6)-x@)

| TQ) | | x(2)—x(5)

x(6) -x(4) x(3) x(1)] [cos(2a) |

x(2) -x(6) -x(4) —x(5)| | cos(6a)

x(3) -x(2) —x(6) —x(4) y cos(4a)

x() -x(3 -x(2) —x(6)| |-cos(2q) (2.10)
-x(5) x() x(3 -x(2)| |-cos(6a)

x(4) x@uasx®) x(3) | |—cos(4a)|

x(2)=x(5) x(6)-x(1)]

x(4)+ x(3)x(2) + x(5) cos(2a)

¥(0) (D) T+ (3 cos(6a)

x(2) + x(5). x(6)#* x(1) cos(4a) | - (2.11)
x(4)-x(3) x(2)-x(5)

x(6) - x(1) x(4)-x(3)]

To separate the even and odd outputs, two smaller perfect cyclic forms are shown as

7(2)
7(6)
T(4)

and

7(5)
Q) |=
@)

With the property of spatial

x(2) + x(5)

} {x(6) +x(D)

x(4)+x(3)

x(6) — x(2)
x(2) - x(5)
x(4) - x(3)

x(6)+x(1) x(4)+x(3)

x(4)+x(3) x(2)+x(5)| |cos(2a)
x(2)+x(5) x(6)+x(1)

x(6) —x(1) x(4) -x(3)

x(4)—x@B) x(2)—x(5)| |cos(2a)
x(2) = x(5) x(6)—x()

cos(6a)

cos(4a) (212)

cos(6a)
cos(4a)

(2.13)

correlation, the difference of the indirect inputs will

28

remain most of the high-order bits as sign-extension bits such that the cycles of DA
computation for most of the bits can be skipped. Similar to the benefit of MSBR
technique in 8-point DCT design, combining this technique with the proposed GDA
approach for the prime-length DCT design facilitates not only low hardware cost but

also low power consumption.

2.3.5 Evaluation of power cost

We have synthesized and verified the power consumption of 1-D 5-point to
13-point DCT designs at the clock frequency of 166MHz by using respectively
DesignCompiler and PrimePower with the UMC 0.18um cell-library and the test
benches of Lena, Babon, and Peper. As shown in Fig. 2.17, the simulation result
shows that power consumption of the 1-D prime-length DCT with GDA design is
lower than that of the conventional DA design for the test benches with different
characteristics of content. With the power consumption point of view, it reveals that

the proposed GDA design is also a:low power design.

—— Conventional DA

60 —8—GDA

50 |

40

30 -

Power consumption (mW)

20

10

3 5 7 9 11 13 15
Length of 1-D DCT

Fig. 2.17: Power consumption of the GDA-based 1-D DCT designs.

29

2.4 Partitioning of cyclic convolution

Because of the inherent issue of DA-based design that the memory size
increases exponentially as the length of input data increases, the partition issue must
be regarded. In the conventional DA design, we can arbitrarily partition the input data
of DA, and then sum up the partial sums from the different memory modules to
achieve low hardware cost. However, because of the necessity of cyclic preserving,
the manner of arbitrarily partitioning cannot be applied to the proposed GDA design.
Otherwise, the benefit of low hardware cost in GDA design will not exist. To solve the
problems mentioned above, we combine applicably the proposed GDA approach with
the partition methods for prime length and non-prime length cyclic convolutions
respectively such that the case of long length GDA can be partitioned, and composed
of the short cyclic-convolution blocks. It facilitates that we can still realize each of the
shortened cyclic convolution blocks with the proposed GDA design to achieve low

hardware cost.

2.4.1 Agarwal-Cooley algorithm

The approach of Agarwal-Cooley algorithm is'to convert one-dimensional cyclic
convolution into a multidimension” cyclic convolution [41]. In essence, a
one-dimensional cyclic convolution of‘length‘zz, where n = n; * n,, and n; and n, are
relatively prime, can be expressed as a two-dimensional cyclic convolution of length
n; and n,, respectively. The extension of the idea to convert one-dimensional cyclic
convolution to a d-dimensional cyclic convolution when n has d relatively co-prime
factors, that is n = n; * n,... ng and n; and »; are relatively prime, i # j, is
straightforward. The Agarwal-Cooley algorithm consists in the application of Chinee
remainder theorem for integers (CRT-1) [46] to the indices of sequences being
convoluted. Therefore, it is valid for data sequences defined over any arbitrary
number system. A major advantage of the Agarwal-Cooley algorithm is that the long
length cyclic convolution can be constructed from short length cyclic convolution.
Table 2.6 shows the covered lengths that the cyclic convolution can be decomposed

with Agarwal-Cooley algorithm.

30

Table 2.6: Analysis for the covered lengths of cyclic convolution can be decomposed.

Lir;%tl?COf Deccfnmposition Lir;%tl?c()f Decomposition Lir;/%tl?c()f Decomposition Lecr;%ﬁ?COf Decomposition

convolution actors convolution factors convolution factors convolution factors
7 7 20 4*5 33 3*11 43 43
10 2*5 21 3*7 34 2*17 44 4*11
11 11 22 2*11 35 o*7 45 9*5
12 4*3 23 23 36 4*9 46 2*13
13 13 24 8*3 37 37 47 47
14 2*7 26 2*13 38 2*19 48 3*16
15 3*5 28 4*7 39 3*13 50 5*10
17 17 29 29 40 8*5 ol o1
18 2*9 30 6*5 41 41 : :
19 19 31 31 42 6*7

Note: Power of two and power of prime-value cannot be covered.

2.4.2 Pseudocirculant matrix facterization algorithm

Since the partitioning factors'for cyclic eonvolution are not relatively co-prime,

the Chinese Remainder Theorem I(CRT-1) cannot-be-used in the indices of sequences

being convoluted. Thus for preserving the‘cyclic property for GDA design, we use the

pseudocirculant matrix factorization " algorithm ' {42] for further partitioning the

long-length cyclic convolution. With this algorithm, shown as (2.14) and (2.15), the

cyclic convolution with the length of N can be factorized as the factors of N/» and r.

Uy ¢

u, Cy

Us | | Cy

Uy, C3

LUy | | ©
U, G,
U, C,
U3 _ Cr—l
Ur—l C3
L Ur n | C2

G G Cna
G G C3
Cv G) C3
Cna Cy G
C3 Cya Cy
SN Ir CZ SN Ir C3
Cl SN/rCZ SN/rC3
Cr Cl SN/r C2
Crfl Cr
C3 Cr—l

G,

&

SN/rCrfl SN/VC}"
SN//‘Cr—l

SN/VC3

(2.14)

(2.15)

31

where {v;, v5, v3, vy, ..., vy }are input data, { ¢;, c,, ¢3, ¢4, ..., ey } are coefficients,
and { uy, uy, us, uy ..., uy } are output data. The cyclic shift operator Sy, can be

written in form as

0 0 O 0 1
1 0 O 0 O
0 1 0 0 O
SN/r:
0O 0 1 0 O
0 0 0 1 0]

Using the commutative property of convolution, we can rewrite (2.14) and (2.15)

as follow:
i U 1T Vi Vo W Voperm Vi 1T e]
u, Vo, V3 Vi1V Vi &)
Ug | | V3 ° Vya 2 Wy Yy V2 C3
- K : o (2.16)
Uy, Vva Vv N Vgt Viv_o | | Oy
LUy | LY M Vs V2 VYya | | Cv |
i Ul] i Vl SN/rVZ SN//'I/?: SN/rV4 SN/rV_ i Cl]
U2 VZ SN/rV3 SN/rV4 SN/rI/l I/1 CZ
Us _ V3 SN/rV4 SN/rV Vl Vz Cs
Ur—l Vr—l SN/rI/r Vl I/r—3 Vr—Z Cr—l
L Ur n L I/r I/1 I/;—3 I/;—Z -1 | L Cr a
_SNIVVZ SN/VV3 SN/rV4 SN/rVr Vl] _C2_ (217)
SN/rV3 SN/rV4 SN/rV I/l VZ C3
_ SN/rV4 SN/rV Vl Vz Va) C4
SN/rV Vl VZ I/er r=1 Cr
N v, V.2 V.4 V. 111G

32

2.4.3 Long length cyclic convolution design

The case of the partitioning factors is relatively co-prime
Consider the example of computing the cyclic convolution example shown in
(2.18), where {v,, v,, v3, v4, vs, vs} are input data, {a, b, ¢, d, e, f} are coefficients, and

{u,, us, us, uy, us, ugy are output data.

u, ViV, V3 Vv, Ve Vsl | a
u, Vo, V3 VY, Ve Vg V) b
Uy Vi V4 Vs Vg vV V||
U= u B vV, Ve Vo V. V, V d| (2.18)
4 s V5 Vg VI Vo V3
Us Ve Vg V. V, V3 V.| |e
([Us | [V V1 Vo V3 V4 Vg | _f_

In the case of cyclic formulation with 6 input data, it can be factorized into 2 and 3.
Since the factors of 2 and 3 are relatively prime; there exists a data permutation on the
rows and columns of the matrix,such-that the resulting matrix of input data shown in
(2.19) can be partitioned into:the form of ‘block circulants of 2x 2 with circulant

blocks of 3x 3.

GPAU1 GDAU2

u, a
U e
u c
3
U = -
u, d
u, V, Vg V, Ve Vv V|| b (2.19)
Us | | Ve Vi Vo V3 Vv Vs || f]
_U 5 Ve, V,||B
where
U Uy, i V5 V3 Vo Vo Vg a
_ _ A=le
U,=lus |, Ug=lu, |, Vi=|vs vs | Ve=|v, Vs V|, , and

33

d
B=|b
f

From the hardware point of view, we have partitioned the original memory
module into two smaller ones. One memory module stores the combination of the
coefficients {qa, e, ¢} for u;, us, and u;s as well as u,, u,, and us. Similarly, the other one
stores the combination of the coefficients {d, b, f} for u;, us, and u; as well as uy, u,,
and ug. In performing the memory access, we can access the partial products for u;, us,
and u; by using the memory address generated from {v,, vs, v;} through first memory
module and access the partial products for u;, us, and u3 by using the memory address
generated from {v,, v, vs} through second memory module at the same time. Then we
sum up the two partial products to have u;, us, and u; using the extra adders. With the
identical hardware and extra input-data-rotator, we can compute uy, u,, and us in the
next iteration. The cyclic convolution realized with this partitioning scheme and GDA
approach is named block-based group-distributed-arithmetic (BGDA) in our research.

Fig. 2.18 shows low-cost hardware architecture -to realize the design example
illustrated in (2.19) based on :the proposed BGDA: design approach. To meet the
requirement of high performanee; we.'can“easily duplicate the BGDA modules to
construct the high performance version,0f BGDA design as shown in Fig. 2.19.

u6
u5
ud

u2

L % 4
— . \CC) j
1+

Fig. 2.18: The low cost version of BGDA design realizing the cyclic convolution

R L

)

example shown in (2.19).

34

NTOW N L

Group decoder

o]
S
8
3
8
S
o
]
o
(©)

Fig. 2.19: The BGDA design on realizing the gyelic convolution example shown in
(2.19) with high performance.

The case of the partitioning factors is not relatively co-prime

Considering the example of computing the cyclic convolution shown in (2.20),
{vi, vs, v3, v4, Vs, vs V7 vs} denote the input data, {a, b, ¢, d, e, f, g, h} denote the

coefficients, and { u;, u,, us, uy, us, ug, uz ug} denote the output data.

35

_ul 1T Vi YV, V3V, Ve VgV Vg 1l7al
u, V, VoV, Ve Vg V3 Vg V|| D
U, ViV, Ve Vg Vv, Vg v W ||
U< Ug | _|Va Vs Ve V7 Vg Vi V2 Vg d
u Ve Ve Vo Ve oV, V, V. V e (2.20)
5 5 Yo Vi Vg ViV, V3V
Ug Vo Vi Vg Vi Vv, vzov Vil |f
Uus Vi Vg Vi Vo V3 ¥V, Vs Vg | 8
[Ug | Ve Vi Vo Vi oV, Vs Vg Vi | h]

In the case of cyclic formulation with eight input data, we permute the data on the
rows and columns of the matrix such that the resulting matrix of input data shown in
(2.21) can be partitioned into the form of block pseudocirculants of 2x 2 with

circulant blocks of 4x 4.

u, a
U, c
Us e
u g
.
U= =2 b
u
2
2.21
u, V, Vg Vg Vi v v, v, vyl |d ()
Ug Ve Ve Vo V4 vz Vi vy Vsl | f
(Ug | Vg Vo V4 Ve Vi V3 Vs Vi || h]
3 U, V, V, |:A}
U, v, V, B
where
U, U, i Vs Vs Vg Vo V4 Vg Vg Vs V5 V2 W
u u Vs Vs v,V V, Vg Vg VW, Ve V3 oV Vg
U, = 3, U, = 4, v, = 5 Vi W, v, = 4 , VB‘: 5 V7oV
U Ug Ve V; oV Vg Vo Vg Vo, Vu Vv, oV Vv, Vs

36

a b
4=|€1|, and Bzd.

e f

g g

From the hardware point of view, we have partitioned the original memory
module into two smaller ones. One memory module stores the combination of the
coefficients {qa, ¢, e, g} for u;, us, us, and u; as well as u;, uy, us, and ug. Similarly, the
other one stores the combination of the coefficients {b, d, f, g} for u;, us, us, and u; as
well as u,, uy, us, and ug. In performing the memory access, we can access the partial
products for u;, us, us, and u; by using the memory address generated from {v;, v;, vs,
v7} through first memory module and access the partial products for u;, us, us, and u;
by using the memory address generated from {v,, v, vs vs} through second memory
module at the same time. Then we sum up these two partial products for obtaining u;,
us, us, and u; by using extra adders respectively. With the help of the identical
hardware and extra input-data-rotator, wecan compute u>, uy, ug, and ug in the same
way. However, for the operation‘of input.data rotation, in the case of partitioning
factors is not relatively co-primg, the numiber of rotated bit for V- is larger than 7, by
one bit. Fig. 2.20 and Fig. 2:21 show:the low-cost and high performance GDA

architectures to realize this design example illustrated in (2.21).

us
u,
u;
ROM1 2
L1 g a c e
— . — etg atg atc cte
5
- g L1 ctg ate ctg ate
|| 8 || ctetg | atetg | atctg | atcte
I B) 0 0 0
O | [atcterg|atcretg|atetetg|ateterg
[[[\
\—{ Barrel shifter |
\ 1 1
ROM2 \—‘j
I h b d f I
— . —{ ft+h b+h b+d d+f] _@
S || d+h b | d+h | b +
|| 8 | ["d+h | brfvh | brdh | brdeT |
311 o 0 0 0 —
& | [brd+fh | brd+T+h|bFd+rh| bFd+Fh v
L 1 ||| o]
Barrel shifter ‘ I
1
‘ \ !
‘ +
I

Fig. 2.20: The low cost version of GDA realization of the example shown in (2.21).

37

ROMI
g a c e u
e+g a+g a+c cte
ctg ate c+g ate
cte+g | ate+g | atctg | arcre
0 0 0 0
arcte+g| atctetrglatcrerglatctety

Barrel shifter ‘
T T T T
[I I
¢ ROM2 I: +
LI h b d f

< <
PO

<
>

LT
Group decoder

<
o

<, < = .<
[OSENERTEN

H u,
[f+h [beh | brd | a+f L——]«
[| d+h b+f d+h b+f
d+f+h | b+f+h | b+d+h | b+d+f
H ug
Dol

Group decoder
I
|

I
Lo 0 0 0 0
I

P/S | [D+d+F+h]| brd+f+h|b+d+f+h| b+d++h
t I I I I

Barrel shifter ‘

e

ROM1

g a c e

e+g atg atc cte

ctg ate c+g ate
ctetg | ate+g | atctg | atcte

0 0 0 0
atcte+g|atcrerg|atcrerglarcretg

[[[\

Barrel shifter ‘
T T

L]
ROM2 \—‘i
b d f

Group decoder

f+h b+h b+d d+f

d+h b+f d+h b+f
d+f+h | b+fth [DHd+h [-ptd+f
0 0

0
b+dF+f+h| b+d+f+h|b+d+F+h[D+d+F+h Us
mpRgic

[

s L

Barrel shifter ‘

oHoHoHo{oHoHe
> E >
3
cHoHoHo— (o} oo o}

e L

Fig. 2.21: The high performance’version of GDA realization of the example shown in
(2.21).

2.4.4 Evaluation of long length cyclic convolution GDA design

As shown in Fig. 2.18, the proposed low-cost BGDA design with co-prime only
requires two small memory modules to compute all the output samples. It saves 72
words of memory (i.e., 75% of memory cost), 6 adders, and 3 registers at the cost of
introducing the extra barrel rotator and input-vector rotator circuitries as well as
halfing the throughput rate as compared with the traditional DA-based design. For the
requirement of high performance, the proposed BGDA design (shown in Fig. 2.19)
can save 48 words of memory (i.e., 50% of memory cost) and operate at the same
throughput rate as compared with the traditional DA design at the cost of one extra
barrel rotator. As to the non-coprime partitioning, the proposed low-cost BGDA
design shows in Fig. 2.20, similar to the case of co-prime partitioning, this design

only requires two small memory modules to compute all the output samples. It saves

38

208 words of memory (i.e., 81.25% of memory cost), 8 adders, and 4 registers at the
cost of introducing the extra barrel rotator and input-vector rotator circuitries as well
as halfing the throughput rate as compared with the traditional DA-based design. For
the requirement of high performance, the proposed BGDA design (shown in Fig. 2.21)
can save 160 words of memory (i.e., 62.5% of memory cost) and operate at the same
throughput rate as compared with the traditional DA design at the cost of one extra
barrel rotator. Table 2.7 summarizes the hardware cost in the architectures of low-cost
BGDA, high performance BGDA, and traditional DA. It is concluded that the
proposed BGDA design approach provides a hardware efficient scheme to realize the

long-length cyclic convolution.

Table 2.7: Comparison of the hardware cost of the design examples shown in low-cost
BGDA, high performance BGDA, and.conventional DA in the case of non-coprime

partitioning.
Address 4-bit
decoder mi?;gry Barrel- | Adder.| SR P/S | Rotator |Normalized
(coded (words) shifter{(words)| (words) | (words) | (words) [Throughput
addresses) (words)
Conventional DA *nh
design 2*2 256 0 16 24 8 0 1
Proposed BGDA
design (high 2*(*6+%4)| 96 34 16 24 8 0 1
performance version)
Proposed BGDA
design 2*(6+4) | 48 2 8 20 8 6 0.5
(low cost version)

Note:
1 denotes the number of group-address.
2 denotes the number of rotate-left factor.

3 denotes equivalent area of 4*4° memory words.

39

Chapter 3
GDA-based Design for 1-D DSST's

In this chapter, we illustrate the GDA-based designs of 1-D DSST’s with
prime-length and any-length, including DFT, DHT, and DCT, from algorithm to
architecture, respectively. The optimizations on algorithm level of DSST’s for further
reducing the hardware cost are involved. Besides, we have evaluated each of the

DSST’s designs in the corresponding subsection.
3.1 Design of 1-D DFT

3.1.1 Cyclic Convolution Formulation
Prime-length case

The 1-D N-point DFT of an input sequence {x(n), n = 0, 1,, N-1} is defined as
N-1
Y(k):Zx(n)W]\}k,k:O,l,....,N—l a1
n=0

If N is prime, we can rewrite (3.1) in ‘a‘cyclic convolution by exploiting the property

of input/output (1/0) data permutation as

Y(0) = Y +() 52)

n=0

Y Y= IS (™) Y. 7 EINT 4 2 (O) k= B
Y((g)N)_[ngl (™)) - Wy W1+ x(0);k =1,.... N -1 33)

=T((g")) +x(0)
N -1)
(g)= D at(g" Fyy) N (3.4)

n=1
, Where (g")y denotes the result of “g* modulo N for short and g is a primitive
element. T((g")y) in (3.4) is the kernel of the N-point DFT that is written in cyclic
convolution formulation. For facilitating the utilization of the GDA design approach,
the GDA formulation of 7((g")») shows as

40
7((g)) =T (" ™))+ 2T, (8)y) 2 (@5)

where T,(R,) =R(T;) |,
Ty (Ry) ={Ty (2")), To (€7)), T (")), T (™))},

T, ={T,((€")). T (%)), Ty (")), To((2™))}

and
T(R)=R(T) ,
T(R)={T,((g"™)\).T,((g" ™)) T, ™)), T, (g™ ™))},

T, ={T,(():) T, (")) T, (")) T, ((g"))},

and

N-1
T((g")3) = 2 % (&))2, and
-1

780 = 3 x ("5) e

where L denotes the data word length of the variable x, N denotes the transform length,

R, denotes the rotating factor for gth/bit that is used for indicating the number of
position of the partial products in DA input and output should be rotated, and W,
are the DFT coefficients. The rotation function R() is used to rotate the elements in
the output vector fq(Rq) from the input vector i by R, for the gth bit of DA
computation.

Non-prime length case

For the case of non-prime length, the 1-D N-point DFT of an input sequence {y(n),
n=0,1,..,N-1} is defined as

N -1
Yk) = Y ym) W k=01..N -1, (3.6)
n=0
—2nkrx

where W, denotes e "

41
Using the identity
n><k=%><[n2+k2—(n—k)2], (3.7)

we can express (3.6) as

kZ

Yk) =W 2 xT(k);k=01,..N -1, (3.8)
where
N — 1 ;1(,,,/{)2
Th) = X x(n) -W,? k=01,...N -1, (3.9)
n=0
and
L2
x(m) = y(n)xw,? . (3.10)

The T(k) in (3.8) is expressed as.a.cyclic convolution. To facilitate the GDA

design of T(k), we expressed T(k).in‘a commutative.form as
N -1 S
Th) = % x((n% k),) Wi (3.12)
n=20

12 ©
w2 in (3.10) denotes the complex multiplication for the input sample, and the w,2
in (3.8) denotes the complex multiplication for the result of cyclic convolution
operation. Hence the extra pre-processing and post-processing are needed for the
cyclic convolution of any length DFT. Since the GDA design is based on bit serial
approach, with the stage-balance point of view in pipeline architecture, the CORDIC
(CO-ordinate Rotation Digital Computer) complex multiplier should be an proper
combination. The detail of CORDIC is illustrated as the following.

3.1.2 CORDIC (CO-ordinate Rotation Digital Computer)

For properly combining with the feature of bit-serial in DA computation, we hope
to realize the complex multiplication in serial manner for pre-processing and
post-processing of the DFT in cyclic convolution. The existing realizations of

complex multiplication have either direct manner or rotated transformation algorithm.

42

The realization of complex multiplication with direct manner needs four multipliers
and two adders, but realization with the rotated transformation algorithm, such as the
CORDIC, needs only a sequence of identical arithmetic shift-and-addition operations.
With the feature of serial manner, CORDIC should be a proper choice of serial
complex multiplication for low hardware cost in the bit-level design. So, combining
the GDA approach with CORDIC facilitates a hardware efficient design for

any-length cyclic convolution DFT.

The CORDIC was developed by Volder in 1959 as a technique for solving the
coordinate rotation problem [47] and later generalized to solve other elementary
functions by Walther [48]. It can be applied to the rotations in three coordinates
systems: the linear, circular, and hyperbolic coordinate systems. A complex
multiplication with the rotation operation in the circular mode can be shown as (3.12).
The basic concept of CORDIC computation is to decompose the desired rotation
angle of coefficient into the weighted sum of a set of predefined elementary rotation
angles in (3.13) so that the rotation,through each of them can be accomplished with
simple shift-and-add operations for twosstages. /As shown in Fig. 3.1, the architecture
design of CORDIC is more hardware efficient than the direct realization of complex
multiplications, which needs four multipliers-and two adders.

X R cos(d) sin(@)| |x
L’J_R(H) L}} [sin(#) cos(@)} LJ (3.12)

Where [x, y] denotes the input vector with real part of x and imaginary part of y. R(6)

denotes the complex coefficient to be multiplied.

x ml 5,27 X
ot 1) o

m—1
where K, =]] cos(6,)

i=0

43

Table 3.1: Table for 6;

6 (degree)
45
26.56
14.03
7.12
3.58
1.79
0.89
0.45
0.22
0.11
0.06

O© 0O ~NOoO Ol WN PP O~

=
o

Table 3.2: Determination of the s; sequence
at the @ of 56.

i S Sum(6;)
0 1 45
1 ; 71.5
2 -1 57.5
3 -1 50.4
4 1 53.9
5 1 55.7
6 1 56.6
7 -1 56.2
8 -1 56

Since the DFT algorithm & has been given, with the table for &, in Table 3.1, the
corresponding set of s; can be computed and stored in memory in advance. Table 3.2
shows the example to determine the sequence of s; at the & of 56. In the two stages
computation of CORDIC, the multiplication of the scaling factor in second stage
imposes significant overhead. Fortunately, if |'s; | equals 1, and i is given, K,, can be
computed in advance, and converted into a canonical sign-digit representation [49] as
(3.14) so that the same processing unit shown in Fig. 3.1 can be used for the two
stages of CORDIC computation.

44

p .
—1
Km = kaz ! (3.14)
p=l

where k, = £1, i, are positive integers. Multiplication for scaling then will take p-1

shift-and-add operations.

K] —M
U »
[X |
N Barrel M +- >
—P . »
shifter Tu >
A » X f
Control unit
A\ 4 Ly M ;
Barrel o g > 4
y—» shifter =
AL +/- >y’
M
N U > Angle
< mgll 4 1D'¢ memory

Fig. 3.1: Realization of CORDIC-iterations and scaling iterations.

Hardware cost analysis of the complex multiplication realization with direct
manner and CORDIC is addressed as the following. Table 3.3 shows the comparison
of the hardware cost for the two realizations. In the direct realization, since the two
product terms are respectively formed of the real part and imaginary part such that
L-1 shift operations and L-1 accumulation operations are needed for each computation
of the product term. Then 4(L-1) shift operations and 4(L-1) accumulation operations
are needed for the complex multiplication, where the parameter L denotes the word
length. For the CORDIC realization, 2m shift and additions operations are needed for
the first stage, and 2(p-1) shift and accumulation operations are needed for the second
stage. Consequently, the total number of shift and accumulation operations needed for
the direct realization are 4(L-1) and 4(L-1) as well as 2m+2(p-1) and 2m+2(p-1) for
the CORIC realization. Additionally, two additional additions in the direct realization
are needed for summing up two terms of real part and imaginary part for output. In

general, the word length of the input value is larger than the number of iteration in

45

each of the CORDIC stages. With the UMC 0.18um cell-library and the same
constrained speed, Fig. 3.2 shows the comparison of area cost and power
consumption for the complex multiplications realized with serial multiplier and
CORDIC, respectively. As a result of the simulation result, the CORDIC realization

should be better than the direct realization for hardware cost.

Table 3.3: Hardware cost comparison of direct realization and

CORDIC realization for a complex multiplication.

Shift Accumulation Adder
Direct manner 4(L-1) 4(L-1) 2
CORDIC 2m+2(p-1) 2m+2(p-1) 0

»
o

350000
serial multiplier

A CORDIC

| W serial multiplier
b CORDIC

~

300000 r

w
o

250000 r

w

200000 -

~
@

~

150000 r

-
@

Area cost (um’)
Power consumption (m#’)

100000 r

-

50000

=3
o

NN

0

©
-
~
5}
©
-

Word-length (pir) Word-length (bit)

(a) (b)

Fig. 3.2: Comparison of (a) area cost and (b) power consumption for the complex

multiplications realized with serial multiplier and CORDIC.

3.1.3 Symmetry exploration of the DFT in cyclic convolution

Let us take an example of 1-D 11-point DFT with the real input sequence {x(n), n=0,

1, ..., 10}. The cyclic convolution form of T((g")») can be expressed as

46

(72 [x@ x(2) x4 x@B x(B) x(10) x(9) x(7) x(B) x(6)]
7(4) x(6) x(x(2) x4 x@B x(5 x(10) x(9) x(7) x(3) 11
T(8) x(3) x(6) x(@ x(2) x(4) x(B) x(5) x(10) x(9) x(7) Wi
(%) x(7) x@3) x(6) x() x(2) x(4) x(8) x(5) x(10) x(9) W151
TA)| | x(9) x(7) x(d x6) xQ x(2 x4 x© x5 x0)| |Wi
7(9) x(10) x(9) x(7) x(3) x(6) x@ x(2) x(4) x(B8) x(5 w2
7(7) x(5) x(10) x(9) x(7) x(3) x(6) x(@» x(2) x(4) x(8) W171 '
73 x(8) x(5 x(10) x(® x(7) x(3) x(6) x@ x(2) x(4)
7(6) x(4) x(8 x(B) x(10) x(9) x(7) x(B x(6) x() x(2) 6

| T | [x(2) x(4) x(8) x(5) x(10) x(9 x(7) x@) x(6) x(2) |

As shown in (3.11), the coefficient matrix in (3.15) can be expanded as the even

symmetries of cosine function ¢y =c¥i=12..N-1, where cy=cos(274) , and the odd

symmetries of sine function si =-sN~,i=12..N-1, Where shy =sin(2"’%v) :

Wh | | e sfiifes; - s

M| | et — sl Rish

Wiy | Byt ot et B

Wy | err — P — I

WL | et = gstol Cfer < sy

Wi | | eriosuianodfidin ¥ /sty

Wi | [emn—Jsi | | e —Jsiy (3.16)
Wiy | | e dshy | | ennt sty

Wy | |-t | | et s
Wiy | ey -dsty | |eth +sts |

Then, we can re-write 7((2");;) in (3.15) as follows:

7]
r(7)
()
7(6)
7(10)
(9)
T(4)
()
(%)

L 7@)]

47

[x@® x(9) x(4) x(B) x(6) x(@0) x(2) x(7) x(@B8) x(6)] |ci-jsi i
x5 x@ x(9 x(4) =x(B x(6) x@0) x(2) x(7) x(8) e+ sy
x(3) x(B) x(» x(x@) x@B x(6) x10) x(2) x(7) e —jsb
x(4) xB) xB) x@ x9 x(7) x(B) x(6) x(10) x(2) e — Jjsy,
x9) x(4) x(B) x(6) x(@) x(2 x(7) x(8) x(6) x@0)| |- sy
x(10) x(2) x(7) x(@B8) x(6) x@ x(9) x(4) xB) x(5) ch+ jsh
x(6) x(10) x(2) x(7) x(8 xB) x@© x©O x(4) x(3) e — st
x(8) x(6) x(10) x(2) x(7) xB) x(5 x@ x(9) x(4) e+ jisy
x(7) x(8) =x(6) x(10) x(2) x(4) x(3) x(5 x@© x(9)+ jsd)
(K2 2D x@® x(6) x10) x© (&) 3 xE @) |25
[x@) x(9) x(4) x(3) x(B) x(0) x(2) x(7) x(B8) x(6)] ci
x(6) x@ x(©9) x(4) x@) x(6) x(0) x(2) x(7) x(8) | e
x(3) x4 x@ x(9) x(4) x(B8) x(6) x(10) x(2) x(7) | <}
x(4) x@) x(6) x@© x© x(7) x(B8) x(6) x(10) x(2) | e
_|xO9) x(4) x@) x(5) x(@) x(2) x(7) x(B) x(6) x(10) ar
x@Q x(9) x(4) x@) x() x(10) x(2) x(7) x(@) x(6) |]
x(5) x@) x(9) x(4) x(B) x(6) x(10) x(2) x(7) x(8) |)
x@) x(6) x@) x(9) x(4) x(B) x(6) x(10) x(2) x(7) |
x(4) x@) x(6) x@ x(9) x(7) x(@) x(6) x(10) x(2) || ¢
x(9) x(4) x@) x(®) x() x(2) x(7) x(8 x(6) x(10)] ¢} |
x@ x9) x(4) x@)rx(d) x@0)r, x(2) x(7) x(8) x(6) 1 s
x(5) x(@ x(9) x(@) xB)rx(6). x@0) x(2) x(7) x(8) -5
x(3) x(5) x(V) =x(9) —x(4)| x@B)s x(6) x(10) x(2) x(7) sY
x(4) x(B) x(B)= x(@) x(9) .x(7) -x(B8): x(6) x@0) x(2) s
x(9) x(4) x()=x(B)p 'O x?2) x(7y x(B x(6) x(10) 51
-x(1) -x(9) -x(4) -X@). =x(6)-=x@0) ‘=x(2) -x(7) -x(B) -x(6) | -s2
-x(5) —x() -x(O9) -x(4)y =x(3) -—x(6).*-x(0) -x(2) -x(7) -x(B) | +s;
-x(3) —-x(6) -x() -x(9) -x(@)"=x@) -x(6) -x(10) -x(2) -x(7) | -5
-x(4) —x@) -x(5) -x@) -x(9 -x(7) -x(B) -x(6) -x(10) -x(2) | -5
[=x(9) —x(4) -x@) -xB) -x@O) -x(2 -x(7) -x@) -x(6) -x(10)] -7
(3.17)
From (3.17), we see that
Tr(2) | | TR(9) T;(2) T7(9)
(7 | | TR(®) n@ | |1
TR(8) |=| Tr(3) T;(8) |=— T;(3)
TR(6) | [TRG)| 9 | 1(6) | |T3(5) | (3.18)
| Tr(10) | | Tr(1) | 77(10)) [T7(D)]

Then, we can respectively express Tx(.) and T(.) in (14) as

Tr(2) x1) x(9) x4 x(3 x(5) ix(10) x(2) x(7) x(8) x(6) 6
Tr(D) | |xB) x@) x© x(4) x@) x6) x10) x2) x(7) @) |10
TR®) |=|x(3) x(6) x@©) x(9) x(4) x@® x(6) x(0) x(2 x(7) ||
TR (6) x(4) x(3) x(5) x() x(9 i x(7) x(8) x(6) =x(10) x(2)| |11
TR0)| [x(9) x4 x(x(6) x@) x2) x(7) x(@® x(6) x(0)||c11

[x() x(9) x(4) x(d) x(B)] || [x@10) x(2) x(7) x(B8) x(6)]|n
xG) x@) x9) x(@) x@||cfy| | x6) x10) x@ x(7) x@®) ||cfy
=lx(3) x(5) x@) x(9) x(4)|- +| x(8) x(6) x(10) x(2) x(7) |-
x(4) x(3) x(5) x@@ x(9) 6 x(7) x(8) x(6) x(10) x(2) 6

11 11
| x(9) x(4) x(3) x(5) x(1) C:ZLL? x(2) x(7) =x(8) =x(6) x(10) C]]:j(_)

[TR1(2) Tr2(2)
Tri(7) Tr2(7)
=| Tp1(8) |+| Tr2(8)
Tr1(6) TR2(6)
| Tr1(10) | | T2 (10)

(3.19)

;)] [x@) x9) x(4) x(x(G);x10) x(2) x(7) x@ x(6)] :Se
n@) | 2@ x®) x(©) x(4) @ x6) 210 2 () x®) | 7o
7;8) |=|x(d x(6) x(O) x(©9) x(#); x(@®) x(6) x(0) x(2) x(7) | H
7;6) | |x(@) x(3) x(5) x() x(9): x(7) x(8) x(6) x(10) x(2) | ‘1L
T (10) x(9) x(4) x(3) x(B5) x(@ x(2) x(7) x(B) x(6) x(10)] 11

[x(1) x(9) x(4) x(3) x(5) _S121 x(10) x(2) x(7) x(8) x(6) || 1
x(5) x() x(9) x(4) x(3) 511 x(6) x(0) x(2) x(7) x(8) Sfl

=1 x@®) x(6) x(1) x(9) x(@)|-|-s5 |- x@®) x(6) x(10) x(2) x(7)|-|-sP
x(4) x@) x(®) xO) xO)||-s8 | |2 x®) x(6) x(10) x2)||-sE
O 1) ¥ 2@ O] Q0| 2@ (D) @) (6 0| 0

[T11(2) T12(2)
T (7) Ty (7)
=| Tn(8) |—| 772(8)
T71(6) Ty>(6)
| 711(10) | | T72(10)

(3.20)

49

Observing (3.19) and (3.20), we find that the real part of 7((2"),,) is composed of the
same upper and lower halves, and the imaginary part of 7((2*),;) is composed of the
upper and the lower halves with the same absolute value, but different signs. Hence,
only the unique constant multiplications in {7(i), i=1, 2,, (N-1)/2} need to be
calculated. Therefore, we can calculate two output values simultaneously through
(3.17) with the same hardware. This feature facilitates the hardware sharing in
computing 7((g")») with even and odd indices such that only half the hardware is

needed as compared with the direct realization on (3.15).

3.1.4 Architecture design and evaluation
Architecture design

By exploiting the symmetrical properties of both the cosine and sine functions
shown in (3.17) in the DFT computation, we find that the output with odd indices can
easily be obtained by means of hardwiring, which facilitates the reduction of memory
cost by a factor of two. Considering the example of 1-D 11-point DFT and referring to
the reformulation of 1-D DFT in (3:19) and (3:20), we can realize the 10-point cyclic
convolution required in 1-D 711-peint“DFT- through the hardware architectures
designed for the 5-point cyclic convolution as shown in Fig. 3.3. The proposed GDA
architecture is composed of the group distributed arithmetic units (GDAU), address
decoder, adders/subtractors, accumulators, and parallel-to-serial (P/S) converters.
According to the rule of group mapping shown in Table 2.1, the candidate of DA input
X= Lxg(1), x4(9), x4(4), x4(3), x4(5)} Or {x4(10), x4(2), x4(7), x4(8), x4(6)} is first fed
into the address decoder to determine which group it should belong to, and then
compute the group address G, = {g,(1), g,(2). g,(3)} and the rotating factor R, =
{ry(1), r4(2), ry3)} used for the GDAU. The GDAUc and GDAUSs are used to
respectively realize the operations specified in (3.19) and (3.20) for computing 5-point
cyclic convolution. The contents of the memory modules corresponding to GDAUc
and GDAUSs are shown in Table 3.4 and Table 3.5 respectively, which illustrate the
distribution of the partial products when computing different DFT outputs according
to the candidate of DA input.

50

-
S

SENwYARALNANXD

: x(10)
x(9)
x(8)
x(7)
x(6)
x(5)
x(4)
x(3)
x(2)

x(1)
x(0)

=
S
A4
+ o

Address

decoder

x(7)

P/S

x(6)

x(5)

Address

GDAU,

— GDAU,

x(4)

decoder

x(3)

x(2)

x(1)

x(0)

GDAU,

GDAU,

IRane geane

+/

VXN RN =D T

=]

- YR(0)
Yp(2)
Yo(7)
Yo(8)
Yp(6)
Y4(10)
Yp(9)
Y.(4)
Yp(3)
Yi(5)
- YD)
t:
0: Y,(0)
1: Y(2)
2: Y(7)
3. Y8
4: Y/(6)
5 Y,(10)
6: Y,9)
7. Y,4)
8: Y,(3)
9: Y5
10: Y,(1)
MUX
-1

+

/

+

+/

Computing 7((&*),)

o HH

Fig. 3.3: Architecture design of the 1-D 11-point DFT with GDA approach.

51

Table 3.4: The 8 groups of memory content used for computing the 5-point cyclic
convolution in GDAUC.

oo g Growp address Tu()/ T/ Ty ()/To() T (9)/TulS) T (0)/ T/ O
input (X,) (G,) Tri(9)/ Tra(9) /Tri(D)/ Tro(4) / Tri(3)/ Tra(3) Tri(5)/ Tra(5) Teo(1)
0 0 0 0 0 0
1, 2, 4, 8, 16 1 C11m C112 6114 C118 6116
3,6,12,24,17 2 cul+ey’’ cu'+er’ cii’tey’ cu'+eit cii’+ey’
5,10, 20,9, 18 3 cit+en” cu’+er’ e’ er’ e+’ e’ +er”
7,14,28, 25,19 4 ci’+en’ren® |en®+ e rei’ e+ eilren’ | et e’ rei’ | en’+ e ren’
11,22, 13, 26,21 5 ci’t e’ e | et e’ ren® | el e’ e’ et ren’ e | it et e’
15, 30, 29, 27, 23 6 0114:' 6‘11:*' 01181‘[*}' 6'116‘;' 6'116"; 011”: 01110:' Cui Cuz‘;' 6‘1146‘*'
¢ ten ¢ ten ten ten tenten ¢ ten
31 7 c;12+ §114+1o 68”2+ §[[4+10 c@”2+ §114+m 68”2+ §[[4+10 Cx”2+ ?14+10
¢ ten ten ci e ten ¢ ten ten ci e ten ¢ e ten

Table 3.5: The 8 groups of memory content used for computing the 5-point cyclic

convolution in GDAUS.

an df;g:’e‘; ej;. py Growp address Tu(2)/Tu(2)/ Tu(7)/Ta(7)/ Tu($)/Ta(8)/ T (6)/Tf6)/ Tit (10)/ Tin(10)
input (X,) (G, Tu(9)/ Tr2(9) Ti(4) Ti(4) Tu3)/ Ti(3) Tu(5)/Ti(5) /Tu(1)/ Tix(1)
0 0 0 0 0 0
1, 2, 4, 8, 16 1 -S”m -S112 S114 -S118 -S116
3,6,12,24,17 2 -5116-S11m -Sum-SuZ -S112+5114 S114-S118 -5118-5116
5,10, 20, 9, 18 3 -3118-S11m -Suﬁ-suz -S11m+S114 -Suz-S/fY S114-Suﬁ
7, 14, 28, 25, 19 4 —S”g— S”6-S”m -5”6- S”w-S”z —S]]Io- S]12+S114 —S]12+ S”4—S“8 S]14— S’]]g—S]]o
11, 22,13, 26,21 5 Su" 5116-31110 -Suz- S118-S1lm -5112+S114- S116 5114-5118- Sum -SuZ- S118-S116
5114-5118- -S118- S116- '5‘116- S11m -S11m- S112 -S11JJr 5114-
15, 30, 29, 27, 23 6 s10os 0 5,10 s, eI st si-s,
31 7 —sé,2+6s,]4;0 -sg;12+6s”4;0 —sé,2+6s,]4;0 -sg,,z-%—ﬁs”";a —s;,z-%—ﬁs,/;o
S =S =S S =S =S S =S =S S1 =S =S Si =S =S

Design evaluation

In this section, we will illustrate the performance evaluation on the proposed
GDA design and some existing DFT designs. The existing DFT designs in the
evaluation include systolic array designs [10][33], memory-based DA designs
[34][35], and adder-based DA designs [38]. For a fair comparison, we evaluate the
hardware cost and average cycle time (ACT) of these existing designs and the
proposed design based on Avant 0.35 um, 3.3-volt CMOS cell-library [43]. Besides,
we adopt the logic synthesis to obtain the measures of hardware cost and ACT for the
component whose measures cannot be found from the cell-library, such as the address
decoders, the specific memory cells, and RAM cells. According to the measures of
area cost and ACT for the used components, we can fairly evaluate the performance

of these designs in terms of delay-area products with respect to different values of N.

52

Table 3.6 and Table 3.7 respectively show the models to estimate the area cost of 1-D
N-point DFT modules with or without partitioned cyclic convolution. Table 3.8
shows the corresponding models to estimate the ACT for the existing systolic arrays,
DA-based designs, and the proposed GDA design with real input data. The ACT
denotes the time needed to perform a 1-D N-point DFT. Besides, we carefully decide
the data word-length of the components for evaluating the different designs,

respectively.

In the case of 8-bit real input data and complex coefficients, the existing
systolic array design [10] requires 2(N+1) PEs to process the real part and imaginary
part of 1-D N-point DFT, where each PE requires one 16-bit multiplier, one 20-bit
adder, one 8-bit register, and two 20-bit registers. The design in [33] is a
memory-based systolic array design, which uses a different way to implement the
multipliers. It needs an 8-bit multiplexer and demultiplexer for the preprocessing,
and each PE is composed of two 12-bit memorys, 8-bit 2-to-1 multiplexers, and one
20-bit adder. The designs in [34][35]-are the DA-based designs. The design [35] uses
the technique of offset binary coding (@BC) to.reduce the memory size required in
the design [34]. Due to the fact-that the two designs are constructed by the same DA
architecture, they are composed of 18-bit-and-20-bit registers respectively for the
input buffer and output buffer, 12-bit memory- modules, 20-bit adders, and 20-bit
registers for processing stage. The extra XOR gates and 16-bit 2-to-1 multiplexers
are needed in the design [35].

As for the adder-based DA design [38], the issue in this design is how to find
the common terms from the nonzero sub-expressions in order to reduce the hardware
cost of the summation network. Extracting the common terms is similar to the
problem of logic optimization. Since this is a NP complete problem [39], it is almost
impossible to exactly estimate the hardware cost of the adder-based DA design. Thus
the worst-case estimation for the common terms of the adder-based DA design has

been adopted here.

Fig. 3.4, Fig. 3.5, and Fig. 3.6 respectively show the comparison of area cost,
ACT, and area-delay product of the existing designs and the proposed GDA design in
realizing the 1-D DFT, where the 5-point and 7-point 1-D DFTs are realized by using
the GDA design, and the 11-point 1-D DFT is realized by using the BGDA design

with the partition factors of 2 x 5 for the 10-point cyclic convolution required in the

53

1-D 11-point DFT. As shown in Fig. 3.6, the delay-area product of the proposed

design is much smaller than the traditional memory-based DA design. Precisely, the

proposed GDA design can save averagely 68%, 49%, and 29% of the delay-area

product, respectively, as compared with the systolic array designs [10][33],
memory-based DA designs [34][35], and adder-based DA design [38] in the case that
the length of cyclic convolution is smaller than nine. Generally, the length of cyclic

convolution should be smaller than nine for obtaining a reasonable memory size in

DA-based designs.

70000

60000

Area cost (gates)

10000 |-

50000 r

40000 r

30000 r

20000

5 7 11
Transform length (V)

N Systolic array [Murthy]

Memory-based systolic

array [Guo]
O Traditional DA [White]

O OBC-based DA [Choi]
B Adder-based DA

[Chang]
E GDA [Ours]

Fig. 3.4: Comparison of the area cost of the existing DFT designs and the proposed
GDA design in realizing the 1-D N-point DFT.

54

200

[ERN
[o2]
o

120

(o]
o

Average cycle time (ns)

N
o

Transform length (V)

N Systolic array [Murthy]

Memory-based systolic

array [Guo]
O Traditional DA [White]

O OBC-based DA [Choi]
B Adder-based DA

[Chang]
H GDA [Ours]

Fig. 3.5: Comparison of the ACT for the existing designs and the proposed GDA

7000000

6000000

5000000

4000000

3000000

2000000

Delay-area product (gates *ns)

1000000

0

design in realizing the 1-D N-point DFT.

Transform length (V)

N Systolic array [Murthy]

Memory-based systolic
array [Guo]

O Traditional DA [White]

O OBC-based DA [Choi]

B Adder-based DA

[Chang]
= GD?Xn [gOUIs]

Fig. 3.6: Comparison of the delay-area product for the existing designs and the

proposed GDA design in realizing the 1-D N-point DFT.

Table 3.6: Area cost models to estimate the 1-D N-point DFT modules in the existing systolic

55

array designs, DA-based designs, and the proposed GDA design with real input data.

ﬁgc%rde:ﬁ XOR [Mux/Demux| RAM | Memory (g:"‘lr);?'“ Adder | Mul Re P/S
Module name (coded | (bit) (words) |words) (double- | rotator | (double- | (double- (worgs) (words)
addresses) words) | (double- | words) words)
words)
Array
Murthy [10] .
(Systolic array) prostigasémg 2(N+1) 2(N+1) 3(N+1)
Input-buffer,
output-buffer, .
2-t0-1: 2
- and N -to-2 1 N 2N
reprocessing
stage
Guo [33] Array)
(Memory-based| processing 2;[92\1,;21])* 223%(}\"_1) +3] 2’;%[;!;21])* 2*[2(2'51'1)+
systolic array) stage
N+2*[(N-1 (N-1)*2"*
totally)% 22%9] 2N+7 N 4 4N 2N
Input and
output buffers ! 2N
White [34] . (N-1)
o DA processing| (-1 220)))
(Tragg\l)onal stage 2 (N-1)/2 2*(N-1)/2 2*(N-1)/2 N-1
Y(0)
computation ! 1
totally 2N 27 N+1 3N N-1
(N-1)
Input and
output buffers ! 2N
. DA processing 2 to 1:
Choi [35] (N-1)-2
) stage ~N-1-2 [2(2(N-2|2*2*(N-1)/2 2*2 2)))
(OBgAt\J)ased (coeff-add, 2)+2) | +2%(N=1ji2 (N-1)12 2*(N-1)/2 2*(N-1)/2 N-1
sum, acc)
Y(0) 1 1
computation
N-1)-2
totally | 2MD2 |aN-1)| 3(N-1) Z(N_l)* N+1 3N N-1
Input and
output buffers 1 2N
Chang [38] |DA processing 2*[(N-1)
(Adder-based stage +L+1]* 2*(N-1)/2
DA) (DA, sum) (N-1)/2
Y(©) 1 1
computation
2
totally E LA 3N
Input and
output buffers ! 2N
Proposed GDA |DA processing i 2*G(N-1)* 4 N *(NL)
design stage G(N-1) (N-1)/2 2 2*(N-1)/2 2*(N-1)/2 N-1
Y(©) 1 1
computation
G(N-1)*
totally G(N-1) (N-1) 2 N+1 3N N-1
Note:

1. L denotes the word length that equals to 16 in the design example, and N denotes
the transform length.

56

Table 3.7: Area cost models to estimate the 1-D N-point DFT modules with the partitioned

cyclic convolution in the existing systolic array designs, DA-based designs, and the proposed

BGDA design with real input data.

N-1)/2-bit
Address (
memory | Barrel Adder Mul
Module name %ig%%gr)((S t? M?xgezgux(ﬁcﬁgﬂs) (double- | rotator | (double- | (double- (WF;?%S) (WE/rSds)
words) | (double- | words) words)
addresses) words)
Array
Murthy [10] .
(Systolic array) processing 2(N+1) 2(N+1) 3(N+1)
stage
Input-buffer,
output-buffer, .
and N e 2 N 2N
Preprocessing)
stage
Guo [33] Array .
f 2*[(N-1)* 2to 1 2*[(N-1)* 2*[2(N-1)+
(Memory-based| processing ZLZ*Z] 2*[(N-1)+3] 2L 2]
systolic array) stage
N+2*[(N-1 (N-1)*2"%
totally) ZLL*Z] 2N+7 N 4 4N 2N
Input and
output buffers 1 2N
White [34] . (N-1)/2
o DA processing (N-1)/2 2%2*2 2*(N-1)/2+))
(Tragxl)onal stage 2*%2 * (N-1)/2 2%(N-1)/2 2*(N-1)/2 N-1
Y(©) 1 1
computation
SN2 5
totally AR (N-D) 2N 3N N-1
Input and
output buffers ! 2N
. DA processing 2*2*%(2|2t0 1:
Choi [35] (N-1)/2-
) stage N-1y2 2| *((N-1)[2*2*2*(N-1) 2%2*2 2*(N-1)/2) i
(o8C :)ased (coeff-add, |22 12-2)+2)/242%(N-1)/2 23 (N-1)/2 +25(N-1)12 2N-1)2. 1 N-1
sum, acc))
Y(0) 1 1
computation
2%)(N-1)72-2
totally 20ND2L HAN-3) | 5(N-1) « (N-1) 2(N-1) 3N N-1
Input and
output buffers 1 2N
Chang [38] | DA processing 2*[2)7£(N'1
(Adder-based stage AT 2*(N-1)/2
DA) (DA, sum) (N-1)/2
Y(0)
computation ! !
2
totally '_IZT_N(ZL'l 3N
Input and
output buffers 1 2N
P . * 2*2*G((N- *
roposed DA processing [2*G((N-1)/] 1)12)* 4ok 2*(N-1)/2+ 2%(N-1)/2 N-1
BGDA design stage 2) (N-1)/2 2*(N-1)/2
Y(0)
computation ! !
2*G((N-1)/ 2G((N-1)/2 _
totally 2)) (N-1) 4 2N 3N N-1

57

Table 3.8: Average cycle time (ACT) models to estimate the not partitioned and
partitioned 1-D N-point DFT modules in the existing systolic array designs, DA-based
designs, and the proposed GDA design with real input data.

Not partitioned Partitioned
Murthy [10
(Sy5t0|iz &Erl’ﬁil)/) N (Trnut + Tago + Tiatcn) N * (Tt + Tadd + Tiatcn)
Guo [33]
(Memory-based N * (Troml + 2Tadd + Tlatch) N> (Troml + 2Tadd + Tlatch)
systolic array)
White [34
(Tradition[al I%A) L* (Tromz + Taga + Tlatch) L* (Tromz + 2Taga + Tlatch)
Choi [35
(OBC-basFed]DA) L™* (Txor+ 2Tmux+ Troma* 2Taga + Thaten) | L * (Txor ¥ 2Tmux + Troma + 3Taga + Tiatcn)
Chang [38
(Adder-bgs[ed ?DA) ((N-1)+210g5L) * Taga + Tiaten (((N-1)/2-1)+2log,L+1) * Taga + Tiatcn
Proposed GDA dESign L~ (TromS + Thar + Tagg + Tlatch) L~ (TromS + Toar + 2Tagq + Tlatch)
Note:

1. T,y denotes the delay time of multiplier, T,,, denotes the delay time of multiplexer, T 4,
denotes the delay time of adder, T,,,.denotes the access time of memory, and Ty, denotes
the delay time of Barrel shifter with N-word width.

2. Since the required memory sizes| of the designs except for the adder-based DA are
different, the access time of memory in thesedesignsis also different.

3. The timing costs of memory- are the-sum of delay: in both the address decoder and
memory -cell.

4. L denotes the word length of the.candidate of DA input, and N denotes the transform
length of 1-D DFT.

3.2 Design of 1-D DHT

3.2.1 Cyclic Convolution Formulation
Prime-length case

The 1-D N-point DHT of an input sequence {x(n), n = 0, 1,, N-1} is defined as
N-1
Y(k)=>x(n)-HY; k=01 N-1 (3.21)
n=0

where H}' = cas(2nka) = cos(2nkc) +sin(2nka) , a=7/N, and N denotes the

transform length. If N is prime, we can rewrite (3.21) in a cyclic convolution by

exploiting the property of input/output (1/0) data permutation as

58

V)= Y (),

V(8)) =I3 x((s™),) - casCE (")) x(O); k=N -1

=T((g")y)+x(0)
(3.22)
k & n—k 272. n
T((g")y)= Z x((g"")y)-eas (S=(8")x)
(3.23)

where (g*)y denotes the result of “g" modulo N for short and g is a primitive element.
T((c")y) in (3.22) is the kernel of the N -point DHT that is written in cyclic

convolution formulation.
Non-prime length case

According to (3.21) and utilizingythe Chirp-Z transform [50][51], we illustrate
the derivation of cyclic convelution algorithm for-non-prime length DHT in the
following. By introducing two sequences {C¢k)3and {S(k)} defined as follows:

C(k) = fx(n) -cos[(k* - 2nk) - a]
i (3.24)
S(k) = Zx(n) -sin[(k* —2nk)-a]

n=0

we can express DHT equation in (3.21) as

1

Y= 2-cos(k’car)

[C(k)+C(2N —k)+S(2N —k)-S(k)];k=01,---,N -1 (3.25)

Then, suitably evaluating the term C(k) + C(2N-k) + S(2N-k) - S(k) yields

1

Y= 2-cos(k’a)

[T.(k) +T.(k)];k =01, N -1 (3.26)

where

59

T.(k) = Nz_le (n+k),)-cos(n’a);k =01, N -1

=0 (3.27)
T.(k)=Yy,((n+k)y)-sin(n’a);k =01, N-1
and
£ (4 K),) =3 (),)+ (D ¥ (e N)) 52
vy ((n+k)y) =y (n+k))+ (DY -y (n+k+N),) '
x,(n), n=01---,N-1
x (n)={(-1)" -x,(0), n=N (3.29)
x,(2N-n) n=N+1---2N-1
—-x,(n), n=01---,N-1
vy (n)=4(=D" -x,(0), n=N (3.30)
xp(ZN—n) n=N+1---2N-1
x, (n) = x(n) -[cos(n® - &) —sin(nte)] (331)

x,(n) = x(n)- [cos(n? - &) +sin(n*-a)]

In the above equations, (4)y denates the result of 4 modulo N operation for short. It is
seen that both DHT kernel operations,:i.e--F:(k) and Ty(k) in (3.27), are expressed in
cyclic convolution forms and thus can pe efficiently implemented by GDA. However,
the non-prime length DHT algorithm requires pre-processing as indicated in (3.28) ~
(3.31) and post-processing as indicated in (3.26). This algorithm is useful in realizing
the DHT with any length, which can cover the applications with broader ranges in the
transform length than the fast algorithms being developed for 2°-point DHT and other
prime-length DHT algorithms.

3.2.2 Numerical stability

For the above mentioned algorithms with non-prime length, the issue of division
operation involves in them to evaluate the transform values. This will cause numerical
instability of some results as the denominator in division operation may equal to zero
for specific values of £. In the following, we illustrate the remedy for this issue to

ensure the correctness of non-prime length 1-D DHT algorithm.

60

Since cos("zT”) =0 implies sin(’(zT”):lor—l, we can overcome this issue by
first reformulating (3.25) as

Y(k):%[C(k)—C(ZN—k)+S(2N—k)+S(k)];k=O,1,---,N—l (3.32)
2-sin(k“a)

Then, evaluating the term C(k) - C(2Ny-k)+ S(2N-k) + S(k) based on the same

procedure shown in before yields

1

where
U, (k)= Nzil—yf (n+k),)-cos(n’a);k=01---,N -1
"N (3.34)
U, (k)= x,((n+k),)-sin(n’a);k=01,--,N -1

Compared with the procedure mentioned before;.the sequences {U.(k)} and {Usk)}
are similar to {7.(k)} and {7y(k)}, and the operands y(N+k)y) and x(N+k)y) are
exchanged with different signs.=This phenomenon reveals that this issue of numerical

instability can be solved by using simplescontrokin hardware realization.

3.2.3 Symmetry exploration of the DHT in cyclic convolution

Let us take an example of 1-D 11-point DHT with the real input sequence {x(n),
n=0, 1, ..., 10}. The cyclic convolution form of 7((g")y) can be expressed as

7] [x@ x2) x4 xB8 x6) x10) x© x(7) x@ x6)] [HZ]
T(4) x6) x@ x(2) x(4) x(B8 x(B) x@0) x(9) x(7) x(3) H141
7(8) x(3) x(6 x@) x(@ x(4) x@B8) x(5) x@0) x(9) x(7) HE
7(5) x(7) x(3 x(6) x(@ x(2) x(4) x(B8 x(5) x(@0) x(9) H
T7(10) x(9) x(7) x(B) x(6) x@ x(2 x(4) x@® x(5) x(10)| [H7?]|.
O | |x10) x(® x(7) x@) x(6) x(@) x(2) x4 xB) x(5) | |Hy
T7(7) x(5) x(20) x(9) x(@ x(3) x(6) x@ x(2) x4 x(8 H),
T@3) x8) x(B) x@0) x©@ x(7 x@ x(6 x@ x(2) x(4) H131
7(6) x(4) x(B8 x(5 x@0) xO9) x(7) x(3) x(6) x@© x(2) H161

L TQ) | | x(2) x(4) x@B) x(B) x@0) x(9 x(7) xB) x(6) x() Hlll_

61

As shown in (3.36), the coefficient matrix in (3.35) can be expanded as the

even symmetries of cosine function ¢y =cN,i=12,.N-1, where cy =COS(2"’%V) , and

the odd symmetries of sine function i =-sy,i=12..N-1, where sy zsin(Zi%v))

0171 + S171
0181 + S181
0161 + 5161
Cn + 81
0191 + S191
0141 + S141
0131 + 5131

5 5
Cpp 51

1 1
| Gt Sy,

-, -
Cpyp 8

-, -
€y 5,

0141 - 5'141
0181 + S181
0161 + 5161
e Sy,
6121 - 8121
0141 + 5141
0181 - Sfl

6 6
C11 — 811

10 10
(S TS

Then, we can re-write 7((2"),,in (3.35) as follows:

(3.36)

62

@)

T(7)
T(8)
7(6)
7(10)
(9)
T(4)
(@)
(5

L T@) |

Then, we can respectively express Tx(.) and Ty(.) in (3.38) as

[x@) x©@) x@) x@ x(B) x@0) x(2) x(7) x®) x(6)] [cZ+s2]
x5 x@ x(9) x@) x(B x(6) x@0) x(2 x(7) x(8) ol —sh
x(3) x(B5) x@ x(9) x4 x(B x(6) x(10) x(2) x(7) e +sy
x(4) x@B) xB) x@ x(9 x(7) x(B8) x(6) x(10) x(2) cfl + S161
B x99 x4 x(3) x(B) x(@ x(2 x(7) x(B8) x(6) x(10) cllf + Sllf
a x(10) x(2) x(7) x(8 x(6) x@O) x9) x4 x(B) x(5) el —sh
x(6) x(0) x(2) x(7) x(8 x(5 x@® x(9) x4 x(©) el +sp
x8) x(6) x(0) x(2 x(7) x(B x(65) x@ x(9) x4 clgl — sfl
x(7) x(8) x(6) x(10) x(2) x(4) x(3) xB) x@ x(9 6161 — 8161
| x(2) x(7) x(8) x(6) x(10) x(9) x(4) x@B) x5 x@) | _cllf — 5 |
(x@) x(9) x(4) x@ x(6) x10) x(2) x(7) x@® x(6)]ci]
x(B) x@) x(9) x(4) x@) x(6) x(0) x(2 x(7) x(B) | ci
x(3) x(5) x() x(9 x(4) x@8) x(6) x(0) x(2) x(7) | i)
x(4) x@3) x(6) x@ x(9) x(7) x@®) x(6) x(0) x(2) |
_[*9) x4 x@) x(6) x@) x(2 x(7) x@B) x(6) xQ0)|cy
[x@ x(9) x@) xd) x(6) x(10) x(2) x(7) x(B) x(6) |
x(®) x@) x(9) x(4) x@) x(6) x(0) x(2) x(7) x(8) |
x3) x(5) x@) x(9) x(4) x(@)_ . x(6) x(0) x(2) x(7) |
x(4) x@) x(6) x(@) x93 x(7) x@). x(6) x(10) x(2) |
[x(9) x(4) x(B) x(5) x@) | x@) x(7) x(B) x(6) x(10)] ¢}
i x@) x(9) x(4) =x@) x(5 x(10) x(2) x(7) x(B) x(6) T i
x(®) x() x(9) "x(4), x(3)_x(6) x(10) x(2) x(7) x(8) — sy
x@) x(5) x(1) %(9) x(4) x(8) . x(6) x(10) x(2) x(7) St
x(4) xQ@) x(5) x(@) Ok (?) x(B) x(6) x(10) x(2) S
x(9) x(4) x@ x(B) x(@) x(2) x(7) x(B) x(6) x(0) Sy
T x@) —x@) —x@) —xB) —x(10) -x(2) -x(7) -x(©) -x(6) 52
—x(5) —-x(0) -x(9) -x(4 -x@) -x(6) -x(10) -x(2) -x(7) -x@) | -s}
-x(3) -x(®) -x@) -x(9 -x(4) -x@ -x(6) —-x(10) -x(2) -—x(7) | s
-x(4) -x@) -x() -x(O -xO) -x(7) -x@B) -x(6) -x(10) -x(2) | s
|=x(9) —x(4) -x(B) -x(5) -x(O -x(2 -x(7) -x@) -x(6) -xQ10)] 57
(3.37)
From (3.37), we see that
(.] [T.9)] Ts(2) T5(9)
. | |74)| |7
T.(8) [=|T.Q) | and | T,(8) |=—|T5(3) |. (3.38)
7.6 | |17.6) 7,6)| |7,6)
| T.(0) | |7] 7510)] [T@)

T.(2) |
Te(7)
T.(8)
T.(6)

[7 (10)]

x(D)
x(5)
x(3)
x(4)

| x(9)

[x(1)
x(5)

=1 x(3)

x(4)
L x(9)

[T(2)]
Tea(7)
TC1(8)
TC1(6)

[72 (10)]

x(9)
x(1)
x(5)
x(3)
x(4)

x(4)
x(9)
x(1)
x(5)
x(3)

x(9) x(4)

x(1)

x(9)

x(B) x@
x(3) x(5)
x(4) x(3)

| Te2(2)
Te, (7)
Te,(8)
T.,(6)

7.,(10)|

x(3)
x(4)
x(9)
x(1)
x(5)

x(3)
x(4)
x(9)
x(1)
x(5)

x(5)
x(3)
x(4)
x(9)
x(1)

x(5)] [

x(3)

x(4) |-

x(9)
x(3) |

x(10)
x(6)
x(8)
x(7)
x(2)

Cn
Cn
1

Cn
10

| €11 |

x(2)
x(10)
x(6)
x(8)
x(7)

1 [x@0)

x(6)

+| x(8)

x(7)
L x(2)

x(7)
x(2)
x(10)
x(6)
x(8)

x(2)
x(20)
x(6)
x(8)
x(7)

x(8)
x(7)
x(2)
x(10)
x(6)

x(7)
x(2)
x(10)
x(6)
x(8)

x(6) |
x(8)

x(7) |-

x(2)

x(10) |

x(8)
x(7)
x(2)
x(10)
x(6)

x(6)] [
x(8)
x(7) |-
x(2)

x(10) |

63

(3.39)

Cn
Cn
Cn

Cn
10

L €11 |

64

7,7 [x® x©) x@) x@) xB) x10) x(2) x7) x@©) «x6)7]
T,(7) xB) x@ x99 x4 x@B) =x(6) x@0) x(2) x(7) x(8) 1
T, |=|x@) xG) x x©) x4 x@ x(6) x10) x2) x7)| "
Ts(6) | |x(4) x@) x(5) x() x(9) x(7) x(8) x(6) x(0) x(2)

T (10)_ _x(9) x(4) x(3) x(B) x@ x(2) x(7) x(8) x(6) x(lO)_ Su

[x() x(©9) x(4) x@B) x((5)] 3121 [x(10) x(2) x(7) x(8) x(6) |
x(6) x@) x(9) x(4) x(B)||-s4 x(6) x(10) x(2) x(7) x(8)
=1x(3) x(B) x@¥) x(9) x(4)]|- 5181 - x(8) x(6) x(10) x(2) x(7) |-
x(4) x(3) x(5) x@ x(9) 3161 x(7) x(8) x(6) x(10) x(2)

1 x(9) x(4) x(B) x(5) x()] _sllf | x(2) x(7) x(8) x(6) x(10))
(T, [T]
T (7) T, (7)
=| T, (8) |—| T§,(8)
T, (6) Ty, (6)
7,00 |7,,00)]

(3.40)

Observing (3.39) and (3.40), similar to“the' DFT, we find that the cosine part of
7((2");,) is composed of the same upper and lower halves, and the sine part of
T((2"),1) is composed of the upper and the lower halves with the same absolute value,
but different signs. We can also calculate two output values simultaneously through
(3.37) with the same hardware. This feature facilitates the hardware sharing in
computing 7((g")x) with even and odd indices such that only half the hardware is
needed as compared with the direct realization on (3.35).

3.2.4 Architecture design and evaluation
Architecture design
By exploiting the symmetrical properties of both the cosine and sine functions

shown in (3.37) in the DHT computation, the outputs with odd indices can also be

obtained by means of hardwiring to achieve the reduction of memory cost by a factor

65

of two. With the example of 1-D 11-point DHT and referring to the reformulation of
1-D DHT in (3.39) and (3.40), we can realize the 10-point cyclic convolution in
11-point DHT through the architectures designed for the 5-point cyclic convolution
as shown in Fig. 3.7. The architecture is composed of GDAUSs, address decoder,
adders/subtractors, accumulators, and parallel-to-serial converters. The GDAUc and
GDAUs are used to respectively realize the operations specified in (3.39) and (3.40)
for computing 5-point cyclic convolution. According to the rule of group mapping
shown in Table 2.1, the contents of the memory corresponding to GDAUc and
GDAUSs are shown in Table 3.9 and Table 3.10 respectively, which illustrate the
distribution of partial products in the memory of GDA design.

t t
10: x(10) 0: YO0
9: x(9) 1: ?(i)
8 x(8) 2: Y(8)
7 x(7) 3 Y8
6 x(6) 4 Y(tz
5 x(5) 5: Y}flg)
4: x(4) 6: y(4)
3 x3) 7. Y(4)
2: x(2) s Y(3)
1: x(1) T 9: ;’Zi
0: x(0) 10:
Sl B F
: C+ i
o GDAU, 4
x(10) 7 x0) |
» SE8
x(8) * - I
GDAU —
c 7(7), T(4)
x(7) +
7(8), (3
(6), T(5,
) : SHNS e
Address
decoder C‘IIDIAU5 [- T(10), T(1)
x(4) j} A R
- SHS
x(2) j P
—— GDAU,
xw -
x(0)

Computing for 7((¢"),)

Fig. 3.7: The architecture of the GDA design realizing the 1-D 11-point DHT.

66

Table 3.9: The 8 groups of memory content used for computing the 5-point cyclic

convolution in GDAUC.

Grouped Tei (10) /7
candidates OfDA Group address TCI(Z)/T(‘z(Z)/ Tc: (7)/Tcz(7) Tc: (8)/Tc2(8) Tc: (6)/Tcz(6)/ T, (10)/T (1)/
: G T/ Tex(9) /T3 Tes(@) /Tei(3)/ Tea(3) Ta(S)/ Tea(5) .
input (X,) (G, c1(9)/ Tca(9) c1(4)/ Tea(4) c1(3)/ Tea(3) c1(5)/ Tea(5) Tes(l)
0 0 0 0 0 0
1,2,4,8,16 1 Cum Cu2 Cu‘ Cug Cuﬁ
3,6,12,24,17 2 cu’rey” e’ rer’ ciitten’ e’ ter’ ci’+ey’
5,10, 20, 9, 18 3 cit+en’’ cu'+er’ cu''+ey’ ci’+ei’ cu'+ey’
7,14, 28, 25,19 4 e+ e e’ e+ e +eid |en'+ eiten’ | et en'+eld | e+ et rel]
11, 22,13, 26,21 5 ci’+ e’ +en | e+ i’ reun' | e’ et e’ e’ e’ e’ | i+ et te’
7 g g 5 5 10 10 2 2 7
15 30, 29. 27 23 6 cytent cuten cten et cy eyt
, 30, 29, 214, L 6y 10 L1042 to e de Ao 8 816
Ci TCu Cu Cu Ci Tt Ci TCn CitCn
2 7] 2 7 2 7] 2 7] 2 7]
31 7 cy e+ ciy et cy e+ ciy et cy e+
S, . 64 . 10 S, . 64 . 10 S, . 64 . 10 S, . 64 . 10 S, . 64 . 10
cu e ten cu'ten ten cu ey ten cu'ten ten cuten ten

Table 3.10: The 8 groups of memory content used for computing the 5-point cyclic

convolution in GDAUSs.

an df;g:’e‘; ej;. pa Growp address Tsy(2)/ To(2)/ T (7)/ To7)) Tsi (8) / Tso(§) / Tsi (6) /Tof6) /. ;5(3)(5(;)51/(1)
input (X,) (G,) Tsi(9)/ Tsx(9) Tsi(4)/ Ts(4) Tsi(3)/ Tsa(3) Tsi(5)/ Tsa(5) To(l)
0 0 0 0 0 0
1,2,4,8,16 1 s si sy’ sit si°
3,6,12,24,17 2 syt s lksy” si’-si” s’ sy’ 51+’
5,10, 20, 9, 18 3 st +su” S’ Fsit 51" sittsy® -5y +su”
7,14, 28, 25, 19 4 s+ spfts, "’ 5116+ S”w+s”'7 510 5,5, sit- st tst st s+t
11, 22,13, 26, 21 5 st sl NSt s s | sutEsy’ sy |=su' s+ s | st sy sy’
-si itk syt sy 517+ 51" si'+ 51 sit- sy
15,30, 29,27, 23 6 sit sy i’ s +si/-s1 ~si’+s,’ i +si’
31 7 Ssnz_ S6”4+ 10 anz- 56”4+ 10 fe”z_ S5”4+ 10 A;,,Z- sﬁ,,4+ 10 f?”-?_ So”4+ 10
Su S tsn Si TS tSn Su S tSn Su S tsn Sy S tsu

Design evaluation

The evaluation of GDA-based DHT design and some existing DHT designs
involves in the subsequent section of long length DSST’s designs.

3.3 Design of 1-D DCT

3.3.1 Cyclic Convolution Formulation
Prime-length case

If transform length N is prime, we can write the 1-D N-point DCT of an input
sequence {y(n), n = 0, 1,, N-1} in cyclic convolution form by exploiting the

property of 1/O data permutation as

67

N-1
Y@=y
n=0

Y((£)n) =12 T((")w) + x(0)]-cos(E- (&)W ik = 1., N =1 (3.41

T((g")y) = > x((g"))- (<" -cos(E- ("))

n=1
, where (") denotes the result of “g* modulo N for short, g is a primitive element,
and the sequence {x(n)} is defined as
x(N-1)=y(N-1)
x(n) = y(n)—x(m+1);n=0,...N-2]|

By using the symmetry property of cosine kernel as

(3.42)

cos(%-(gk)zv) = COS(%'(N—(gk)N)) = —COS(%'(gHN{l)N) , (343

we can re-write the 7((g")y) in (3.41)as

(N-1) /2 Ty gy Wl
()= D (e) (g TR B e
n=1

m+

N-1
2]xCOS(%-(g'H'l)N;k:l N -1

(3.44)

To describe the proposed algorithm in.more detail;, We can write the kernel 7((3"),) in
a design example of 1-D 7-point DCT in matrix form as

'T@R)| [-x(3) x(2) x(6) -—x(4) x(5) x(1) | [cos(2a)]
7(2) x@) x(3) x(2) —x(6) —x(4) —x(5)| |cos(6a)
T(6) _ x5) x@ x(3) -x(2) —-x(6) —x(4) y cos(4a) (3.45)

7(4) x(4) x(B6) x(0) -x(B -x(2) —-=x(6)| |cos(5a) | '
7(5) x(6) x(4) —x(5) x@ x(3) —x(2) cos(la)

L TAQ) | [x(2) x(6) x(4) x(5 x(2) x(3) | |cos(3a) |

where a denotes % However, the input data elements of the kernel possess different

signs so that it is not easy to apply the proposed memory efficient approach directly to
DCT realization. According to the symmetry property of DCT coefficients as that we
show in (3.43), we can write (3.45) as

68

Q)| [-x(3) x(2)
@) | x@) x(
T®) | _| x5 x@)
T@)| | x(4) x5
TG)| | x(6) x(4)
LT] [x(2) x(6)

and the data elements in the matrix of (3.46) can be merged as

T3] [x(4)-x(3)
T7)| | x(6)+x()
T(6)| |x(2)+x(5)
T(4)| | x(4)+x(3)
()| | x(6)-xQ)
T | [x(2)-x(5)

x(6) —x(4) x(5) x() | [cos(2a) |
x(2) -x(6) —-x(4) -x(5 cos(6a)
x(3) —x(2) —-x(6) —x(4) y cos(4a)
x1) —x(3) —-x(2) —x(6)| |—cos(2a) , (3.46)
-x(B) x(0) x(3) —x(2)| |—cos(6a)
x(4) x(B) x(1) x(3) | |—cos(4a) |
x(2)-x(5) x(6)—x(1) |
x(4)+x(3) x(2)+x(5) cos(2a)
x(6)+x(1) x(4)+x(3) «| cos(6a)
x(2)+x(5) x(6)+x(2) cos(4a) | - (3.47)
x(4)-x(3) x(2)-x(5)
x(6) —x(1) x(4)-x(3),

To separate the even and odd outputs in (3.47), we can obtain two smaller perfect

cyclic convolution forms as following:

T(2) x(6) +x(2)
T(6) |=|x(2)+ x(5)
T7(4) x(4) +x(3)
and

T() | | x(6)-x(1)
{T(l)} = {X(Z) —X(5)

TE)] [x(4)-x@)

x(4)+x(3)
x(6)+x(1)
x(2) + x(5)

X(4Y=x(3)
x(6) - x(1)
X(2) — x(5)

x(2)+ x(5) | |cos(2a)

x(4) +x(3) |x| cos(6a) (3.48)
x(6)+x(1) | cos(4a) '
X(2) —=x(5) | |cos(2a)

X(4) — x(3)} x {cos(Ga)] : (3.49)

X(6) —x(1) | |cos(4a)

From (3.46), (3.47), (3.48), and (3.49), we find that exploiting the symmetry
property of the DCT coefficient can help merging the input data elements in the DCT

kernel and separating the kernel into two perfect cyclic forms, which facilitates the

efficient realization of the DCT through the proposed design approach. Fig. 3.8 shows

the area reduction of the memory cost when applying the symmetry property of the
DCT coefficients (shown in (3.48) and (3.49)) or not (shown in (3.45)). We find that it
is helpful in reducing the memory size greatly when using the symmetry property of

the DCT coefficients.

69

20000 100
18000 | mmmmIno separated 4 90
16000 | -separated_ | 50
—a—area reduction
g 14000 | 70 g
3 12000 60 <
< S
= 10000 | 50 ©
[%2]
o =
S 8000 | 40 &
o Io]
1<)]
< 6000 | 30 5
4000 20
2000 | 10
0 0

5 7 11

transform length

Fig. 3.8: The area reduction of the memory cost when applying the symmetry property

of DCT coefficients or not.

For facilitating the proposed‘ memory efficient design approach, we further
formulate the 7((g")») specified.in (3.44) as"

L (N-1)/2

(D Gy, (6")i COS(E g™)y))- 27 =1,..., 2
T((gk+1)N) _Ll (N:i)/Z ' f
DD G, ((8" " Iy))CoS((g)y)27 sk =251 41, N -1

Jj=1 n=1

(3.50)
where L denotes the data word length of the variable x, N denotes the transform length,

the variable G(x"*)y)) denotes the j"-bit group address of the memory access

operations, and the preprocessed input sequence {x(n)} is defined as

ity y_) X&) n—k+120
x((g In)= {x((g(Nl)+(nk+1))N);lf m—kil< 0},

(3.51)
n—k+1+N—_1
((nh%——)) x((g 2y)if n—k+1+221>0
e (N-1)+(n- k+1+N—l) ' (352)

x((g Jw)iif n—k+1+27<0

70

The value of m is determined by

"y +m N=(" Ny (") vink=1..,N-1

Non-prime length case

(3.53)

By introducing a indirect sequence {x(n)}, we can express the non-prime length

1-D DCT as

Y(k):[2-T(k)+x(0)]-cos(%);k:1,....,N—1

T(k)= Nix(n) : cos(%k)

N-1
HOEDIFO
n=0

The sequence {x(n)} is defined as

x(N-1)=y(N-1)
x(n) = y(m)—x(m+1hn=0,..N=2|

By introducing a new sequence {C(k)}as

C(k)= Nz_lx(n) -cos[(k? — 2nk) B]

with g = % we can express {7(k)} as

1

k= 2-cos(k’f)

[C(k)+C(2N-k)];k=1---,N -1

Now appropriately evaluating the term C(k)+C(2N-k)

1

k= 2-cos(k’)

[T, (k) + T, (k)] k =1---, N -1
where

T.(k)=Y ¢, (n+k),) -cos(*)ik =1+, N -1

T (k) = Nz_ls/.((nJrk)N)-sin(nzﬂ);k =1 N-1

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

71

and

Cf((n+k)N):c‘((n+k)2N)+(—1)m+n-cl((n+k+N)2N) lfN—Zm (3 60)
s (n+k)y) =5 (n+k),)+ ()" s (n+k+N),) [0 '
{ ¢ ((n+k)y)=c((n+k))+ ()" e ((n+k+N),y)

s ((n+k)y) =5 ((n+k)yy)+ ()" 'Sl((l’l+k+N)2N)}; if N=2m+1 (3.61)

where

x,(n), n=1--- N-1
c(n)= 0, n=0,N (3.62)
x,(2N-n) n=N+1---2N-1

x,(n), n=1---,N-1
s (n) = 0, n=0,N (3.63)
x,(2N—-n) n=N+1---2N-1

and the sequences {x.(n)} and {x,(n)} are defined respectively as

x,(n) = x(n) - cos(n®B)
x,(n) = x(n) -sin(n’ B)

In the above equations, the both DCT kernel=operations 7.(k) and Ty(k), are

(3.64)

expressed in cyclic convolution. forms and thus can be efficiently implemented by
GDA. However, the non-prime length-DCT algorithm also requires pre-processing as
indicated in (3.60) ~ (3.64) and post-processing as indicated in (3.54). This algorithm
is useful in realizing the DCT with any length, which can cover the applications with
broader ranges in the transform length than the algorithms being developed for
2°-point DCT.

3.3.2 Numerical stability

Similar to the non-prime length 1-D DHT, the issue of numerical instability is
also involved in the non-prime length 1-D DCT algorithm, and causes numerical
instability of some results as the denominator in division operation may equal to zero
for specific values of k. For ensuring the correctness of non-prime length 1-D DCT,
we first introduce a sequence {S(k)} that is different from the {C(k)} mentioned above.
That is,

72
S(k) = Nz_llx(n) sin[(k? — 2nk) Bl;k = 01, N —1

Using this sequence, we can first express the sequence {7(k)} as

1 k= —

Then, based on the similar procedures shown in before, we can rewrite the 7T(k) as

l - — oo —
T(k):W[Uc(k)-i'ljs(k)],k—o,l N 1
where
U,(k)= N_l—sf((n +k),)-cos(n’B);k=01---,N -1
"o (3.65)

Us(k)=Zcf((n+k)N)-sin(n2ﬂ);k=0,1,~~-,N—1
The sequences {U.(k)} and {Uyk)} are similar to {7.(k)} and {Ty(k)}, and the
operands c/((N+k)y) and s,(N+k)y) arelexchanged with different signs. Thus we also
can solve this issue of numerical instability by using simple control in hardware

realization.

3.3.3 Architecture design and evaluation

Architecture design

Fig. 3.9 shows the proposed pipeline architecture that realizes the 1-D N-point DCT.
It consists of the pre-processing stage, DA processing stage, and post-processing stage.
For the 1-D 7-point DCT design example, the input buffer and pre-processing in the
preprocessing stage shown as Fig. 3.10 are designed by using the bidirectional shift
registers and an accumulator, which is used to generate the data sequence x(n) from
input sequence y(n). The detail cycle information shows that the latency consumed by
input data sampling and x(n) computation is 14 cycles. The DA processing stage
shown as Fig. 3.11, named group distributed arithmetic unit (GDAU), is designed
with the proposed memory efficient approach to carry out the computation of 7((3%);)
in the design example of 1-D 7-point DCT. Due to the same content of group memory,

only one group memory in the GDAU is required to compute the outputs of the

73

separated cyclic operations. In Fig. 3.11, the candidate of DA input for gth bit X,={x3
X24 X14) 18 first fed into an address decoder to determine which group it should
belong to. The address decoder will compute the seed-value X, ={x’3, x"24 X714/,
group address G,={g.4 g4}, and the rotating factor R,={r., r;,} by decoding the
input vector according to Table 3.11. Table 3.12 shows the original partial product
distributions for computing the outputs of DCT kernel under the same input value.
From Table 3.12, the rotation relationship between these partial products is also
visible, and then the memory content arrangement in the proposed design is shown in
Table 3.13. It is noted that we only need one small group memory module of size
(N-1)/2 x Gpum Words for computing 7((3"),). In above, Gnum denotes the number of
groups in the group memory modules, which is dependent on the transform length N.
The post-processing stage shown in Fig. 3.12(a) is used to perform the post
computation for GDAU outputs, including the operations of multiplying by two,
adding with x(0), and multiplying serially by the cosine coefficients in formulation.
Since the operation of multiplying bytwo'is'performed by the manner of hardwiring,
it has no hardware cost required. Thesutput buffer shown in Fig. 3.12(b) in
post-processing stage is used to perform the‘operations of pre-loadable shifting for

serially generating the results of*DCT in-order.

y((n) Y0
: Y (0
:I > ACC @ I " 5
g : . cos(E—((eF)v) | &
2 5|x((g”) r((gk)N)I “’¢ v El
g | | =3
= = : S =
o : [} - a
- S ‘q GDAU nd =
» %] H | | > %
=] : e}
[)e] : (9
—|| | > 2
x(0): | i
Preprocessing stage DA processing stage Postprocessing stage

Fig. 3.9: Block diagram of the proposed pipeline architecture for computing the 1-D
N-point DCT.

74

0) | D

)

—» x(6)

»
»

-

¥3 [p |

y4) —»
¥ [p |
w2 | p|—»
) @IH

n0) @H x0)

()

x(4)

x(3)

x2)

x(1)

Input Cycle-based timing information for input data sampling and preprocessing
buffer| 1 [2 [3|4 |56 |7 |8]9|10]11]|12]13]14
D [»0) y(1) y2) y3) y4) y5) y6) y(5) y4) »y3) y2) y(1) y0) x(6)
D y0) y(1) y(2) y3) y4) y5) yH4) y3) y2) y(1) y0) x(6) x(5)
D y0) y(I) y2) y3) y4) y3) ¥2) y(1) yO0) x(6) x(5) x(4)
D y0) y(I) y2) y3) y2) y(1) yO0) x(6) x(5) x(4) x(3)
D y0) y(I) y(2) y1) y©0) x(6) x(5) x(4) x(3) x(2)
D yO0),). y(0) x(6) x(5) x(4) x(3) x(2) x(1)
D YO)"x(6) x(5) x(4) x(3) x(2) x(I) x(0)
Fig. 3.10: Design of the-preprocessing stage:in the 1-D 7-point DCT.
X0 %(6)+x(1)/x(6)-x(1): msb --- Isb
ey o 1
X(6) —» pop ;() e /fd’;;;“i’ Group ROM
x(1) —» /suB cos(4a) cos(2a) cos(6a)
X34 |9 =
| —> P $-S — cos(6a)+ cos(4a)| cos(2a)+ cos(4a) |cos(2a)+ cos(6a)
x(4) ng 8 xqu Eg cos(ba)+ cos(4a) | cos(Za)+ cos(4a) |cos(Za)+ cos(ba,
x(3) —M & Yol S 0 0 0
‘] cos(2a)+ cos(2a)+ cos(2a)+
x2) — ! aop . cos(4a)+ cos(6a) | cos(4a)+ cos(6a) | cos(4a)+ cos(6a)
/SuB [
x(5) —
T Barrel shifter
p/m

{rlq, rj'q}

+/-|

+-| =

|
T()
T(2)

I
(D)
T(6)

5 &

TE)
T4

Fig. 3.11: Design of the DA processing stage that is used to compute the kernel of
7((3");) in the 1-D 7-point DCT.

75

Table 3.11: The seed-value, group address, and rotating factor used in the design of

group address decoder of 1-D 7-point DCT.

1 .
Grouped DA input value (X,) Seed-value (X'y) fa]ifotit;?{g) ad. d(jgg:l(?(;)
(Xg X2q Yo/ X 30 X 29 X'1of {r2q 11 q}q {824 &1 q}q
001 0
010 001 1 0
100 2
011 0
110 011 1 1
101 2
000 000 0 2
111 111 0 3

Note:

1. Rotating factor denotes the number of position of the output data,
corresponding to the candidate of DA input value in a group, should be

rotated.

Table 3.12: The partial products-distribution for different DCT outputs under the same

input value.
Input Group
(X,)/(Xons) T(2)/ T(5) T(6)/T(1) 7(4)/1(3) address
000 0 0 0 2
001 cos(4a) cos(2a) cos(6a) 0
010 cos(6a) cos(4a) cos(2a) 0
011 cos(ba)+ cos(2a)+ cos(2a)+ 1
cos(4a) cos(4a) cos(ba)
100 cos(2a) cos(6a) cos(4a) 0
101 cos(2a)+ cos(2a)+ cos(6a)+ 1
cos(4a) cos(6a) cos(4a)
110 cos(2a)+ cos(6a)+ cos(2a)+ 1
cos(6ba) cos(4a) cos(4a)
111 cos(2a)+ cos(4a)+ | cos(2a)+ cos(4a)+ | cos(2a)+ cos(4a)+ 3
cos(ba) cos(ba) cos(6a)

Note:

1. X, denotes the sum of inputs for the qth bit.
2. X, denotes the difference of inputs for the qth bit.

76

Table 3.13: 8-word memory contents arranged into groups.

Original ~ Group
address address

1,2 4 0 cos(4a) cos(2a) cos(6a)
356] cos(6a)~+ cos(2a)+ cos(2a)+
T cos(4a) cos(4a) cos(6a)
0 2 0 0 0
7 3 cos(2a)+ cos(4a)~+ |cos(2a)+ cos(4a)+ |cos(2a)+ cos(4a)+
cos(6a) cos(6a) cos(6a)

0—— Isb

hardwired
[y~ cos(%)
TG) T —» = > cos(35) s
’ ADD i, > Y5 1)

h 4

Y3) ¥4 3 b

cos(%%)
‘, cos(s=
T() T(6) —H DD | B) Y v
> < leos)
| €0s(42)
@ TW > e B > 1) ¥
4»
x(0)
(a)
Hn)
"0 (3D]
) n2 D m
X ve) D @J

(b)
Fig. 3.12: Design of the post-processing stage in the 1-D 7-point DCT including (a)
the post-processing, and (b) the output buffer.

77

Design evaluation

In this section, we will illustrate the performance evaluation of the design
using the proposed design approach and some existing DCT designs. The existing
DCT designs used in this evaluation include memory-based systolic array design [33],
direct DA design [34], OBC DA design [35] and adder-based DA design [52]. For a
fair comparison, we also adopt the Avanti 0.35 um, 3.3-volt CMOS cell-library [43]
in the performance evaluation in terms of the delay time and area cost. According to
these two measures, we can evaluate these designs in terms of delay-area product with
respect to different values of N. Table 3.14 shows the comparisons of these designs.
The design in [33] is a memory-based systolic array design. It needs about N adders,
N-1 16-bit Flip-Flop and (N-1)-2“? words of memory if the memory tables in the
design are partitioned once. The silicon area of this design is equal to 1237N-1217
Kum?. The design in [34] is the conventional memory-based DA design; it requires
about N 16-bit adders, N 16-bit Flip-Flops used for PISO and 2"-N words of memory.
The silicon area of this design is equal to 13.7N+4.75-2N-N Kum?. The design in [35]
is the modified memory-based DA design using the reduction technique of OBC, it
requires about 2N 16-bit adders, N 16-bit Flip-Flop-and 2"?-N words of memory.
The silicon area of this designis equal to-19.6N+4.75-2M2-N Kum?. The design in
[52] is the adder-based DA design; it requires about four 16-bit multipliers, 2N+2L+5
16-bit adders, 4N+3 16-bit Flip-Flops and 4N words of RAM. The silicon area of this
design is equal to 73N+380 Kum?’. Fig. 3.13 shows the delay-area product of the
proposed design and the existing designs [33]-[35][52] in realizing the 1-D DCT with
various values of N. As shown in Fig. 3.13, in case of 16-bit data word-length, the
delay-area product of the proposed design is much smaller than the memory-based
systolic array DCT design [33] and the other DA-based designs [34][35][52].

78

Table 3.14: The comparison of the proposed design and the existing DCT designs
[33]-[35][52] in realizing the 1-D N-point DCT in terms of delay and silicon area.

. Mul Adder FF memory Barrel shifter RAM - % 2
Cycletime (1) | ;o 1y (16-bit) (16-bid) (16-bi) (16-bi) (16-bir) Delay*Area (ns * Kunr’)
Guo [33] T=tmux+trom
(Memo_ry-based +tadd tadd 5.9N 7.8(N-1) 1216+(N-1) 7.4+(N-1) [(N-1)T/N] (1237N-1217)
systolic array)

White [34] _ V. * N
(directly DA) T = trom+ tadd 5.9N 23.4N 4752V N [(16T)/N]*(29.3N+4.75:2" - N)
Choi [35] = HIN-2) * oIN-2)
(OBC-based DA) T = trom+2 tadd 11.8N 23.4N 475209 N [(16T)/N] * (35.2N+4.75 2™ N)

Guo [52] | 7 pafimut, sada+igy | 34.6%4 5.90N+37) 7.8(4N+3) 7.4(4N) [(NT)/NJ*(73N+380)

(Adder-based DA)

The proposed
design

T= trom+tbr+tadd

[(32T)/N] *[-28.8 + 39.IN + 0.64N°

) (V-1 12% [-0.072 + 0.435 * 6 (V-1
+/[475.27 2 (Nz;l)]

S(N-D)
11.8N 23.4(N-1) 475.27 2 T2 (N-D) + 0.053 * (N-1)*]

Note:

1. tmul denotes the delay time of multiplier.

2. tmux denotes the delay time of multiplexer.

3. tadd denotes the delay time of adder.

4. trom denotes the access time of memory associated with N for DA-based
design or associated with wordlength for memory-based systolic array design.

5. tbr denotes the delay time of barrel shifter associated with N.

delay-area product (us*K um?)

100000 |
—8— memory-based systolic array [Guo]
—— direct ROM-based DA [White]
80000 —&— OBC-based DA [Choi]
—¥— adder-based DA [Guo]
—— The proposed design [Ours]
60000
40000 |
20000
0 bl
4 S 6 7 8 9 10 11 12

transform length

Fig. 3.13: The delay-area product of the proposed design and the existing DCT

designs [33]-[35][52] in realizing the 1-D DCT.

79

3.3.4 Chip implementation

We have verified the proposed design for 1-D 7-point DCT in VERILOG
modeling. According to the synthesis result with Avanti 0.35um cell-library, this
design consumes 7485 gates, and possesses the maximum path delay of 12.1ns. The
working frequency of the chip is above 82.6 MHz. In other words, the chip can
maintain the throughput rate of 18.1 M samples/second, i.e., (82.6 MHz / 32 cycles) *
7 samples. Fig. 3.14 shows the layout view of the 1-D 7-point GDA-based DCT
design fabricated using TSMC 0.35um CMOS 1P4M process. The core size of
proposed DCT design is equal to 1734 * 1732 um?.

N N
NN e N
N N
B SRR SR N
A R RN Y i$ it e BREY W
\\\\\\\\ iy N
Weeten. DR
SRR S R
ay }Q PR
S
\\\\\\\\\\ e NN
AR R .
SRR AT S N

Fig. 3.14: Layout view of the 1-D 7-point GDA-based DCT design.

80

Chapter 4
Long-length DSST’s designs

Regarding the long length DSST’s design, we adopt the methodology of two
level decomposition for realization of the long length DSST’s with short ones. In our
research, we not only partition the cyclic convolution in DSST’s kernel with
Agwal-Cooley algorithm and pseudocirculant factorization algorithm for the cases of
prime-length and non-prime length respectively but also combine with the other
decomposition algorithms [53]-[56] for different cases of transform length, such as
the Cooley-Tukey algorithm for the case of (a,) > 1, where the transform length N =
a - b, prime factor algorithm (PFA) for the case of (a,) = 1, and Rader’s algorithm
for the case of N = p°, where p is prime, and ¢ > 1, to decompose the long length
DSST’s for short ones.

4.1 Decomposition of lang-length.DSST's

4.1.1 Cooly-Tukey Algorithm

For the long-length 1-D DFT with_non-prime length, firstly we can apply
Cooly-Tukey FFT Algorithm to decompose a 1-D N-point DFT into a 2-D DFT with
the lengths of N; by N,. Based on the common factor map (CFM) [57], this algorithm
can map the time index » and frequency index k& in 1-D DFT into the time indices #,,

n, and frequency indices k;, k; as

n=N,-n +n,

k=k +N, -k, 4.1

where 0<ng,ky <N;j-1, 0<np,kp <Np-1, Thus, the 1-D N-point DFT can be

decomposed into a 2-D N; X N> DFT as shown in the following

81

N-1
Y(k)=> x(n)-W);k=01--N-1
=Y (k,+ Nk,)
Nyl Ny-1
= Z Zx(Nznl +ny)- W]\Zlkl : VVNMZk1 'WJ:IZ:kZ
n,=0[m =0 (42)
N,-1

= ' [Gny k) - Wy]- Wk

n,=0
N1 _

= ZG(”zvkl)'Wz\le:kZ

n,=0

N1 -
where G(ny,k) = Zx(Nznl +n,): I/Vz\};llk1 ,G(ny, k) = G(ny, ky)- VVI\’;Zk1

nl=0
In the above derivation, we can see that Y(k) can be viewed as a 1-D N,-point
DFT with input 5(n2,kl), and G(n,,k;) rcan be viewed as a 1-D N;-point DFT with
input x(N>n;+ny). We can obtain 5(n2,k1) by multiplying G(n,,k) with a twiddle
factor W* . These twiddle=factors multiplications can be absorbed into the
post-processing in the cyclic eonvolution formulation of 1-D Nj-point DFT. By

realizing the computation of é(nz,kl) and G(n,,k,) based on the proposed GDA

approach, we can achieve the design of long-length 1-D DFT

4.1.2 Prime Factor Algorithm
Prime Factor Decomposition of 1D DFT

A design example of decomposing 1-D N-point DFT into 2-D N, x N; DFT is
illustrated in the following. Based on prime factor map (PFM) [57], the mapping of
1-D indices n and & to 2-D indices n,, n,, k;, and k; are typically given by:

n=(N1-ng+Ng-n)y
k=(N1(NT Y, ko + No(No M), k1) n (4.3)

where 0<ngk,<N,-1, 0<n,k, <N, -1, with Ng and N; the relatively prime

factors of the transform length N. Then, the 1-D N-point DFT shown in (4.2) can be

82

decomposed into the 2-D Ny X N; DFT as

Nl_lNO -1
k k
= 3t i i o
n1=0 Ry =0

Using the index mappings, we can express the DFT in (4.4) as

N,-1 Ny-1

-1 -1 k k

V(N1 VT ko + No(NgHn, Ka)w) = D (D al(Ny oo + No -)y)-Wyeko) - wth
l’ll:O n0:0

(4.5)

Now, according to the PFA, the 1-D N-point DFT is decomposed into a 2-D N,
x N; DFT with no twiddle factor such that the GDA design can directly be applied to
realize each of the 1-D Ny-point DFT and N;-point DFT computation.

Prime Factor Decomposition of 1D DHT.

For the long length DHT design, wesfirstly exploit the prime factor algorithm
(PFA) to decompose the long length- DHT into shortened ones and then implement
each of the shortened DHT [53][56][58}[59]. Based-on PFA, the computation of the
long length DHT can be effectively achieved, whereby a 1-D DHT of N = N;xN;
samples can be formulated into a separable 2-D N;xN, DHT. The decomposition of

1-D N-point DHT is briefly illustrated in the following.

For input index » and output index &, the mapping of 1-D indices » and k to 2-D

indices n;, ny, k;, and k; are typically given by

n=(Np-n +Nyp-np)y
k=(No(NyY) y, k1 + N1 (VT D, k2)n (4.6)

where 0<nj,kg <N1-1, 0<np,kp <Np-1, with N; and N, the prime factors of
the transform length N. Thus, the 1-D N-point DHT can be decomposed into a 2-D N;

X N, DHT as shown in the following

1
Wiky k) == Y1 (k1 k) + Yo (N1 =k e) + Yg(ky, N2 — ko) + Y4 (N1 —ky, No = k)] (4.7)

N,-1(N,-1

2
where Yiltkuk2)=) Zx(nl,nz)-cas(N—’inlkl) cas(

and cas@ =cos@+sind.

ny =0 ny =0

2

T
naky)

83

Now, the 1-D N-point DHT is decomposed into a 2-D N; X N> DHT. In this case,

the shortened DHTs are much more efficient in the hardware realization than the

direct realization of long length DHT.

4.1.3 Rader’s Algorithm

[53][61] have shown that the DFT/DHT can be converted to convolution when the

transform length NV is a power of the odd prime, i.e., N = p" for a prime p = 2. For the

conversion with this algorithm, we must first remove all integers which contain a

factor p from the set {1, 2, ..., N-1} to get a cyclic group with p"”/(p-1) elements. This

cyclic group leads to a circular,€onvolutionizof length p"/(p-1) as before. The

remaining computation consist§ of two DFT’s of length p™/. The generalized

algorithm shows that if N = p~the length-N transform is computed with one length

P (p-1) circular convolution, “two " “@=£)=circular convolutions, four p™~(p-1)

circular convolutions, ..., terminating:2"(p-1)-¢ircular convolutions, An example of
DFT with the length N = 9 = 37 illustrates this algorithm in detail begin with the

matrix representation as

)
Y()
Y(2)
Y(3)
Y(4)
Y (5)
Y (6)
Y(7)

LY(8)

R

1

(O]

x(2)
x(2)
x(3)

| x(4)

x(5)
x(6)
x(7)

[X(8).

(4.8)

We remove rows and columns corresponding to the indices of 0, 3, and 6, and

compute the remaining length six transform

84

B Y' (1) T VVgl VVQZ
Yl (2) VVQZ VV94
Yl (4) VV94 VVgg

Wy Wy Wy W | [x(@)]
wyowy Wy Wy || x(2)
Wy owE Wy Wy | |x(4)

= : 4.9
re| | me owowe owlowe wi| | @)
YOy \w owe e wy Wy Wy | x(T)
Y'(8) _VVQS VI/97 VVQS W94 VVgZ VVgl_ _x(8)_
using the permutation
n=12,4875
n=2"mod9,
m=0.12,345
to obtain the circular convolution (with input reversed as before)
YW e owe Wl wg w W @)
@\ \wE we Wy W g W] | <)
V@) || W owe e we W Wy | x(T) 410
V)| |\ we oWy owE w Wy W || x(@)
V@)W WS W R, | | x(4)
RACTIN U/ AR AN /AN A RG]
and
()]
x(1)
x(2)
Yo |1 1 1 1 1 1 1 1 1]|x(3
YE) (=1 We we 1 Wy Wy 1 W WS || x(4)
Y@y | (1 wy w1 owy w1 owy wol|x(5
() 9 9 9 9 9 9 () (411)
x(6)
x(7)
[x(8)]
1 1 1 | | x(0)+x(3)+x(6)
=1 wy w7 || x@Q)+x(4)+x(7)
1 wi Wy | x(2)+x(5)+x(8)

where W, =W, Wy =W},

For the deleted column we have

85

o] 11 1

| o|rowowy

') (1 Wy Wy

3| |1 1 1][x(0)

'@ =11 W Wl x(@) (4.12)
Y'G) | (1 Wy W | |[x(6)

ey (1 1 1

a1 owg Wy

RECI /AN A

and the equivalent form as

')l [r'@®)] [r®)] [1 1 17/[x(0)
'@ [=|Y"@) |=|Y"(7)|=|1 W Wil |x@3) (4.13)
)| |G| [Y'@)| |1 WS W] ||x(6)

Only the last two entries Y”’(1) and Y”(2) are needed from (4.13) to compute the
rest of (4.8) as

Yo [ro) [r)
rQ| |r@| |re
r@|_|r@| | re w14
re| | re| | re
Ym| \ro| | ro
e re] [re)

As for the DHT with the length of power of odd prime, the derivation of cyclic

convolution formulation is similar to that of the DFT.

4.2 Long length DHT Design and Evaluation

Architecture design

To facilitate the GDA realization of the shortened DHT without suffering from
exponential memory size, after algorithm decomposition of the long-length DHT, we
need to further partition these shortened DHTs, where the cyclic property must be
preserved in each partition of them. We recall the kernel T((g"),) of 1-D DHT in
(3.23), and further partition it into short ones by the Agarwal-Cooley algorithm. With

this algorithm, we can preserve the cyclic property in each of the partitions and thus

86

apply GDA design approach efficiently to the implementation of the shortened 1-D
DHT. It means that the original (N-1)-point cyclic convolution can be partitioned into
s * s short-length cyclic convolutions with the size of ¢ * ¢, where s and ¢ denote the
partitioning factors, i.e., N-1 = s * ¢. Thus, the permutated 7((g")y) in 1-D DHT

formulation can be written as the sum of some short-length cyclic convolutions. That

IS,
T((gk)N):Tl((gk)N)+T2((gk)N)+ """""" +Ti((gk)N)+ """" +Tv((gk)N)
(V-1)/ o . 281y o .
= 2 X((g")) HE T D (g)y) H T
ny=1 ”2:(&71%+1
i(N 71% } .) "; N-1) .) ”;
bY@ D s (g7)) H

=IOV 4 ny =DV g

(4.31)

where n’=I1+(ni-1)+t(n-1)+t(s-int((n-1)/t), and k’=1+(k-1)+t(k-1)+t(s-int((k-1)/t))s
denote the mapped indices for maintaining the partitioned matrix still preserves the
cyclic property. Let us examine an example of 1-D 29-point DHT with the real input
sequence {x(n), n=0, 1,... 28}.-The cyelic..convolution form of T((g")y) can be

expressed as

()

87

Exploiting the Agarwal-Cooley algorithm, we can convert the cyclic convolution

with long length to a four by four short-length cyclic convolutions, and express (4.32)

as

1]2(4|8]|16]3 1224|109 9 (18| 7 |14 | 28|27 |25|21 |13 |26 |23 |17 |5 |10|20]11]22] 15

15124 16 12 (24|19 9 (18] 7 |14| 28| 27| 25|21 |13 | 26|23 |17| 5 (10|20 |11 |22

22(15[1 | 2 8 |16 1224|199 (18| 7 |14]28]27|25(21]13]26|23[17| 5 [10|20] 11
11]22[15] 1 4816 6 (12|24 |19 9 |18 7 |14] 28| 27| 25| 21|13]26]23|17| 5 | 10|20 16

20|11 (22|15 4|8 16]3 12|24|19| 9 |18] 7 |14] 28|27 (25|21]13]26 |23 |17| 5 |10

10]20]11 22|15 2| 4]8]16 12]24|19] 9 18] 7 [14|28|27|25|21|13|26(23]17] 5
5|10]20(11|22|15| 1] 2] 4 16 6|12|24]19] 9 (18] 7 [14]28]27]25]21|13|26|23]17 12
17] 5 (10|20 12]22]15] 1 | 2 8|16]3|6|12]24]19] 9 |18] 7 |14|28|27|25|21]13]26]23 24
23]17] 5 |10 20 11]22]15] 1 4|8 |16]3|6|12]24]19]0|18]7|14]28]27|25]21|13]26 19
26]23[17| 5 |10]20]11]22] 15 2| al8l16]3]6|12]24]19]0|18]7 |14|28]27]25]21]13 9
13]26(23|17| 5 |10]20] 12| 22]15] 1|2 |4 |8 |16|3 |6 |12|24|10] 0 |18] 7 |14]28]27]25]21 18
21(13[26|23|17| 5 |10{20|11|22]15| 1|2 |4 |8 |16] 3 12|24 19| 9 |18| 7 |14 |28 |27 |25 7
25(21(13|26|23|17| 5 |10|20|11|22(15|1 |2 |4 |8 |16 12|24|19| 9 18| 7 |14]28]27 14
27|25(21 (13|26 |23(17| 5 [10|20 12|22 (15| 1 |2 |4 | 8 |16 122419 9 |18] 7 |14]28 28
28|27 (25|21 13| 26(23[17| 5 [10]20]11|22|15| 1 | 2 | 4 16 12 (24| 19| 9 (18] 7 |14 27
14|28 (27|25 21|13]26]23 (17| 5 [10]20 |11 |22[15| 1 | 2 8 |16 12]24]19] 9 18] 7 25
7 |14]28|27|25 |21 13| 26|23 (17| 5 [10]20|11 |22 |15] 1 40816 1224|199 |18 21
18] 7 [14|28|27|25]21]13] 26|23]17| 5 [10]20 |11 |22 15 2|4 16 12|24]19] 9 13
9|18] 7 14|28 |27|25|21] 13|26 (23] 17| 5 [10]20]12|22]15] 1 |2 16 122419 26
19] 9 [18| 7 |14]28]27]25]21]13]26|23|17| 5 [10|20|11]22]15] 1 8 |16 6 1224 23
24]19] 9 18] 7 |14]28] 27| 25|21 |13|26|23|17| 5 |10 20|11]22] 15 48163 12 17
12|24(19| 9 | 18| 7 |14| 28|27 |25 |21 |13 |26)28 2745, | 10| 20] 11| 22] 15 4|8 |16 6 5
12(24(19| 9 |18| 7 | 14| 28|27 25| 214/23 126 | 23 [17|55 [10 | 20 | 11 | 22| 15 2|4|8|16]3 10
12(24]19| 9 18| 7 |14 |28 |27}25| 21| 13] 96| 23| 175 [10|20(11|22|15| 1| 2|4 |8 |16 20
16 6|12|24 (19| 9 [18| 7 |14 |2827 |25 21} 13] 26{ 23 27| 5 [10|20 |11 |22|15] 1 48 11
16| 3 |6 |12|24|19| 9 |18 7 [14] 28|27 |25 |21]13 |26 |23 17| 5 | 10| 2011|2215 4 22
16/ 3 12(24]19] 9 |18 7-14 |28 27425 | 21| 13| 26| 23| 17| 5 [10|20 11 |22 | 15 2 15
8 |16 6 12| 24|19| 9 [184 7 | 14|28 2725 [21)13 |26 |23 |17| 5 |10] 20|11 {22]15] 1 1
x() Hy"

(4.32)

e e =S LVE DN N | - = N e

24

25 |

20 |
16

~ N
~ [+ ~
- «

88

GDAU1 GDAU2 GDAU3 GDAU4
11(24(25|20|16| 7 |23)17| 2 |19(21|11| 3 |14]28| 5 13|22 | 6 J12(27(10| 8 |18 |26 | 15 2
23(1(24|25|20|16| 7 |14|17| 2 {19|21(11|3 | 6 (28| 5| 4 | 9 (13|22|15|12|27 10| 8 |18 |26 19
71231 (24|125(20|16) 3 |14 (17| 2 (19|21(11]22| 6 [28| 5 9 113]26(15|12(27|10| 8 |18 21
16| 7 23| 1 (2425|2011 | 3 |14 (17| 2 (19|21]13|22| 6 (28| 5 |4 |9 118 |26(15|12|27 (10| 8 11
20116 7 (23| 1 |24|25)21|11| 3 (14|17 2 |19]) 9 |13(22| 6 |28| 5 |4 | 8 |18(26 |15 |12 (27|10 3
25(20(16| 7 |23| 1 |24)19|21|11|3 |14 (17| 2 | 4|9 |13|22| 6 (28| 5 |10| 8 |18 |26 15|12 |27 14
241252016 7 |23| 1) 2 |19|21|11| 3 (14|17} 5|4 |9 |13|22| 6 |28|27|10| 8 [18|26| 15|12 17
12127 (10| 8 |18 [26(15] 1 |24 (25|20(16| 7 (23|17 | 2 |19|21 (11| 3 |14]128|(5 | 4 |9 |13|22| 6 5
15112 (27(10| 8 (18|26 23| 1 (24 |25(20|16| 7 |14|17| 2 [19(21|11|3 | 6 (28| 5 |4 | 9 |13(|22 4
26(15(12|27|10| 8 |18] 7 |23 | 1 (24|25(20(16) 3 (14 (17| 2 |19(21|11|22|6 |28| 5 |4 | 9 |13 9
18126(15(12 |27 (10| 8 | 16| 7 {23 | 1 (2425|2011 | 3 |14 |17 | 2 |19|21)113(22| 6 [28|5 | 4 | 9 13
8 |18|26 (15|12 (27(10)120(16| 7 |23| 1 |24|25)21|11| 3 (14 |17| 2 |19] 9 |13|22| 6 |28 22
10| 8 |1826| 15|12 |27|25|20|16| 7 |23 |1 |24)19|21|11(3 |14|17|2] 4|9 (13|22| 6 (28| 5 6
27110(8 (18|26 (15|12]124|25(20(16| 7 (23| 1 | 2 |19(21|11| 3 |14(17]1 5|4 | 9 |13|22| 6 |28 | e | 28
28549 |13|22|6 12|27 10| 8 |18 (26(15] 1 (24 |25|20|16| 7 |23|17|2 |19|21|11| 3 |14 27
6 (28| 5 9 (13(22)15(12 (27|10 8 |18|26]|23| 1 |24(25(20|16| 7 |14 (17| 2 |19|21|11| 3 10
2216 (28| 5|4 |9|13)26|15|12(27|10(8 (18] 7 (23| 1 |24|25(20|16| 3 |14|17| 2 [19]|21 |11 8
131226 (28| 5 (4|9 |18|26(15|12(27 (10| 8 |16| 7 |23| 1 (24|25|20)11|3 (14|17| 2 |19(21 18

13122 6 (28| 5 (418 (18 |26|15|12|27|10|20|16| 7 (23| 1 |24|25)21|11| 3 |14 |17 | 2 |19 26

13|22 6 |28(5110(8 [18|26|15(|12|27| 25|20 (16| 7 |23 | 1 |24]19|21(11| 3 |14 (17| 2 15

9 13|22 | 6 |28] 27|10 18126 |15|112]|24125|20(16| 7 |23| 1| 2 (19(21|11| 3 |14 (17 12
1712|1921 11| 3 (14|28 5| 4 |9 |13|22| 6 J12|27|10| 8 [18 (26|15 1 (24|25({20|16| 7 |23 24
141172 |19|21|11|3 | 6 |28| 5 |4 | 9 |13|22)15|12 |27 (10| 8 |18 (26123 | 1 (24|25|20(16| 7 25
3 (14|17| 2 (19|21|11|22| 6 |28 5 13126151227 (10| 8 |18 7 (23| 1 |24|25|20 |16 20
11| 3 (14(17| 2 [19|21|13|22| 6 |28 5|4 |9 |18|26|15(12 (27|10 8 J16| 7 [23| 1 |24|25|20 16
21(11(3 |14|17| 2 |19] 9 |13|22| 6 {285 | 4 | 8 (1826|1512 (27 [(10]|20|16| 7 [23| 1 |24|25 7
19121113 |14 (17| 2| 4| 9 (13|22 6 |28| 5 10| 8 |18 |26 (15|12 |27]125(20(16| 7 |23| 1 |24 23
2119|2111 3 |14 |17 9 (13(22 |6 (28127 (10| 8 |18 |26 |15|12]24(25(20(16| 7 |23| 1 1

x() Hy
(4.33)

For facilitating the utilization of GDA approach, we can express each of the
shortened cyclic convolutions in (4.33) as

T((e)) =T ™))+ 2L),)-2% i=ls (439
: i(N-1)/s oo .
where T,((g"),)= >, x, (")) H (4.35)

n=[(-1)(N-1)/s]+1

where L denotes word length of the input data x, N denotes the transform length, and

R, denotes the rotating factor.

In the following, we intend to illustrate the hardware realization in detail
through a 1-D 29-point DHT. We make use of the partitioning scheme of cyclic

convolution such that the length of cyclic convolution can be partitioned into the

89

composition of short ones that can be realized efficiently by the proposed GDA design
for achieving low hardware cost. Referring to the reformulation of 1-D DHT in (4.33),
we can realize the 28-point cyclic convolution used in 1-D 29-point DHT through the
summation of four 7-point cyclic convolutions four times since four sets of the
outputs in the 28-point cyclic convolution can be computed by using identical four
7-point GDA units (i.e., GDAU1~GDAUA4), where the blocks of input data should be
rotated for each of the summation computations. The idea of exploiting computation
sharing on the content of memory not only efficiently reduces the memory cost with
the trade-off in slowing down the data throughput rate, but also achieves good
performance of the proposed design in terms of the hardware cost and average

computation time as we shall illustrate later.

90

Y)
Y2)
Y(19)
Y21)
Y(11)
Y3)
Y(14)

x(28)

x(27) 1)

x(26) :

x(25)

x(24)

x(23)

x(7)

x(6) >

x(5) — M |

x(4)

x(3)

x(2)

x(1) J

T(24), T(27), T(5), T(2,
@ 24), T27), 1(5) ()ED]

1(25), T(10), T(4), T1)[
Emal (o]

GDAU2

20, 9, 21
E 7(20), T(8), T(9), T)ED]

E 1(16), T(18), T(13), T(1 1] - D:l
-

GDAU3

(7). 1(26). 1722). T [
EEal o]

7(23), T(15), T(6), T14)—
EEal o]

GDAU4

(1), T(12), T(28), T(17,
@ (1), T(12), T(28) ()|—D]

iC‘SAl [csa] [ea| [esa] (e [osa] [osa]

Computing 7((2%),)

Fig. 4.1: The GDA-based architecture design for 1-D 29-point DHT example

With the derivation mentioned above, Fig. 4.1 shows the GDA-based
architecture of 1-D 29-point DHT. It is composed of the GDA unit (GDAU), address
decoders, adders/subtractors, accumulators, and parallel-to-serial (P/S) converters.
The computation of this design is illustrated as follows. The input vector JX;, which
can be {x,(1), x4(24), x4(25), x4(20), x4(16) , xX4(7), x4(23)}, {x4(17), X4(2), X4(19),
x4(21), x4(11) , x4(3), x4(14)}, {x4(28), x4(5), x4(4), x4(9), x4(13) , x4(22), x4(6)}, Or

91

{x4(12), x4(27), x4(10), x4(8), x4(18) , x4(26), x4(15)}, is first fed into the address
decoder to determine which group the DA input belongs to and how many positions
the outputs should be rotated. The rotating factor R, = {r,(1), r,(2), r4(3)} decoded
from the address decoder is used to control how many bits the barrel shifter should be
rotated left, where Lgoy 7-bit barrel shifters are involved in the GDAU and Lgom
denotes the word length of memory. Table 4.1 shows the relationship between the

original DA input address and the group address as well as the rotating factor.

Table 4.1: Function of the address decoders in the 1-D 29-point DHT design

Grouped candidates of DA input (X,) Grouped candidates of DA input (X,)
£,(1), x,(24), %,(23), x,20), x,(16), 0541, x,(24), X,(23), x,(20), x,(16) ,
Xy(7), X(23)}, Rotating-left X4(7), x4(23)}, 'Rotating-left
actor actor
Group {x4(17), %4(2), ;‘)q(] 9)}3/}(21) X,(11), £ ;R p Group address (G,) Group x4(17), x4(2),)‘)‘/(15?) x)ql(ZI)’ Xy(11)., * ;R) Group address (G,)
number Yq(3): %q ’ v £ number Xo(3) Xq(14)), s 5
84(1), 84(2), 84(3). 84(4). &4(3)} 184(1). 84(2). 84(3). 84(4). 84(5)}
(3,(28), %,(5), X4(4), X9, x,(13), | {ry(D), r(2), 1 S S S " (34(28), %,(3), Xg(@), X,(9), x,(13), | try(1), ry(2), g TS 1 Sa
X4(22), x4(6)}, or r(3)} X4(22), x4(6)}, or r4(3)}
£5,(12), %,(27), x,(10), X,(8), x,(18), 5,(12), %,(27), x,(10), x,(8). %,(18)
%,(26), x,(13)} %,(26), x,(15)}
i 0001111,0011110,0111100,1000111,
0 0000000 0 00000 10 0.1,2,6,54,3 01010
1100011,1110001, 1111000
0000001,0000010,0000100,0001000, 0010111,0101110,0111001,1001011,
1 0,1,2,3,4,5,6 00001 11 0,1,3,6,2,5,4 01011
0010000,0100000, 1000000 1011100,1100101, 1110010
0000011,0000110,0001100,0011000, 0011011,0110011,0110110,1001101,
2 0,1,2,3,4,6,5 00010 12 04,1,6,3,5,2 01100
0110000,1000001,1100000 1014001,1100110, 1101100
0000101,0001010,0010100,0100001, 0011101,0100111,0111010,1001110,
3 0,1,2,53,6,4 00011 13 0,5,1,6,4,32 01101
0101000,1000010, 1010000 1010011,1101001, 1110100
0001001,0010010,0010001,0100010, 0101011,0101101,0110101,1010101,
4 0,1,4,5,2,6,3 00100 14 0,2,4,6,1,3,2 01110
0100100,1000100, 1001000 1010110,1011010, 1101010
0000111,0001110,0011100,0111000, 0011111;0111110,1001111,1100111,
5 0,1,2,3,6,54 00101 15 0,1,6,5,4,3,2 01111
1000011,1100001, 1110000 1110011,1111001, 1111100
0001011,0010110,0101100,0110001, 0101111,0111101,1010111,1011110,
6 0,1,2,4,6,3,5 00110 16 0,2,6,1,54,3 10000
1000101,1011000, 1100010 1101011,1110101, 1111010
0001101,0011010,0100011,0110100, 0110111,0111011,1011011,1011101,
7 0,1,52,64,3 00111 17 0,3,6,2,5,1,4 10001
1000110,1010001, 1101000 1101101,1101110,1110110
0010011,0100110,0011001,0110010, 0111111,1011111,1101111,1110111
8 0,1,3,4,62,5 01000 18 0,6,5,4,3,2,1 10010
1001001,1001100, 1100100 1111011,1111101, 1111110
0010101,0100101,0101001,0101010,
9 0,5,3,1,64,2 01001 19 1111111 0 10011
1001010,1010010, 1010100

Note:

1. Binary value with Boldface font denotes the seed-value of the group

Design evaluation

Table 4.2 lists the comparison of performance of the proposed design with the
existing designs [22][26]-[29]. The 1/O channel of the proposed design is just a single
input/output and independent of the transform length N. Based on Avant 0.35um
cell-library [43], we respectively show the comparison of area, cycle time, and

area-delay product in Fig. 4.2, Fig. 4.3 and Fig. 4.4 to illustrate the advantages of the

92

proposed design. The results show that the normalized area cost of the proposed
design is not always improved significantly if the length of partitioned cyclic
convolution is not short enough. However, when we consider the cycle time effect
together with the hardware cost, we find in Fig. 4.4 that the proposed design possesses
better performance than the other designs [22][26]-[29] in term of reducing the
normalized area-delay product from 52% to 91%. Table 4.3 shows the decomposition
of 1-D DHT designs of different lengths in terms of short-length DHTSs realized by the
proposed design approach. For the DHT designs with lengths longer than 121, we use
both the Agarwal-Cooley algorithm and prime-factor algorithm in decomposing them
into short-length DHTs with cyclic convolution formulation. However, if the lengths
of DHT are not long enough, like 49, 77, and 121 shown in Table 4.3, we need only to
decompose the DHT to short ones by prime-factor algorithm (PFA), and realize them
through GDA design approach directly. Due to the shortened DHTs with lengths that
are short enough (i.e., 6-point cyclic convolution for 7-point DHT and 10-point cyclic
convolution for 11-point DHT), the precess of.cyclic convolution partitioning can be

omitted.

Table 4.2: The performance comparison of different designs for computing the 1-D

N=point DHT
. Adder MUL memory Barrel shifter .
Designs (words) (words) (words) (Na-bit) 1/0 No. Cycle time
Liu [22] 5N-2 4N 0 0 (N+1)L N*(Tnu + 2T acq)
Kumar [26] 9N/4-6 N-4 0 0 (N+1)L 3N* (Tt + 2T aga)
Dhar [27] 6N-8 8(N-1) 0 0 (N+1)L 2N*(T a1 + 2T aga)
(N +1) W _
Fang (DIT) [28] 4((N *%W +1| V3] 0 0 ANL [[Y5 [+ =11
*(Tmul + 2Tadd)
Chang [29] 5N 8N 0 0 (N+2)L 2N*(Tout + 2T aqd)
Proposed design N+1 0 Grum(m2)+(N-1) n;-Lrov 2L | *L*(Trom+ Toar + Tesa+ Tadd)
Note:

1. A CORDIC processor is equivalent to four multipliers and two adders.

2. L denotes word-length of the input data.

3.Guum denotes the number of groups contained in the group memory modules.
Usually, Gy is linearly related to N for small N values.

4. N-1 equals to n;*n;.

5. Lrowm denotes the word-length of memory.

6. T denotes the delay time of a multiplier, T,44 denotes the delay time of an adder,
T,om denotes the access time of memory, Ty, denotes the delay time of a Barrel
shifter with ny-bit width, and T, denotes the delay time of a carry save adder,
where T, is equivalent to the delay time of n;-1 adders.

0.9
0.8
0.7
0.6
05
0.4

Normalized area cost

0.3
0.2
0.1

—&— proposed
——Lu[l]]

—&— Chang [18]
—¥— Kumar [15]
—@— Dhar [16]
—=—Fang (DIF) [17]

7 11 19 29 57
Transform length (V)

93

Fig. 4.2: Comparison of the normalized area cost in the realization of 1-D N-point

DHT using the proposed design and the existing designs

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

Normalized average cycle time

0.1

—— The proposed
—8—Liu[11]
—&— Chang [18]
—— Kumar [15]
—8— Dhar [16]

Fang (DIF) [17]

7 11 19 29 57
Transform length (V)

Fig. 4.3: Comparison of the normalized cycle time in the realization of 1-D N-point

DHT using the proposed design and the existing designs

94

©

S

S

o 0.1 -

o

2

©

gl

o001

% . —&— The proposed

§ —&—Liu [11]

-c_—u —&— Chang [18]

% 0.001 —¥— Kumar [15]

2 —@— Dhar [16]

—+—Fang (DIF) [17]

0.0001

7 11 19 29 57
Transform length (V)

Fig. 4.4: Comparison of the normalized area-delay product in the realization of 1-D
N-point DHT using the proposed design and the existing designs

Table 4.3: Length of 1-D DHT constructed by the decomposed short

length DHTSs
Length of the decomposed DHT
7 11 19 29 57
25 7 49 77 133 203 399
- %,_ 11 77 121 209 319 627
° 85 19 133 209 361 551 1083
53| 29 203 319 551 841 1653
4° | 57 399 627 1083 1653 3249

For the evaluation of long length DHT decomposed by the scheme mentioned
above, we firstly evaluate the hardware cost and cycle time for the shortened DHT,
and then estimate overall architecture of the long length DHT, which is composed of
the shortened DHT, in terms of the hardware cost and cycle time parameters of the
evaluated shortened DHT. Based on the result of high level synthesis for the 1-D

29-point and 57-point DHT designs shown in Table 4.4, we can further evaluate the

DHT designs with the lengths of 841 (i.e., 29 * 29), 1653 (i.e., 29 * 57), and 3249 (i.e.,
57 * 57), respectively. Since the cycle times consumed by both the stage of 29-point

95

DHT and the stage of 57-point DHT in the 1653-point DHT design are not the same,
we should take the largest one of them in these two stages. Comparing with the
manner of directly partitioning in the conventional DA, we show the effectiveness of
the proposed design in Fig. 4.5 in terms of the normalized area-delay products, where
DP denotes directly partitioning for conventional DA and AC denotes partitioning
with Agarwal-Cooley algorithm for GDA. In the DHT design examples of 841-point,
1653-point, and 3249-point, the proposed GDA approach combining with
Agarwal-Cooley algorithm can efficiently remove the data redundancy to achieve

66.1% better in terms of area-delay product averagely.

Table 4.4: The evaluation result of GDA-based DHT designs

The length of DHT Area cost' Cycle time?
(gates) (ns)
29 44890 702.7
57 89539 2749.4
841 89780 20378.3
1653 184429 79732.6
3249 179078 156715.8

Note:
1. The area cost of the DHT with composed length (i.e. 841-point, 1653-point,
and 3249-point) does not include.the transpose memory.
2. The cycle time denotes the time consumed by the computation of N DHT
outputs.

PFA + DP + DA

PFA +AC +

0 0.2 0.4 0.6 0.8 1

Normalized area-delay product

Fig. 4.5: Average improvement of the normalized area-delay product in the designs of
841-point DHT, 1653-point DHT, and 3249-point DHT using the proposed design
approach

96

4.3 Variable-length DFT Design to Communication System

Application

4.3.1 Overview of Communication system

The orthogonal frequency division multiplexing (OFDM) technique has been
widely adopted in high-speed data transmission, such as asymmetry digital subscriber
lines (ADSL), very high speed digital subscriber lines (VDSL), and digital
audio/video broadcasting (DAB/DVB) systems. In these systems, the discrete Fourier
transform (DFT) plays a main role. Table 4.5 shows the lengths of DFT required in
these systems, where the required length of DFT is proportional to the data-rate as
well as the distance. Thus a configurable dedicated hardware for the DFT computation
with variable length would be desired in the various high data-rate communication

applications.

There are many high-speed: applications:[16}{17][19][21][62][63] that address
the use of dedicated hardware designs for computing-the long length DFT/IDFT. The
designs with fast algorithms=are jattractive- for' low computational complexity.
However, hardware design of“.the algorithm 1S communication intensive and
computation intensive to complicate "the realizations of controller and arithmetic
operation. In addition, most of the designs with fast algorithms exploit a butterfly
datapath and a global memory in storing all of input/output data as well as the
intermediate results. The mass data access from the global memory wastes a large
percentage of power in this kind of designs. Besides, the cascaded structure in the fast
algorithm makes the designs have poor numerical accuracy such that longer data
wordlength in the datapath is needed. This fact will reduce the low complexity
advantages of the fast algorithm and thus increase the hardware cost of the designs
with fast algorithm. Thus, the efficient hardware design of DFT is still a challenging
problem due to its high computational complexity and the requirement of real-time
processing. The popular designs based on the distributed arithmetic (DA) have the
benefit to exploit both constant and bit-level computation. However, the traditional
DA technique suffers from large memory cost for long length designs. To solve this

problem, we have proposed the GDA design approach that further reduces the

97

memory cost efficiently with the numerical property. In this part of research, we
intend to extend the GDA design approach to long- and any-length design, and its

application to the popular power-of-two variable-length DFT.

B e e Ll B e T
L I Transceiver
QAM Mapper R IDFT ™ Guar? iicrval > bac -
Q
Q .
FEQ DET CE:‘;:ES? Interpolator |4 ADC ——
(1 Input signal
Receiver € Scrambler Reeg-eScL())léJel?on < Deinterleaver QAM Mapper J
output
Fig. 4.6: Transceiver /Regeiver architecture in the communication system
Table 4.5: DFT lengths for'several communication systems
Communication DFT length application
system
IEEE 802.11a 64 Wireless Ethernet
HIPERLAN/2 64 Wireless ATM
ADSL 256/512 Internet access
VDSL 512/1024/2048/4096/8192 Internet access
DAB 256/512/1024/2048 Digital Audio Broadcasting
DVB-T 8192/2048 Digital Video Broadcasting

4.3.2 Hardware Cost Analysis
analyze the complexities of the FFT algorithm and the proposed GDA algorithm first.

Before designing the DFT architecture with GDA approach, we intend to
With the Cooley-Tukey algorithm, the computation complexity of FFT algorithm is

98

around Nlog," [64], including 1/2Nlog;" computations of complex-multiplication and
Nlog," computations of complex-addition, that is equivalent to 2Nlog," computations
of real-multiplication and 2Nlog," computations of real-addition. Based on
Cooley-Tukey algorithm, there are two popular architecture designs. One is single
processing element (PE) design which provides adequate performance with low
hardware cost. The other is pipeline based design for the application with high
throughput. Because of regularity, modularity, locality, and high throughput with
moderate hardware cost, one dimensional linear array is more popular [65]. Besides,
in order to compute DFT via FFT, the input data and the intermediate results need to
be buffered and reordered by using some memory buffers, where the size of the
memory buffers is around N(N-1) words. There are two existing buffering strategies
proposed for the pipeline FFT architecture [66]. One is delay-commutator (DC)
architecture. The other is delay-feedback (DF) architecture.

Table 4.6: The computation complexity of various DFT algorithms

Algorithm Complexity
DFT (Mul-Add) N
Cooley-Tukey DFT (Mul-Add) oN?

DA-based decomposed
Cooley-Tukey DFT with cyclic N YN+
partitioning (memory-word)

GDA-based decomposed
Cooley-Tukey DFT with cyclic N.oVN
partitioning (memory -word)

Based on Cooley-Tukey algorithm for DFT decomposition, cyclic convolution
and pseudocirculant matrix factorization algorithm for cyclic convolution partitioning,
and GDA design approach, Table 4.6 shows the derivation of computation complexity

of the proposed long length DFT algorithm from the original DFT algorithm. The

99

complexity of original DFT is N°. With Cooley-Tukey decomposition, the complexity

is reduced to 2N* (i.e., ZW(W)Z). And then combining with the pseudocirculant

matrix factorization algorithm, we can realize the long length DFT with conventional
DA, and the complexity can be changed into NiQ¥vH (i.e.,

Zﬁo[(2W~W)-(W~W)]). If we replace the conventional DA with the

W+1

proposed GDA in the DFT design, the complexity can be reduced to N2 (i.e.,

4

YN
ZW-[(%-W}(W.W)]). Thus it is possible that the hardware cost of DFT

with the proposed DFT algorithm is smaller than the existing FFT algorithms. For
example of 4096-point DFT, according the Table 4.7, the estimated hardware costs of
FFT and proposed GDA-based DFT are shown as Fig. 4.7. We can see that the
hardware cost of the proposed design is better than FFT when the length of DFT is
smaller than 4096, where the multiplier is four times the hardware cost of adder, and
the transistor count of memory is proportional to memory word-length. However,
actually due to some of the multiplications<in FET butterfly can be omitted, the
hardware complexity in Table>4.7 should be changed into Table 4.8. As for the
estimations of the delay time cansumed by each sample, shown as Table 4.9, they are
respectively sum of the delay time of multiplier; adder, and memory access in FFT,
and L, times the sum of the delay” time®of memory access, barrel-shifter, and
accumulator divided by the length of cyclic convolution in GDA-based DFT, where L,
denotes the maximal one of the word-length of parallel-in-serial-out module in the
two stages of GDA-based DFT design. As shown in Fig. 4.8, the area-delay product of
GDA-based DFT is smaller than that of FFT when the transform length is smaller than
256, where sum of memory access time and barrel-shifter delay time is around half
delay time of the adder for the partitioned small size memory in GDAU, and the delay
time of multiplier in FFT is assumed as four times delay time of the adder. Thus the
GDA-DFT takes around 0.32 time delay time of FFT for each sample, where L, and

N equal 12 and 8 respectively in our design).

100

Table 4.7: The estimation of hardware costs of the FFT and the
proposed GDA-DFT

Algorithm Hardware cost
FFT 0. 5NlOggN A + NlOggNAadd
GDA-based DFT 2.N-2 % frortond
Note:

1. Assume overall GDAU is two times hardware cost of ROM while
N equals 8.

2. Amu denotes the hardware cost of multiplier in unit of equivalent
gate count.

3. Auaa denotes the hardware cost of adder in unit of equivalent gate
count.

4. Arom-wora denotes the hardware cost of the word of ROM in unit of
equivalent gate count.

Table 4.8: The estimation of hardware costs of the FFT with actual
complexity and the proposed GDA-DFT

Algorithm Hardware cost (gates)

3(logs" -2) A + 6(10g5" -2)Aaaa +2(N-1)Amem

FFT (radix-2 SDF) T 9(log," -2)4

GDA-based DFT 2.N -2 e ontwond

101

Table 4.9: The estimation of cycle times of the FFT and the
proposed GDA-DFT for each sample

Algorithm Delay time
FFT tadd T2 touxe T b
GDA-based DFT Lo (tace + tor + taag)/N™*
Note:

1. tyu denotes delay time of the multiplier.

2. taqq denotes delay time of the adder.

3. tace denotes access time of the memory used in GDA-based
DFT design.

4.ty denotes delay time of the barrel-shifter used in
GDA-based DFT design.

5. L, denotes the word-length of input data.

100000000

10000000 -

o
L 1000000
@©
2
g
S 100000
o
S
3 10000
k= ——FFT
—=— GDA-DFT

1000

lOO I I I I I I I I
0 512 1024 1536 2048 2560 3072 3584 4096

Length of DFT

Fig. 4.7: Hardware cost of the original FFT versus the proposed GDA-based
DFT

102

1000000 1

100000

3]
>
o]
o
o
> 10000
E
o
<
% —&—FFT
1000 —i— GDA-DFT
100
0 256 512 768 1024

Length of DFT

Fig. 4.8: Delay-area-product of the FFT versus the proposed
GDA-based DET

4.3.3 GDA-based Variable Length DFT Design and Evaluation

Exploiting the Cooley-turkey decomposition algorithm, we first decompose the
long length 1-D DFT into 2-D short length DFT, and form the shortened DFTSs in each
dimension in cyclic convolution. Then, with the pseudocirculant factorization
algorithm, we factorize the cyclic convolutions as the sum of the shortened cyclic
convolutions, and apply the proposed GDA design to realize of the short-length cyclic
convolutions for achieving a hardware efficient long-length DFT design. Table 4.10
shows the proposed design can flexibly be used to compute the 1-D
64/128/256/512/1024/2048/4096-point DFT by cascading the decomposed short
length DFT.

103

Table 4.10: Length of 1-D DFT constructed by the decomposed
short length DFTs

Length of the decomposed DFT
8 16 32 64
5 § - 8 64 128 256 512
S g-é 16 128 256 512 1024
ST 95| 32 256 512 1024 2048
-4 3 64 512 1024 2048 4096

Architecture design

Fig. 4.9 shows the block diagram of the proposed GDA-based DFT architecture with
variable length with the Cooley-Turkey decomposition. This architecture consists of
two configurable GDA units for respectively computing the row and column 1-D
8/16/32/64-point DFT, a multiplier for performing the twiddle factor multiplications
serially, and a transpose memory for data transposition. Fig. 4.10 shows the block
diagram more detail with real input.data and complex output data. For efficiently
realizing the twiddle factor multiplications;the:complex number multiplier with serial
manner, such as CORDIC processor or the serial multiplier set, can be a proper choice
combined with DA-based design. In,cyclic convolution formulation, the architecture
in Fig. 4.10 can be redrawn as Fig. 4.11. It is composed of serial multiplication for
preprocessing, GDA computation for “7;" (), and serial multiplication for
post-processing. Each the T;; () block can be configured for the 1-D DFT computation
with different length, where i, j denote the computation with real part of input data
and real part of DFT coefficient (i.e., RR), imaginary part of input data and imaginary
part of DFT coefficient (i.e., /]), real part of input data and imaginary part of DFT
coefficient (i.e., RI), or imaginary part of input data and real part of DFT coefficient
(i.e., IR). In Fig. 4.11, we can see that the output data of 7 () is sequentially
multiplied by the post-processing coefficient of row 1-D DFT, the twiddle factor, and
preprocessing coefficient of column 1-D DFT. Thus we can combine the three
multiplications, and replace with one multiplication only. According to the tradeoff
between word-length of the transpose memory and word-length of the multiplier, as
shown in Fig. 4.12 and Fig. 4.13, this multiplication can selectively be located in front

or real of the transpose memory.

104

x(Nyn, +n,)

G(n,, k) 6(n2,k1)

GDA-based
variable-length
1-D DFT

%

Transpose
memory

GDA-based

T

Ky
WN

A4

variable-length
1-D DFT

Y(kl + leZ)

Fig. 4.9: Block diagram of the proposed variable-length DFT architecture.

Row I-DDFT Twiddle factor

Column 1-D DFT

GDA-based
Variable-length
1-D DFT,

GDA-based
Variable-length
1-D DFT;,

GDA-based
Variable-length
1-D DFTy,

: GDA-based g
. N - . Transpose
P Variable-length e —» o
: 1-D DFT, s : memory
Real Q|
input g |:
S|
3|
Z |
= |
= 1
: GDA-based : i
~—p Variable-length > ?ﬁgﬁ?
: 1-D DFT, :
>
Fig. 4.10: Architecture of 2-D DFT with real input.
Row 1-D DFT Twiddle factor
GDA-based
Variable-length
TRIE() - _ [R—
T e T
GDA-based
Variable-length J
Real T,() 3 8 8
input Serial g g g
multiplier Q g o]
GDA-based = =2 =2
Variable-length c B B
Tu()
Transpose
T M neow]

GDA-based
Variable-length
T

GDA-based
Variable-length
1-D DFT,,

E—

Column 1-D DFT

Complex
output

GDA-based
Variable-length
TRR()

GDA-based
Variable-length

T()

GDA-based
Variable-length

Tp()

GDA-based
Variable-length

T()

o

Complex
input

TNNS/DIAY0D

Fig. 4.11: Architecture design of the 2-D DFT in cyclic convolution formulation.

Real
input

Row 1-D DFT

GDA-based
Variable-length
Trr()

Serial
multiplier

GDA-based
Variable-length
Ty()

GDA-based
Variable-length

Tel)

GDA-based
Variable-length
Ti()

E}#

o

TNNS/OITIOD PIFIN

Column 1-D DFT

Transpose | |

memory

GDA-based
Variable-length

Ter()

GDA-based
Variable-length

Ty()

Transpose
memory

GDA-based
Variable-length

Tuf)

GDA-based
Variable-length
TiR()

s

TTANS/OIAI0D

105

Complex
nput

Fig. 4.12: Version 1 of the reduced architecture of 2-D DFT in cyclic convolution

Real
input

Row 1-D DFT

formulation.

GDA-based
Variable-length

Terl()

Serial
multiplier

GDA-based
Variable-length

Ty()

GDA-based
Variable-length

To()

Transpose
memory

by

GDA-based
Variable-length
Ti()

g,

Transpose
memory

TNINS/OITIOD PIFIN

Column 1-D DFT

GDA-based
Variable-length

Toxl()

GDA-based
Variable-length

7,0

GDA-based
Variable-length

o)

GDA-based
Variable-length

Ti()

s

TANS/OIAN0D

Complex
input

Fig. 4.13: Version 2 of the reduced architecture of 2-D DFT in cyclic convolution

formulation.

For the purpose of performing the variable-length DFT computation with

identical hardware, we adopt the pseudocirculant matrix factorization algorithm to

factorize the cyclic convolution 7j;() in 1-D DFT with different length as the

composition of 8-point cyclic convolutions. For the case of 64-point cyclic

convolution, as shown in Fig. 4.14, the matrix of input data can be decomposed as an

eight by eight blocked matrix. Since each block in the matrix has preserved as an

8-point cyclic convolution, we can allocate the computation of every eight row blocks

into eight 8-point GDAU and sum up the outputs of GDAUSs to have eight outputs of

106

the 64-point cyclic convolution. Observing the matrix form in left side of the Fig. 4.14,
we can see that each computation of eight row blocks with rotated order can be folded
onto the identical eight 8-point GDAUSs. Totally, eight iterations are needed to
compute all the outputs of 64-point cyclic convolution. For the case of 32-point cyclic
convolution, due to it is composed of four by four blocked matrix with
pseudocirculant, as shown in Fig. 4.15, we can compute every eight outputs of the
32-point cyclic convolution by summing up the results of four 8-point cyclic
convolution. With the same amount of GDA computation hardware resource, it needs
two iterations to compute all the 32 outputs of 32-point cyclic convolution. With the
same way, the case of 16-point cyclic convolution can also be composed of two by
two blocked matrix with pseudocirculant. In the proposed design, we have constructed
the hardware with eight 8-point cyclic convolution modules for the computation of
cyclic convolution in the variable-length DFT. This hardware can compute the 64
outputs of 64-point cyclic convolution by eight iterations, the 32 outputs of 32-point
cyclic convolution by two iterations, the 16 outputs of 16-point cyclic convolution by
one-second iteration, and the 8 eutputs ;of-8-point: cyclic convolution by one-eighth
iteration. Thus for the computation.of 64/256/1024/4096-point 1-D DFT, the lengths
of row DFT and column DFT are! respectively 8/16/32/64, and the number of
iterations with the identical hardware is'1/8/64/512.

Blocked Input matrix Blocked Input matrix

. . - o
N fi it @ it @ i @
It 2 8 g
z 5 Z g
2 il 2 i}
g = g g
3] 3 2
8 2
[$] 3

Fig. 4.14: Folding of the computation of each eight row blocks in 64-point cyclic

convolution.

107

Blocked Input matrix . Blocked Input matrix

5 5 g £

5 = - =

2 o } B S £

5 V4 Vi1 k) =5 V3 \ZN V1 V2, ‘S

S &= o g

2 2

= |} = o

— Blocked Input matrix o - Blocked Input matrix -

N < ~ ~

g g g g

> = g 2

] | 5 =
=1 m ’ p L

= 2

5 © 5

=] (o]

= &} = &)

Fig. 4.15: Folding of the computation of each four row blocks in 32-point cyclic

convolution.

With the identical hardware, due -to. the ‘numbers of iterations for the
computations of DFT with different lengths are not the same, the variable-length DFT
design must be worked with different control States. Since the hardware resource in
the proposed design can compute: eight 8-point 1-D DFTs in each iteration, the
64-point 1-D DFT needs only one iteration to compute all the output data in row and
column DFT. For the computation of 256-point 1-D DFT, each of the iterations can be
used for the computation of two 16-point DFTs in each dimension so that 16 16-point
DFT computations need totally eight iterations, as well as 64 iterations needed for
1024-point 1-D DFT and 512 iterations needed for 4096-point 1-D DFT. Due to the
coefficients of 8, 16, 32, and 64-point DFT are different, we use RAM instead of
ROM for replacing the contents of memory needed for computing the variable-length
DFT. The partial products stored in this memory for DA computation can be
downloaded in the initialization phase from the main frame. Since there are thirty-six
memory entries in the 8-point GDAUS, thirty-six write cycles are consumed in each of
the initial phases. Due to the data rate and the length of DFT in a communication
system is fixed while the condition of environment is remained, once for loading
coefficients of the DFT with decided length into the memory of variable-length DFT

core is required. However, if the length of DFT is decided larger than 64, there are

108

required respectively 4, 16, and 64 initial phases for 256-, 1024-, and 4096-point DFT.
All the coefficients of DFTs with different lengths can be stored previously in the low

cost memory of main frame.

Re[Output data] Im[Output data]
A

Input data

Input buffer Pre-processing Computing 7((<%),)

GDA-based
Variable-length
TRR()

GDA-based
Variable-length
Bl — T,()

sdnoib 4ngl
sdnoib OSId

Jorejol a-g ug-1

GDA-based
Variable-length
| Trl)

sdnoib TNINS/O1aY0D

| | GDA-based
1 Variable-length
B I | Tir()

(@)

109

Re[Tnput data] Im[Input data] Re[Output data] Im[Output data]

Computing 7((&%),) Post-processing

L || | | GDA-based
g Variable-length
5 | Trn()
»- —
d 1 [| GDA-based
L Variable-length o
g - T,() o
L Ry
dE A nm o) vy} o)
(@] @ 8 Cc C
«Q lw) m M
» 3 = < [l=} «Q
< =1 c S 3
o Iy - c =
» ° |3 @ 5 5
B g
L GDA-based]
I | Variable-length
oL L Tyl)
> || -
> I GDA-based
Variable-length
.
T | j Tr()
T - —
12
wer

(b)
Fig. 4.16: Detail architecture of (a) the row 1-D DFT with input buffer and (b) the
column 1-D DFT with output buffer.

Fig. 4.16 shows the proposed variable-length DFT design more detail in row stage
and column stage, including input buffer (IBUF), serial multiplier (SMUL),
parallel-in-serial-out (PISO), 1-bit three-dimension (3-D) rotator, variable-length
GDA-based module, and output buffer (OBUF). The length of DFT in each stage can
be configured with 8/16/32/64-point. In the following, we will illustrate detail design

of the modules in the proposed variable-length DFT.

Similar to most of the DA-based designs, Fig. 4.17 (a), (b), and (c) show the
input buffer for serially storing input data, the parallel-in serial-out (P1SO) module for
issuing the input data of DA with word-parallel-bit-serial manner, and the output

buffer for serially outputting the output data.

110

Input data

4_

dNgdl

94Nndl |4

04Ngl fg— - - - -t

(a)

Output data

,dnolb
0oSlId

94n€g0 |—p| zang0 |—

9dnolb
0OSlId

[0 o (o 1 T P

odnolb
0OSlId

(b) (c)

Fig. 4.17: Detail design of (a) input buffer groups, (b) PISO groups, and (c) output
buffer groups in the proposed 1-D DFT architecture.

111

On the consideration of input data permutation for GDAUSs, according to the
formulation of any-length cyclic convolution in (2.6), the input data of the eight
8-point GDAUSs in each of the iterations is block rotated and in-block rotated. Then a
1-bit rotator is needed for preparing the exact data on the inputs of GDAUSs. Since the
rotator needs to work with different lengths for variable-length DFT, a specific 1-bit
3-D barrel rotator is designed as Fig. 4.18 (a). The mode of 1-bit 3-D rotator can be
decided by three variables for how many bits are rotated in a block, how many blocks
are rotated in cyclic convolution for the chosen length of DFT, and which length of
DFT is chosen. It performs the in-block rotation with 8-bit barrel rotator (BR) in stage
1. For the block rotation, in the stage 2, the barrel rotator group (BRG) with eight
2-bit barrel rotators is used in 16-point DFT in each dimension of the 256-point DFT.
In the stage 3, the barrel rotator group (BRG) with eight 4-bit barrel rotators is used in
32-point DFT in each dimension of the 1024-point DFT. In the stage 4, the barrel
rotator group (BRG) with eight 8-bit'barrel rotators is used in 64-point DFT in each
dimension of the 4096-point DFT. Table 4.11 shows'the condition of BR in each stage
for DFT with the lengths of 64; 256, 1024, and 4096. This specific 1-bit 3-D rotator
design provides to permute the exactidata-on-the inputs of GDAUSs for computation of
the proposed variable-length DFT design.

Table 4.11: Condition of BR in each stage for DFT with the
lengths of 64, 256, 1024, and 4096.

length of DFT | stagel stage2 stage3 stage 4
64 P P P P
256 R R P P
1024 R P R P
4096 R P P R

Note:
1. D denotes the BR works on bypass mode.
2. R denotes the BR works on rotation mode.

112

8 8-bit 8 o 8 o 8 o 8
_> BR » » » _>
2-bit
BRG
8 8-bit 8 o 8 o 8 o 8
_> BR » » » _>
4-bit
BRG
8 > 81;;? 8 > 8 > 8 > L8 >
2-bit
BRG
8 > Sélet 8 > 8 > 8 > 8 >
8-bit
BRG
8 > 8];%11 8 > 8 > 8 > 8 >
2-bit
BRG
8-bit
8 > ; Rl 8 > 8 > 8 > 8 >
4-bit
BRG
8 8-bit 8 o 8 o 8 o 8
_> BR » » » _>
2-bit
BRG
8 > 8;?{“ 8 > 8 > 8 > 8 >
Stage 1 Stage.2 Stage 3 Stage 4

N

B

2-bit

i
fis

,
V
Uit

Vo s N

ORI A
/ .’4'/‘»'% A0 /‘4{)'M’&‘\»‘
el
V:i’l/’%\(\\\‘}\" NN
PR

i
4;l/lAA\\\»

2-bit
BR

%

2-bit
BR

2-bit
BR

(b) (©) (d)

Fig. 4.18: (a) design of the 1-bit 3-D rotator and the routing for (b) 2-bit BRG in stage
2, (c) 4-bit BRG in stage 3, and (d) 8-bit BRG in stage 4.

113

Following the 1-bit 3-D barrel-rotator, with identical hardware, the module with
GDAUs is used to compute all the output data or part of the output data in each of the
iterations for DFT with variable length. As shown in Fig. 4.19, each of the GDAUSs
performs the computation of 8-point cyclic convolution. In the following stage, shown
in Fig. 4.20, an adder-group tree is used to sum up the partial outputs from these
GDAUs for the shortened cyclic convolutions in case of the length of row or column
DFT is larger than eight, where the different dash lines respectively denote the
data-flows in the row or column DFT with different lengths. In each of the iterations
for DFT computation, the numbers of output data computed by the identical
computation resource for the 1-D DFT with lengths of 64/256/1024/4096 are
64/32/16/8. With the limitation of the number of GDAUSs, we place the multiplexers
with different width to select out the different number of output data for the 1-D DFT
with different length.

2 2]

b GDAUT with ACC

‘ | "

oy

GDAU6 with ACC

GDAUS with ACC

‘ | S
G —

GDAU4 with ACC

GDAU3 with ACC

!
{ |

GDAU2 with ACC

[—

GDAUI with ACC

L
do1 dnoi3-10ppy

RV RV RS RS

|

‘ | S
C—

GDAUO with ACC

— B

Fig. 4.19: Detail design of variable-length GDA-based module used for the
computation of 7j;(') in the proposed 1-D DFT architecture.

114

e e St > To
E P —— e > % SMUL group?
> — = >
Adder-group | =+ — g
— > I
| S|
! |
! To
| Sy [P S g g g U i -
1 > - SMUL group6
.- | T - g
Adder-group 41— | _
—> | -
- N | | To
pfisintnieiietuieiuiniel Bl i fro==mmmmos T“““’ - SMUL group$
’ | S >
Adder-group |4 - — — — — — — — . |
— r-—————|=-——-————- "' - T — ™
i : To
“““““““ R g SMUL group4
From the eight GDAUs | il S|
er-group | | g
|] SMUL group3
e R R
' I
Adder-group | — |
] | | To
| I I SMUL group2
T e e B [----mee- >
L, [
Adder-group b W, :
> To
- N l SMUL groupl
--- |
i |
Adder-growp | 1 __ _ &l v o !
— > To
' SMUL group0
e e e e e e e e e e e e e e e e o o o o = = —_————————————————— _>

Fig. 4.20: Data-flow of the adder-group tree follows the GDAUSs in the proposed
variable-length DFT design.

As the formulation mentioned in the chapter 3, the multiplications need for pre-
and post- processing of the 1-D DFT in cyclic convolution. For reducing hardware
cost of the multiplications, we combine the multiplication of pre-processing in row
DFT and the multiplication of post-processing in column DFT with the multiplication
of twiddle-factor processing such that only one multiplier is remained between row
DFT and column DFT. With the feature of serial manner in DA computation, the
complex multiplier with serial manner should be a proper choice for the

multiplication.

odnoib
INNS

Fig. 4.21: Detail design of serial multiplier groups in the proposed 1-D DFT
architecture.

Since the output data is out of-order.in.the row DFT, shown as Fig. 4.22, for the

usage of column DFT, we can reorder these data while writing them into the transpose
memory by using a specific address generator.

From row DFT

To the column DFT

Transpose memory >

Specific address
generator

Fig. 4.22: The transpose memory with the specific address generator

115

116

Design evaluation

Based on the proposed GDA-based 1-D variable length DFT architecture as Fig.
4.16, the number of cycle consumed for computing the 64/256/1024/4096-point DFT

with the 8/16/32/64-point DFT in two dimensions is proportional to O(8"%Y¥= x L),

where N denotes the length of 1-D DFT, and L denotes the word-length of GDA input
data. Referring to the simulation results of the DFT with lengths of 8, 16, 32, and 64,
we can further evaluate the DFT designs with the lengths of 128 (i.e., 8 * 16), 512 (i.e.,
16 * 32), and 2048 (i.e., 32 * 64), respectively. However, since the cycle count
consumed in two stages of 8-point DFT and 16-point DFT in the 128-point DFT
design as well as in the 512- and 2048-point DFT designs, are not the same, we must

take the largest one of the two stages.

We have evaluated the proposed design with UMC 0.18um cell-library. For
fairly compared with the existing long-length and variable-length FFT designs
[67]-[71], we eliminate the factor of,different technology by normalizing all the
design areas with the normalized index [72].as.(4.36). As the simulation result, except
for the advantages of short latency and high hardware utilization efficiency in the
GDA-based design, checked with the hardware cost analysis mentioned above, Table
4.12 also reveals that the power. of*two variable-length DFT realized with the
proposed decomposition approach and GDA design can achieve competitive hardware
cost under the same throughput rate, especially the length of DFT is ranged between
64 and 512. Thus the proposed variable-length DFT can be a more efficient dedicated
design to the application of ADSL system.

Normalized Area = Area (4.36)

(Technolog y/0.18um)?

Table 4.12: Comparison of the existing FFT designs and our DFT design

117

Bidgt [67] Jia [68] Kuo [69] Pao [70] Lin [71] ours
DFT size 8192 8192 64 ~ 2048 512 ~ 8192 512~2048 64 ~ 4096
Radix-4 Cooly-Turkey/
Algorithm |Radix-4 FFT Radix-2/4/18 ~ \ \{FET DHT-baseq R2dix-2/4/8 cyclic convolution/
FFT FET FFT Pseudocirculant
factorization/GDA DFT
Word-length 12 12 16 22 12 20
(bit)
Process (um) 0.5 0.6 0.35 0.25 0.35 0.18
Clock rate
(MH2) 20 20 60 35 45 85
Throughput 1 1 1 1 1 5.33 ~ 0.67
(sample/cycle)
Latency (cycle) N N N N N 60
Area (mm?) 100 107 12.25 25 13.05 7.79
Normalized area 12.96 13.87 3i24 12.96 3.45 7.79
Normalized 12.96 13.87 3.24 12.96 3.45 1.46 ~ 11.62

area/throughput

118

Chapter 5
Conclusion

In this chapter, we summarize with some useful results and contributions

presented in this dissertation, and point out some future research directions.
5.1 Contributions

In this dissertation, an entire bit-level hardware-efficient group distributed
arithmetic (GDA) design approach has been presented for Discrete Sinusoidal
transform (DSST’s). A new hardware-efficient GDA datapath and the essential
partitioning schemes are involved in the development of the proposed new DA
design approach for long-length cyclic convolution of the DSST’s, where
Agarwal-Cooley algorithm and Pseudocirculant matrix factorization algorithm are
respectively adopted for the cyclic convolution with prime length and non-prime
length. Furthermore, for the long-length DSST"’s designs, we combine the proposed
design approach with the fast transform algorithms, such as Cooley-Tukey algorithm

and prime factor algorithm, to achieve the low hardware cost.

In the proposed bit-level design approach, we adopt the way of distributed
arithmetic (DA) computation and exploit'the'good features of the cyclic convolution
to facilitate an efficient DA realization of 1-D N-point DSST,s using a very small
memory module, a barrel shifter, and N accumulators. The proposed GDA design is
achieved by re-arranging the contents of the memory into few groups such that all
the elements in a group can be accessed simultaneously in accumulating all the

DSST’s outputs for increasing the memory utilization. This design reveals that the

complexity of DA design is improved from 0(2") to 0(2""%" + N +2).

For the purpose of further reducing the hardware cost in DSST’s design, we
exploit the symmetrical property of DFT coefficients with the proposed GDA design
approach such that the DFT requires only half the contents to be stored, which
further reduces the memory size by a factor of two. For the DCT design, we exploit
the symmetry property of DCT coefficients, merge the elements in the matrix of
DCT kernel, separate the kernel of DCT to be two perfect cyclic forms, and partition

the content of memory into groups to facilitate an efficient realization of 1-D N-point

119

DCT kernel using (N-1)/2 adders or substractors, one small memory module, a
(N-1)/2-bit barrel shifter, and (N-1)/2+1 accumulators. Compared with the existing
systolic array designs and DA-based designs, the realizations of 1-D DFT, DHT, and
DCT with the proposed GDA-based design approach reduce the delay-area product
more than 29% according to Avanti 0.35 um CMOS cell library. However, observing
the DCT and DHT in cyclic convolution algorithm with non-prime length, there
exists the inherent overhead for handling the issue of numerical instability such that

the proposed design approach is not efficient for design with this case.

Finally, combining the proposed GDA design approach with the suggested
long-length transform decomposition methodology, a variable-length DFT design has
been proposed and implemented in our studies for the popular application of DFT
with the length of power of two in the communication system. The proposed design
can flexibly be used to compute the 1-D 64/128/256/512/1024/2048/4096-point DFT
by cascading the 1-D short length DFTs and summing up the partitioned short length
cyclic convolutions for each stage+of the cascaded DFT. Besides, the proposed
hardware efficient design approach: can_be applied to the design with any length
beyond power of two. Compared with the-existing-long-length and variable-length
FFT design, in addition to the advantages-of short latency and high hardware
utilization efficiency, the proposed power of two variable-length DFT design can

achieve competitive hardware cost under the same throughput rate.
5.2 Future Research Directions

The presented GDA design approach involves cyclic convolution, its
partitioning scheme, and hardware efficient GDA implementation. Since the linear
convolution and correlation own similar characteristics to cyclic convolution, if any
DSP algorithm can be expressed as cyclic convolution, we can apply the proposed
GDA design approach to achieve efficient hardware cost for applications.

On the power consumption point of view, with the approach of address
grouping in the proposed GDA design, we will further explore how to decide the set
of seed partial products for groups in the memory module of GDA design to have
optimal transition activity on the bit-line of memory and achieve lower power
consumption. However, since the optimal arrangement of these seed partial products

depends on the characteristic of image sequences as well as the distribution of input

120

data, there should exist an optimal arrangement of seed partial products for each kind

of image sequences.

For the application of prime-length DCT, since the prime length cyclic
convolution DCT algorithm has less overhead in the pre- and post- processing, the
GDA-based variable-length DCT design should be an alternative hardware-efficient
DA solution for the shape adaptive discrete cosine transform (SA-DCT) in MPEG-4
codec application. However, since there exist more overhead in non-prime length
cyclic convolution DCT, this part of realization in SA-DCT must be combined with

the existing DA design or the other efficient design.

Based on the derivation of DSST’s in cyclic convolution, a unified GDA-based
design of DSST’s should be a considerable approach for the hybrid system with the
requirements of multimedia and communication such as the portable devices. With a
commonly used memory module in the GDA design, we can preload the
corresponding partial products, and configure the design with different data flow for
computations of the involved DSST’s. Actually; with the acceptable overhead in
cyclic convolution algorithm, a unified DFET/IDET should be the possible design for
communication applications. However, for a long time, the approaches of general
purpose design and dedicated design have been the traded-off between flexibility and

hardware cost.

121
Bibliography

[1] T. M. Pytosh and A. M. Magnasi, “A new parallel 2-D FFT architecture,”
Proc. ICASSP1990, pp. 905-908, 1990.

[2] J. Choi and V. Boriakoff, “A new linear systolic array for FFT computation,”

IEEE Transaction on Circuits and Systems-1I: Analog and Digital Signal
Processing, Vol. 39, pp. 236-239, April 1992.

[3] J. You and S. S. Wong, “Serial-parallel FFT array processor,” I[EEE
Transaction on Signal Processing, Vol. 41, pp. 1472-1476, March 1993.

[4] V. Boriakoff, “FFT computation with systolic arrays, a new architecture,”

IEEE Transactions on Circuits and Systems II: Analog and Digital Signal
Processing, Vol. 41, pp. 278-284, April 1994,

[5] H. E. Shousheng and M. Torkelson, “A new approach to pipeline FFT
processor,” Proc. IPPS1996, pp. 766—770,1996.

[6] H. T. Kung, “Why systolic architectures?” Computer Magazines, 15, pp.
37-45, Jan. 1982.

[7] L. W. Chan and M. Y. Chen,”“A new systolic array for discrete Fourier

transform,” IEEE Transactions on Acoustics, Speech, and Signal Processing,
36, pp. 1665-1666, Oct. 1988.

[8] J. A. Beraldin, T. Aboulnasr, and W. Steenaart, “Efficient one-dimensional
systolic array realization of the discrete Fourier transform,” IEEE Transactions
on Circuits and Systems, Vol. 36, No. 1, pp. 95-100, Jan. 1989.

[9] E. Chan and S. Panchanathan, “A VLSI architecture for DFT,” Proc. the 36th
Midwest Symposium on Circuits and Systems, Vol. 1, pp. 292-295, 1993.

[10] N.R. Murthy and M. N. S. Swamy, “On the real-time computation of DFT and
DCT through systolic architectures,” IEEE Transactions on Signal Processing,
Vol. 42, No. 4, pp. 988-991, Apr. 1994.

[11] W. H. Fang and M. L. Wu, “An efficient unified systolic architecture for the
computation of discrete trigonometric transforms,” Proc. ISCAS1997, Vol. 3,
pp. 2092-2095, 1997.

122

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

C. H. Paik and M. D. Fox,”Fast Hartley transform for image processing,”
IEEE Transactions on Med. Imaging, Vol. 7, No. 6, pp. 149-153, 1988.

P. Duhamel and M. Vetterli, “Improved Fourier and Hartley transform
algorithms: application to cyclic convolution of real data,” IEEE Transactions
on Acoustics, Speech, and Signal Processing, Vol. ASP-35, No. 6, pp.
818-824, 1987.

R. N. Bracewell, “Discrete Hartley transform,” J. Opt. Soc. Amer., \Vol.73,
No.12, pp. 1832-1835, 1983.

R. N. Bracewell, “The fast Hartley transform,” Proc. IEEE, Vol. 72, No. 8, pp.
1010-1018, 1984.

J. A. C. Bingham, “Multicarrier modulation for data transmission: An idea

whose time has come,” IEEE Communications Magazine, pp. 5-14, May 1990.

J. S. Chow, J. C. Tu, and J. M. Cioffi, “A discrete multi-tone transceiver
system for HDSL applications,” [EEE tJournals on Selected Areas and
Communications, Vol. 9, pp. 895-908,-Aug. 1991.

C. L. Wang and C. H. Chang, “A Novel DHT-based FFT/IFFT Processor for
ADSL Transceivers,” Proc, /EEE International Symposium on Circuits and
Systems, Vol. 1, pp. 51-54, 1999,

C. L. Wang and C. H. Chang, “A DHT-based FFT/IFFT Processor for VDSL
Transceivers,” Proc. IEEE International Conference on Acoustics, Speech, and
Signal Processing, Vol. 2, pp. 1213-1216, 2001.

C. L. Wang, C. H. Chang, J. L. Fan, and J. M. Cioffi, "Discrete Hartley
transform based multicarrier modulation,” Proc. IEEE International

Conference on Acoustics, Speech, and Signal Processing, Vol. 5, pp.
2513-2516, 2000.

H. Bogucka, “Effective implementation of the OFDM/CDMA base station
transmitter using joint FHT and IFFT,” Proc. IEEE Workshop on Signal
Processing Advances in Wireless Communications, pp. 162-165, 1999.

K. J. R. Liu and C. T. Chiu, "Unified parallel lattice structures for

time-recursive discrete cosine/sine/Hartley transforms,” IEEE Transactions on

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

123

Acoustics, Speech, and Signal Processing, Vol. 41, No. 3, pp. 1357-1377,
March 1993.

S. B. PAN and R. H. Park, "Unified Systolic Arrays for computation of
Discrete Hartley Transform,” IEEE Trans. on Circuits and Systems Video
Technology, Vol. 7, No. 2, pp. 413-419, Apr. 1997.

J. H. Hsiao, L. G. Chen, T. D. Chiueh, and C. T. Chen, “Novel systolic array
design for the discrete Hartley transform with high throughput rate,” Proc.
IEEE International Conference on Circuits and Systems, Chicago, IL, U.S.A,
pp. 1567-1570, 1993.

J. 1. Guo, C. M. Liu, and C. W. Jen, ”A novel CORDIC-based array
architecture for the multi-dimensional discrete Hartley transform,” IEEE
Transactions on Circuits and Systems, Vol. 42, No. 5, pp. 349-355, 1995.

S. P. Kumar and K. M. M. Prabhu, “Novel CORDIC-based systolic arrays for
the DFT and the DHT,” Proci'dsia’High Performance Computing on the
Information Superhighway; pp.547-551; 1997.

A. S. Dhar and S. Banerjee, “An array architecture for fast computation of
discrete Hartley transform,” /[EEE-Transactions on Circuits and Systems, VOI.
38, No. 9, pp. 1095-1098, 1991.

W. H. Fang and J. D. Lee, “Efficient CORDIC-based systolic architectures for
the discrete Hartley transform,” IEE Proceedings, Computers and Digital
Techniques, Vol. 142, No. 3, pp. 201-207, May 1995.

L. W. Chang and S. W. Lee, “Systolic arrays for the discrete Hartley
transform,” IEEE Transactions on Signal Processing, Vol. 39, No. 11, pp.
2411-2418, 1991.

J. I. Guo, C. M. Liu, and C. W. Jen, “A novel VLSI array design for the
discrete Hartley transform using cyclic convolution,” Proc. IEEE International

Conference on Acoustics, Speech, and Signal Processing, Adelaide, SA,
Australia, pp. 11501-11504, 1994.

J. I. Guo, “A New DA-Based Array for One Dimensional Discrete Hartley
Transform,” Proc. 2001 IEEE International Symposium on Circuits and
Systems, Sydney, Australia, pp .1IV662-1V665, May 2001.

124

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

J. 1. Guo, “An Efficient Design for One Dimensional Discrete Hartley
Transform Using Parallel Additions,” [EEE Transactions on Signal
Processing, Vol. 48, No. 10, pp. 2806-2813, Oct. 2000.

J. I. Guo, C. M. Liu, and C. W Jen, “The efficient memory-based VLSI array
designs for DFT and DCT,” [EEE Trans. Circuits Syst. II, Vol. 39, pp.
723-733, Oct. 1992.

S.A. WHITE, “Applications of distributed arithmetic to digital sequence
processing: a tutorial review,” IEEE ASSP Magazines, Vol. 6, No. 3, pp. 5-19,
1989.

J. P. Choi, S. C. Shin, and J.G. Chung, “Efficient ROM size reduction for
distributed arithmetic,” Proc. ISCAS2000, pp. 1161-1164, May 2000.

K. Nourji and N. Demassieux, “Optimal VLSI Architecture for Distributed
Arithmetic-based Algorithm,” ICASSP1994, Vol. 2, pp. 509-512, 1994,

M. T. SUN, T. C. Chen, and./A: M. Gotlieb, “VLSI implementation of a 16 x
16 discrete cosine transform,} IEEE-Transactions on Circuits and Systems,
CAS-36, pp. 610-617, Apr. 1989.

T. S. Chang, J. I. Guo, and-C. W.Jen;**Hardware Efficient DFT Designs with
Cyclic Convolution and Subexpression* Sharing,” [EEE Transactions on
Circuits and Systems 11, Vol. 47, No. 9, pp. 886-892, Sep. 2000.

T. S. Chang, C. Chen, and C. W. Jen, “New distributed arithmetic algorithm
and its application to IDCT,” IEE Proc. on Circuits, Devices, and Systems,
Vol. 146, No. 4, pp. 159-163, 1999.

J. 1. Guo, “An Efficient Parallel Adder Based Design for One Dimensional
Discrete Fourier Transform,” Proceedings of the National Science Council,
ROC, Part A, Vol. 24, No. 3, pp. 195-204, May 2000.

R. C. Agarwal and J. W. Cooley, “New Algorithms for Digital Convolution,”

IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol.
ASSP-25, pp. 392-410, Oct. 1977.

M. Teixeira and D Rodriguez, “A class of fast cyclic convolution algorithms
based on block pseudocirculant,” IEEE Signal Processing Letters, Vol. 2, No.
5, pp. 92-94, May 1995.

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

125

AVANT *0.35 micron 3.3-volt high performance standard cell library,” 1996.

A. P. Chandrakasan and R. W. Brodersen, “Minimizing power consumption in
digital CMOS circuit,” Proceeding of the IEEE, Vol. 83, No. 4, pp. 498-523,
April, 1995.

T. Xanthopoulos and A. P. Chandrakasan, “A low power DCT core using
adaptive bandwidth and arithmetic activity exploiting signal correlations and
quantization,” [EEE Journal of Solid-State Circuits, Vol. 35, No. 5, pp.
740-750, 2000.

H. K. Garg, “Digital signal processing algorithms - number theory,
convolution, fast fourier transforms, and application,” CRC Press, 1998.

J. E. Volder, “The CORDIC trigometric compution technique,” IRE Tran.
Electron. Comput., Vol. EC-8, pp. 330-334, Sep. 1959.

J. S. Walther, “A unified algorithm for elementary functions,” AFIPS Spring
Joint Comput. Conf., pp. 379-385, 1971.

K. Hwang, “Computer Arithmetic principles,-architecture, and design,” John
Wiley & Sons, Inc., New York, 1979.

A. V. Oppenheim and R<W. “Schafer, “Discrete-time Signal Processing,”
Prentice-Hall, Englewood Cliffs,NJ, U.S.A, 1989.

Y. H. Chan and W. C. Siu, “Generalized approach for the realization of
discrete cosine transform using cyclic convolution,” Proc. IEEE International

Conference on Acoustics, Speech, and Signal Processing, Minneapolis, MN,
U.S.A, Vol. 3, pp. 11277-111280, 1993.

J. 1. Guo, "Efficient parallel adder based design for one dimensional discrete
cosine transform," IEE Proceedings Circuits, Devices, and Systems, Vol. 147,
No. 5, pp. 276-282, Oct. 2000.

J. H. Mcclellan, and C. M. Rader, “Number Theory in Digital Signal
Processing,” Prentice-Hall, 1979.

B. Arambepola, “Discrete Fourier transform processor based on the
prime-factor algorithm,” IEE Proc., 130, Pt. G, No. 4, pp. 138-144, 1983.

126

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

H. Lim, and E. E. Swartzlander, “Multidimensional systolic arrays for the
implementation of discrete Fourier transforms,” IEEE Transactions on Signal
Processing, Vol. 47, No. 5, pp. 1359-1370, May 1999.

C. S. Burrus, “Index mappings for multidimensional formulation of the DFT
and convolution,” [EEE Transactions on Acoustics, Speech, and Signal
Processing, ASSP-25, pp. 239-242, 1977.

C. S. Burrus and T. W. Parks, “DFT/FFT and Convolution Algorithms,” John
Wiley & Sons, 1985.

H. V. Sorensen, D. L. Jones, C. S. Burrus, and M. T. Heideman, “On
Computing the Discrete Hartley Transform,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, Vol. ASSP-33, pp. 239-242, Oct. 1985.

C. Chakrabarti and J. Ja’Ja’, “Systolic Architectures for the Computation of the
Discrete Hartley and the Discrete Cosine Transforms Based on Prime Factor
Decomposition,” [EEE Transaétions “on Computer, V0l.39, No.11, pp.
1359-1368, Nov. 1990.

B. G. Lee, ”Input and-output mappings for a prime-factor-decomposed
computation of discrete cosine:transformy” IEEE Transactions on Acoustics,
Speech, and Signal Processing,NMol. 37,.N0."2, pp. 237-244, Feb. 1989

J. McClellan and C. M. Rader, “There is something much faster than the fast

Fourier transform,” Seminar Notes, Oct. 21, 1976.

C. H. Chang, C. L. Wang, and Y. T. Chang, "Efficient VLSI architectures for
fast computation of the discrete Fourier transform and its inverse,” IEEE
Transactions on Signal Processing, Vol. 48, No. 11, pp. 3206-3216, Nov.
2000.

S. F. Hsiao and W. R. Shiue, ” Design of low-cost and high-throughput linear
arrays for DFT computations: algorithms, architectures, and implementations,”
IEEE Transactions on Circuits and Systems—II: Analog and Digital Signal
Processing, Vol. 47, No. 11, pp.1188-1203, Nov. 2000.

L. R. Rabiner and B. Gold, Theory and Application of Digital Signal

Processing, Prentice-Hall, Inc. 1975.

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

127

E. H. Wold and A. M. Despain, “Pipeline and Parallel pipeline FFT processors
for VLSI implementation,” IEEE Transaction on Computers, VVol. C-33, No. 5,
pp. 414-426, 1984.

S. He and M. Torkelson, “Designing Pipeline FFT Processor for OFDM
(de)Modulation,”1998 URSI International Symposium on Signals, Systems,
and Electronics, pp. 257 -262, 1998.

E. Bidet, D. Castelain, C. Joanblang, and P. Senn, “A fast single-chip
implementation of 8192 complex point FFT,” IEEE Journal of Solid-State
Circuits, Vol. 30, No. 3, pp. 300-305, Mar. 1995.

L. Jia, “A new VLSI-oriented FFT algorithm and implementation,” /IEEE ASIC
Conference, pp. 337-341, 1998.

J. C. Kuo, C. H. Wen, C. H. Lin, and A. Y. Wu, “VLSI Design of a
Variable-Length FFT/IFFT Processor for OFDM-based Communication
Systems,” in Special Issue om!“Signal.Processing for Broadband Access

Systems: Techniques and -Implementations,” EURASIP Journal on Applied
Signal Processing, No. 13, pp: 1306-1316, Dec-2003

T. C. Pao, C. C. Chang;. and :CakrWang, “A variable-length DHT-based
FFT/IFFT processor for *MDSL/ADSL* systems,” [EEE Asia-Pacific
Conference on Circuits and Systems, pp. 381-384, 2004.

Y. T. Lin, P. Y. Tsai, and T. D. Chiueh, “Low-power variable-length fast
Fourier transform processor,” IEE Proc. Comput. Digit. Tech., Vol. 152, No. 4,
pp. 499-506, 2005.

B. M. Bass, “A low-power high performance, 1024-point FFT processor,”
IEEE Journal of Solid-State Circuit, Vol. 34, No. 3, pp. 380-387, Mar. 1999.

VITA

Hun-Chen Chen was born in Taiwan in 1961. He received the B.S. and M.S degrees,
all in electronics engineering, from National Taiwan Technology University, and
National Chiao-Tung University, Taiwan, in 1990 and 1998, respectively. He is
currently pursuing the Ph.D. degree in low-cost bit-level DSP VLSI design and its
applications to multimedia and communication systems. His research interests include

VLSI digital signal processing and computer architecture.

	Chapter 1 Introduction
	1.1 Motivation
	1.2 Current status of DSST’s designs
	1.3 Review of DA-based designs
	1.4 Overview of the proposed design approach
	1.5 Considerations to the DSST’s designs
	1.6 Outline of this dissertation
	Chapter 2 The Group Distributed Arithmetic (GDA) Design Approach
	2.1 Algorithm point of view
	2.2 Architecture point of view
	2.2.1 Memory-based Group Distributed Arithmetic design
	2.2.2 Analysis of Barrel shifter
	2.2.3 Evaluation of hardware cost

	2.3 Consideration of low power design
	2.3.1 Analysis of transition activity
	2.3.2 Address morphing approach
	2.3.3 Exploration of dynamic range of the input data
	2.3.4 Low Power Design with pre-computation scheme
	2.3.5 Evaluation of power cost

	2.4 Partitioning of cyclic convolution
	2.4.1 Agarwal-Cooley algorithm
	2.4.2 Pseudocirculant matrix factorization algorithm
	2.4.3 Long length cyclic convolution design
	2.4.4 Evaluation of long length cyclic convolution GDA design

	Chapter 3 GDA-based Design for 1-D DSST’s
	3.1 Design of 1-D DFT
	3.1.1 Cyclic Convolution Formulation
	3.1.2 CORDIC (CO-ordinate Rotation Digital Computer)
	3.1.3 Symmetry exploration of the DFT in cyclic convolution
	3.1.4 Architecture design and evaluation

	3.2 Design of 1-D DHT
	3.2.1 Cyclic Convolution Formulation
	3.2.2 Numerical stability
	3.2.3 Symmetry exploration of the DHT in cyclic convolution
	3.2.4 Architecture design and evaluation

	3.3 Design of 1-D DCT
	3.3.1 Cyclic Convolution Formulation
	3.3.2 Numerical stability
	3.3.3 Architecture design and evaluation
	3.3.4 Chip implementation

	Chapter 4 Long-length DSST’s designs
	4.1 Decomposition of long-length DSST’s
	4.1.1 Cooly-Tukey Algorithm
	4.1.2 Prime Factor Algorithm
	4.1.3 Rader’s Algorithm

	4.2 Long length DHT Design and Evaluation
	4.3 Variable-length DFT Design to Communication System Application
	4.3.1 Overview of Communication system
	4.3.2 Hardware Cost Analysis
	4.3.3 GDA-based Variable Length DFT Design and Evaluation

	Chapter 5 Conclusion
	5.1 Contributions
	5.2 Future Research Directions

	 Bibliography

