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摘要 

離散弦轉換已被廣泛的應用於數位信號處理，諸如: 影像處理、數位濾波器

及數位通訊等...。於低成本架構設計的研究，文獻中雖已有許多的設計，但都因

只考慮到係數的常數特性而未真正有效的著眼於不同演算法中這些係數的數值

特性，因此高效能低成本離散弦轉換之架構設計仍有極大的著墨空間。對此，本

論文提出了一低記憶體成本之位元層次設計方法並應用於高效能低成本之離散

弦轉換架構設計上。 

本論文以迴旋疊積離散弦轉換演算法為基礎，同時利用分散式算數將輸入資

料分解至位元層次進而去除潛在的冗餘而提出名為群組式分散式算數之低記憶

體成本之位元層次設計方法；對於一個 N 點的迴旋疊積運算，所提出之新的分

散式算數設計方法僅僅使用了一組遠小於傳統式分散式算數設計方法的記憶

體、一組 N 位元之移位暫存器、及 N 個累加器。跟據輸入資料之迴旋特性，我

們重新安排了分散式算數架構中記憶體的內容進而消除了原先儲存於記憶體中

重複出現之係數和而達到降低硬體成本之目的。與傳統之分散式算數設計比較，

所提出之群組式分散式算數設計可使記憶體成本由 )2( NO  降至 )2( 2log NNO − ；若

考慮額外付出的硬體代價，硬體成本則由 )2( NO  改善至 )22( 2log ++− NO NN 。

此外，為了使所提出之群組式分散式算數設計方法可應用於長點數之設計，群組

式分散式算數之分割問題是在提出一種新的分散式算數方法時必須面對的。對質

數點數及非質數點數我們分別結合了 Agarwal-Cooley 及 Pseudocirculant matrix 

factorization 等分割演算法進行迴旋疊積之分割，這樣的結合使得群組式分散式

算數設計方法在低成本長點數的迴旋疊積設計上一併得到了解決方案，也進而提

升了此二分割演算法在實際應用上之價值。 

在離散弦轉換的實現上，為使能夠更進一步降低硬體成本，在離散傅利葉轉



 

換的設計中我們進一步利用了其中係數之對稱性，使得在群組式分散式算數之離

散傅利葉轉換設計上可再降低一半的記憶體成本。而在離散餘絃轉換的設計中，

由於迴旋疊積的不完美，為使群組式分散式算數方法能順利的應用於離散餘絃轉

換的設計之中，我們亦利用了離散餘絃轉換中係數之對稱性將原來的迴旋疊積演

算法轉換成一完美的迴旋疊積演算法，進而使得一個低成本的群組式分散式算數

離散餘絃轉換架構得以實現，這樣的一個處理也使得群組式分散式算數在離散餘

絃轉換的實現上亦減少了一半的記憶體成本。與現存的心脈式陣列架構及其他分

散式算數架構之離散絃轉換設計比較，所提出之群組式分散式算數架構可節省超

過 29% 的延遲時間-硬體成本乘積值。 

考慮在通訊系統上的應用，本研究最後嘗試使用所提出之低硬體成本群組式

分散式算數設計方法來實現長點數且為可變點數之二的次方長度之離散傅利葉

轉換。我們使用 Cooley-Tukey 演算法先對離散傅利葉轉換進行分解，再使用

pseudocirculant matrix factorization 演算法對分解後的離散傅利葉轉迴旋疊積式

進行進一步的分割，使得一長點數的問題仍可利用低硬體成本之群組式分散式算

數加以實現。所提出之以群組式分散式算數設計為基礎的可變點數離散傅利葉轉

換架構可適用於 64/128/256/512/1024/2048/4096 等長度之離散傅利葉轉換。此

外，所提出之架構亦適用於任意長度之離散傅利葉轉換實現。與現存的長點數及

可變點數 FFT 架構比較，除了潛在延遲較短及高硬體使用率的優點外，在單位

產出率下，當長度小於 256 時，本架構可節省超過 9.6% 的硬體成本；因此，

所提出的是一個具相當競爭力的硬體架構實現。除了上述有關離散弦轉換的應用

外，本論文所提出之設計方法亦適用於任何有關迴旋運算的數位信號處理方面的

應用上。 
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Abstract 
The Discrete Sinusoidal transform (DSST’s) have been widely used in many 

digital signal processing applications such as image processing, digital filtering, 
digital communication, and etc. Although many designs of the DSST’s have been 
proposed in the literatures, their designs are still not efficient enough since they 
exploit only the constant property of the transform coefficients without considering 
the numerical property of these coefficients in the reformulated algorithms to further 
optimize the hardware cost. This dissertation proposes a novel bit-level 
hardware-efficient group distributed arithmetic (GDA) design and its applications for 
Discrete Sinusoidal transform (DSST’s) designs. 

In the proposed GDA design approach, first we formulate the algorithm of 
DSST’s into cyclic convolution form in algorithm level. Then we use the distributed 
arithmetic to decompose the input data into bit-level in architecture level. Thus, the 
data redundancy due to the cyclic convolution can be efficiently removed within the 
bit-level input context to facilitate a hardware efficient DA realization. The proposed 
GDA approach rearranges the contents of DA memory according to its cyclic property 
such that redundancy of the contents can be eliminated and only a few groups of data 
are needed. Thus, compared with the conventional DA design, the memory cost of the 
proposed GDA design can be reduced from )2( NO  to )2( 2log NNO − , and accounting 
with the necessary overhead, the overall complexity is improved from )2( NO  to 

)22( 2log ++− NO NN . To further extend its applications to long length designs, we 
further combine the Agarwal-Cooley algorithm and Pseudocirculant matrix 
factorization algorithm. This can partition the long length cyclic convolution into 
short ones while can still maintain its cyclic property, which avoids the non-cyclic 
problem of direct partitioning. Thus the proposed GDA design can efficiently be 



 

applied to realize each of the shortened cyclic convolution blocks to achieve low 
hardware cost. 

The proposed GDA design approach has been applied successfully to the DFT, 
DHT and DCT designs. For DFT design, we further combine the symmetrical 
property of the DFT coefficients with the proposed GDA design approach such that 
this design requires only half the contents to be stored. This further reduces the 
memory size by a factor of two. For the DCT design, in addition to the symmetry 
property of DCT coefficients, we further reformulate the non-cyclic DCT kernel into 
two perfect cyclic forms such that the DCT can be implemented by the GDA design 
approach with less hardware of (N-1)/2 adders or substractors, one much small 
memory module, a (N-1)/2-bit barrel shifter, and (N-1)/2+1 accumulators. Compared 
with the existing systolic array designs and DA-based designs, the realizations of 1-D 
DFT, DHT, and DCT with the proposed GDA design approach reduce the delay-area 
product more than 29% according to a 0.35 um CMOS cell library. 

In addition to the prime length design, we also apply the GDA approach to the 
long length power-of-two DFT design commonly used in the communication system. 
We combine the proposed hardware efficient GDA approach with the Cooley-Tukey 
algorithm on DFT decomposition, and pseudocirculant matrix factorization algorithm 
on cyclic convolution partitioning to facilitate the long- and variable-length DFT 
design with low hardware cost. The proposed design can be flexibly used to compute 
the 1-D 64/128/256/512/1024/2048/4096-point DFT by cascading two 1-D short 
length DFTs and summing up the partitioned short length cyclic convolutions for each 
stage of the cascaded DFT. Besides, the proposed hardware efficient design approach 
can also be adopted in the design with the length beyond power of two. Compared 
with the existing long-length and variable-length FFT design, in addition to the 
advantages of short latency and high hardware utilization efficiency, under the same 
throughput rate, the proposed variable-length DFT can be a competitive design, and 
save the hardware cost more than 9.6% while the transform length is smaller than 256. 
In summary, the presented GDA-based design approach provides a solution to 
efficiently implement not only the DSST’s but also the DSP applications involving 
convolution and correlation. 
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Chapter 1  
Introduction 
 

In this chapter, we illustrate the motivation, current status of DSST’s designs, 

review of the existing DA-based designs, overview of the proposed memory efficient 

bit-level design approach, considerations to the DSST’s designs, and outline of this 

dissertation. The details of the proposed design approach and associated advantage as 

well as the application in DSST’s will illustrate in the following chapters.  

1.1 Motivation 

The Discrete Sinusoidal transforms (DSST’s), including discrete Fourier 

transform (DFT), discrete Hartley transform (DHT), and discrete cosine transform 

(DCT), have been widely used in many digital signal processing applications such as 

image processing, digital filtering, digital communication, etc. There are two main 

solutions for realizing the high complexity of the DSST’s in real-time. One is based 

on the fast algorithms that aim at reducing the complexity of DSST’s to speed up the 

computation. The other is to directly realize the DSST’s formulations or their 

reformulations, such as the convolution, with hardware for accelerating the DSST’s 

computation. 

The designs with fast algorithms are attractive for low computational complexity. 

However, hardware design of the algorithm is communication intensive and 

computation intensive to complicate the realizations of controller and arithmetic 

operation. In addition, most of the designs with fast algorithms exploit a butterfly 

datapath and a global memory in storing all of input/output data as well as the 

intermediate results. The mass data access from the global memory wastes a large 

percentage of power in this kind of designs. Besides, the cascaded structure in the fast 

algorithm makes the designs have poor numerical accuracy such that longer data word 

length in the datapath is needed. This fact will reduce the low complexity advantages 

of the fast algorithm and thus increase the hardware cost of the designs with fast 

algorithm, especially in the design with the length of non-power of two. 

On the designs with direct manner, many existing architectures, such as the 

systolic array, are still severely suffered from large hardware cost because most of the 
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existing designs use area-consuming multipliers as the fundamental computing 

elements. Besides, these designs are not efficient enough since they only exploit the 

constant property of the transform coefficients without considering the possibility on 

further hardware optimization. Thus, efficient hardware design of the DSST’s is still a 

challenging problem due to its high computational complexity and the requirement of 

real-time processing. 

The other popular architecture based on the distributed arithmetic (DA) has been 

adopted in DSP applications. In the case of short length, with less hardware cost, the 

memory-based DA design can instead of area-consuming multiplier for the 

computation of multiple-in-multiple-out (MIMO) inner product. Thus, trading the 

required performance, the DA technique shall be a hardware efficient method for the 

realization with direct manner. Combining with the good feature of DA, we explore 

the existing DSST’s algorithms to develop a hardware efficient DA design approach 

for real-time realization of the main modules in the multimedia and communication 

systems. 

1.2 Current status of DSST’s designs 

 In this subsection, we will illustrate the current status of DSST’s designs with 

fast algorithms and the direct manner respectively. 

For the DFT designs, the designs [1]-[5] exploited the feature of low computation 

complexity in fast Fourier transform (FFT) algorithms to achieve the goal of reducing 

the number of computation. However in these design, the global interconnection 

usually complicates the realization of controller. Since most of the FFT-based designs 

exploit a butterfly datapath and a global memory in storing all of input/output data as 

well as the intermediate results, the mass data access from the global memory wastes 

a large amount of power. Besides, the cascaded structure of FFT algorithm makes 

these designs have poor numerical accuracy such that longer data word-length in the 

data-path is needed. This fact will reduce the low complexity advantages of the FFT 

algorithm and thus increase the hardware cost of the FFT-based designs. On the 

exploration of hardware solution, the systolic array designs for DFT [6]-[11] were the 

major trend of realizing DFT in the past decades due to the promising VLSI features 

of modularity, locality, and regularity. However, these designs are still severely 

suffered from large hardware cost because most systolic array designs for DFT use 
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area-consuming multipliers as the fundamental processing elements (PEs). 

For the Hartley transform (DHT) designs, since it is a good alternative to the 

discrete Fourier transform (DFT) for its real-number operations [12][13], the discrete 

Hartley transform (DHT) [14][15] also plays an important role in many DSP 

applications. There are many high-speed communication applications [16]-[21] that 

address the use of dedicated hardware designs for the DHT computation. For instance 

of the discrete multitone modulation (DMT)-based ADSL transceiver realization, the 

modulator and demodulator need to respectively compute the DFT and IDFT. The 

DFT and IDFT computation can be realized effectively by using DHT and IDHT 

computation for its inherent real-number operations [14]-[15]. The efficiency of using 

DHT to compute the DFT/FFT becomes more apparent in the applications 

encapsulating real input data than those encapsulating the complex input data. Many 

hardware implementations of the DHT have been proposed, including 

multiplier-based designs [22][23], Coordinate rotation digital computer 

(CORDIC)-based designs [14]-[29], memory-based designs [30][31], and hardwired 

multiplier-based design [32]. The design [22] uses a time recursive lattice structure to 

compute the 1-D DHT. The design [24] uses a fast algorithm to compute 1-D DHT. 

The designs [23][25]-[29] use direct matrix-vector multiplication algorithm to 

compute the 1-D DHT. The designs [30][32] use cyclic convolution based 

matrix-vector multiplication algorithm to compute the 1-D DHT.  

For the DCT designs, due to playing a key function in image and signal 

processing, especially for the demanding multi-media and portable applications, the 

efficient hardware implementation of DCT is still a challenging problem for the 

requirements of high computational complexity and real-time processing. To achieve 

efficient hardware realization, except for the multiplier-based systolic array designs, 

many researches have been done on realizing the multiplications needed in the DCT 

through memory. One is the memory-based systolic array design [33] in which the 

proposed cyclic convolution based architecture possesses the features of simple I/O 

behavior and removes the data redundancy in the DCT coefficients. 

1.3 Review of DA-based designs 

To remedy the problems in the DFT, DHT, and DCT realizations with the 

designs mentioned above, many researches have realized the multiplications needed in 
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the DSST’s through memory [33]-[37]. One of the popular techniques is distributed 

arithmetic (DA). It has been widely used in many DSP applications such as the 

DSST’s, convolution, and digital filters [34]-[37]. The DA technique is an efficient 

method for computing inner products by using table look-up, shifting, and 

accumulations. Therefore, some existing designs are great interests in reducing the 

memory size required in the implementation of the DA-based architectures [34]-[36], 

such as the partial sum techniques and the Offset Binary Coding (OBC) techniques 

[34][35]. Besides, there is a different DA-based design denoted as adder-based DA 

design that realizes the multiplications by using adders instead of memories 

[32][38]-[40]. Chang [38]-[39] took advantage of the shared partial sum-of-products 

and sparse nonzero bits in the fixed input data to reduce the computational complexity. 

Guo [32][40] exploited the feature of cyclic convolution to simplify the computation 

of DHT and DFT, so that the multiplications and additions can be realized by using a 

small number of adders. On the algorithm point of view, these existing designs 

mentioned above, cyclic convolution-based designs have the good features of simple 

I/O behavior and reduction of coefficients redundancy in the 1-D DFT, DHT, and 

DCT. However, since they only exploit the constant property of the transform 

coefficients without considering the possibility on further hardware optimization with 

different DSST’s algorithms, they are still not efficient enough.  

1.4 Overview of the proposed design approach 

In this dissertation, we propose a new hardware efficient DA approach for the 

1-D DSST’s design. The proposed approach can further reduce the memory size 

required in the traditional DA technique [34]. For a glance of the proposed DA design 

approach, first we formulate the algorithm of DSST’s into cyclic convolution form in 

algorithm level, and then exploit the distributed arithmetic to decompose the input 

data into bit-level in architecture level. Thus, the data redundancy due to the cyclic 

convolution can be efficiently removed within the bit-level input context to facilitate a 

hardware efficient DA realization. 

Observing the cyclic convolution realized by DA technique, we find that different 

DSST’s outputs can be computed using the same DSST’s coefficients and the same 

input data samples with rotated order. If we directly realize the DSST’s in cyclic 

convolution using traditional DA technique, we find that N identical memory modules 

are used. It reveals a message that the redundancy still exists in the contents of the 
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memory, which implies that the memory utilization in this case is not good enough. 

Therefore, we intend to reduce the memory size by re-arranging the memory contents 

in different way. Combining with the cyclic property, we first group the candidates of 

DA inputs with rotated order as the same candidate, and then arrange the memory 

contents in this manner that the partial products for accumulating different DSST’s 

outputs according to the candidates being grouped together, and accessed 

simultaneously for the different outputs of DSST’s. The partial products arranged in a 

group should be rotated suitably before accumulating. With this way, the memory 

module contains only few groups of contents and only one memory module, instead 

of N identical memory modules needed in the computation of 1-D N-point DSST’s in 

conventional DA design. We named this proposed new DA design approach, Group 

Distributed Arithmetic (GDA). 

Because of the inherent issue of DA-based design that the memory size increases 

exponentially as the length of input data increases, the partition issue must be 

regarded for long length DA design. In the conventional DA design, we can arbitrarily 

partition the input data of DA, and then sum up the partial sums from the different 

memory modules to achieve low hardware cost. Because of the necessity of cyclic 

preserving, the manner of arbitrarily partitioning cannot be applied to the proposed 

GDA design. Otherwise, the benefit of low hardware cost in GDA design will not 

exist. To solve the problems mentioned above, we combine several algorithms to 

decompose the long length DSST’s and partition the DA design in each of the 

shortened DSST’s into smaller ones, which is still preserving the property of cyclic, 

such that the DSST’s can efficiently be realized with GDA design. In the proposed 

decomposition approach, we decompose the long length DSST’s into the short ones 

with prime factor algorithm (PFA) or Cooley Turkey algorithm, and further partition 

each of them by using Agarwal-Cooley algorithm [41] or pseudocirculant matrix 

factorization algorithm (PMFA) [42] such that all the partitioned short DSST’s are 

still composed of the shortened cyclic-convolution blocks. For such long-length 

computations, dedicated hardware designs can meet both the real-time and low 

hardware cost requirements in the various high-speed data communication 

applications. 

1.5 Considerations to the DSST’s designs 

For the DFT design, we further explore the symmetrical property of DFT 
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coefficients for further reducing the hardware cost of the memory by a factor of two. 

Compared with the existing systolic array designs and DA-based designs, the DFT 

design with the proposed GDA design approach can reduce the delay-area product 

from 29% to 68% according to the 0.35 μm CMOS cell library for short lengths. As 

compared with the existing designs, the DHT design with the proposed GDA design 

approach possesses better performance in reducing the area-delay product from 52% 

to 91%. For the DCT design, due to the rotated input data in the input-data matrix of 

DCT possess different signs, it is not easy to apply the GDA approach directly to 

DCT realization. Exploiting the symmetry property of DCT coefficients, we merge 

the elements in the matrix of DCT kernel, and separate the matrix to two perfect 

cyclic forms. Then these two smaller perfect cyclic convolution forms can be realized 

with the proposed GDA approach. This realization facilitates reducing the memory 

size significantly. As compared with the existing DA-based designs, for an example 

of 1-D 7-point DCT with 16-bit coefficients; the proposed design can save more than 

57% of the delay-area product. Besides, the 1-D DCT chip was implemented to 

illustrate the efficiency associated with the proposed approach. 

As for the popular application of DFT with the length of power of two in the 

communication system, combining the proposed low cost GDA design with the 

suggested long-length transform decomposition methodology, a variable-length DFT 

design has been proposed and implemented in our studies. The proposed design can 

flexibly be used to compute the 1-D 64/128/256/512/1024/2048/4096-point DFT by 

cascading two 1-D short length DFTs and summing up the partitioned short length 

cyclic convolutions for each stage of the cascaded DFT. Besides, the proposed 

hardware efficient design approach can also be adopted in the design with the length 

beyond power of two. Compared with the existing long-length and variable-length 

FFT design [67]-[70], in addition to the advantages of short latency and high 

hardware utilization efficiency (HUE), the proposed variable-length DFT design can 

achieve competitive hardware cost under the same throughput rate. 

1.6 Outline of this dissertation 

The dissertation is organized following the research outline as Fig. 1.1. In chapter 

2 we illustrate the proposed GDA design approach for cyclic convolution in detail, 

including the issue of cyclic convolution partitioning, and its advantages compared 

with the traditional memory-based DA approach on hardware cost and power 
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consumption points of view. Chapter 3 illustrates GDA for 1-D DSST’s designs, 

where the optimization on algorithm level for further reducing the hardware cost is 

involved. Chapter 4 illustrates long-length issues for DSST’s design and the proposed 

variable-length DFT design to communication Application. Finally, we conclude this 

dissertation in chapter 5, including contributions in this research and some future 

research directions. 

GDA

DFT DHT DCT

Long-length 
GDA (BGDA)

Variable-length 
DFT

Long-length
DHT

Long-length 
DFT

•SA-DCT
• Variable-length  FFT
• Unified DFT/IDFT

Ch2

Ch2

Ch3

Ch4Ch4

Ch4

Future work

 

Fig. 1.1: Outline of this research. 
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Chapter 2  
The Group Distributed Arithmetic (GDA) 
Design Approach 
 

The presented Group Distributed Arithmetic (GDA) design approach mainly 

consists of cyclic convolution and memory-based DA technique. The algorithm in 

cyclic convolution can significantly reduce the complexity for the inner product 

computation with multiple inputs and multiple outputs (MIMO). In the following, we 

illustrate the proposed GDA design approach from algorithm-level to 

architecture-level involving the solution of cyclic convolution partitioning for GDA 

design and the evaluations of hardware cost and power consumption for design with 

this approach.   

 

2.1 Algorithm point of view  

Let us first consider a cyclic convolution example: 
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where {v1, v2, v3, v4} are input data, {a, b, c, d} are coefficients, and {u1, u2, u3, u4} 

are output data. Using the commutative property of convolution, we can rewrite (2.1) 

as follow: 
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Observing (2.2), we find that different outputs in vector U can be computed 

using the same input data with rotated order and the same set of coefficients {a, b, c, 

d}. According to the DA technique [34], using the same set of coefficients implies that 

identical memory modules are used to compute all the different outputs. And using the 
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same inputs with rotated order implies that we can arrange the partial products 

generated by them as a group and these partial products can be accessed 

simultaneously in accumulating all the outputs. 

For facilitating utilization of the GDA design approach, the general form of 

GDA shows as  
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where L denotes the word length of the input data v, N denotes the length of cyclic 

convolution, Rq denotes the rotating factor for qth bit that is used for indicating the 

number of position of the partial products in DA input and output should be rotated, 

and cn are the coefficients. The rotation function R( ) is used to rotate the elements in 

the output vector qqRu ,  from the input vector qqRv ,  by Rq for the qth bit of DA 

computation. In the example of 4-point cyclic convolution mentioned above, the 

coefficient vector {c1, c2, c3, c4} is given as {a, b, c, c, d}. 
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2.2 Architecture point of view  

2.2.1 Memory-based Group Distributed Arithmetic design 

Fig. 2.1 shows the proposed GDA architecture for computing the vector U in (2.2). 

We arrange the memory contents (16 words) into six groups in this example. The 

candidate of DA input in the q-th bit, i.e. vector Vq, is first fed into an address decoder 

to generate the group address Vq’ and the corresponding rotating factor Rq according 

to the rule of group mapping shown in Table 2.1 that performed by the specific 

address decoder in the proposed GDA design when realizing the cyclic convolution 

example shown in (2.2). Here, the group address Gq denotes which group the 

candidate of DA input belongs to. If the candidate is the seed value of a group V’q, the 

rotating factor is equal to 00. That means the partial products accessed from the group 

memory is directly fed into the accumulators for computing the DA outputs without 

performing any rotation. If the candidate is different from the seed value but belongs 

to the same group, the rotating factor is the value indicating how many positions the 

partial products accessed from the group memory should be rotated before entering 

the accumulators.  
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Fig. 2.1: The proposed GDA architecture and the associated memory content 

arrangement in realizing the cyclic convolution example shown in (2.2). 
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Table 2.1: The rule of group mapping. 

Grouped candidates of DA input 
(Vq) 

{v1,q, v2,q, v3,q, v4,q} 

Seed value 
(V’ q) 

{v’1,q, v’2,q, v’3,q, v’4,q} 

1Rotating factor
(Rq) 

{r1,q, r2,q } 

Group address 
(Gq) 

{g1,q, g2,q, g3,q}

0001 0 
0010 1 
0100 2 
1000 

0001 

3 

000 

0011  0 
0110 1 
1100 2 
1001 

0011 

3 

001 

0111  0 
1110 1 
1101 2 
1011 

0111 

3 

010 

0101 0 
1010 

0101 
1 

011 

0000 0000 0 100 
1111 1111 0 101 

Note:  

1. Rotating factor denotes the number of position of the output data, corresponding to 

the candidate of DA input value in a group, needs to rotate. 

 

2.2.2 Analysis of Barrel shifter 

In this subsection, we will illustrate the hardware cost of barrel shifter in the 

design of overhead. Four barrel shifter designs are respectively analyzed and 

evaluated in the following. Fig. 2.2 shows the architecture realized with multiplexer. 

This straight forward design adopts the multiplexers that switch the input data to the 

selected outputs by the control signals as a rotation operation. The hardware required 

of this design is N times of N log2N+1-input AND gates and one N-input OR gates. 

Thus the complexity of hardware is O(N2log2(log2N+1)+log2N) in gate count. It 

reveals that the design with this approach is not hardware efficient. Besides, the 

number of level of the multiplexer logic will increase while the number of input is 

increased. Then the delay time in this design will be not a constant. 
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Fig. 2.2: Multiplexer–based barrel shifter design. 

 

Fig. 2.3 shows the second design of barrel shifter. It adopts the multiplier with double 

length of input data. The duplicated input data is multiplied by the control signals, and 

then select out the 2nd N-bit of the result of multiplier as the shifted result. Although 

implementation with this algorithm uses only one multiplier and one-to-four 

demultiplexer, the word length in them is the drawback in hardware implementation. 

The required hardware in this design is one 2N-bit multiplier and one N-bit 

one-to-four demultiplexer. It is equivalent to 103*(-0.039 + 0.457 * 2N + 0.001 * 2N 

+ 0.263 * 4N2)/58 and 2N 2-input gates (i.e., N * 2 2-input gate). Thus the complexity 

of hardware is O(N2+2N) in gate count . 

 

 

 

Fig. 2.3: Multiplier-based barrel shifter design. 
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Fig. 2.4 shows the third design of barrel shifter. This design consists of log2N rotators 

and log2N N-bit two-to-one multiplexer. The length of these rotators are respectively 

20, 21, …. 1log22 −N . If the length of the barrel shifter is not power of two, the length of 

most significant rotator is N- ( 2log22 −N + 3log22 −N + … +20). Since each of the rotators 

can be realized with the manner of wiring, there is no hardware cost on these rotators. 

Therefore, the hardware cost of this barrel shifter design is log2N N-bit two-to-one 

multiplexer. It is equivalent to log2N times of 2N 2-input AND gates and N 2-input 

OR gates. Thus the complexity of hardware is O(3Nlog2N) in gate count. 

 

 

Fig. 2.4: Logarithmic number of multiplexer barrel shifter design. 

 

Fig. 2.5 shows the fourth design of barrel shifter. This design consists of N2 

transistors and N inverter gates. The hardware cost of this barrel shifter design is 

equivalent to N2/4+N/2 in gate count. Thus the complexity of hardware of this design 

is O(N2/4+N/2) in gate count. Compared with the designs mentioned above, it reveals 

that this design is the most efficient choice for the case that the length of input data is 

smaller than 64. 
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Fig. 2.5: Barrel shifter with N2 transistors 

 

Fig. 2.6 (a), (b), and (c) show the comparisons of the four barrel shifters in hardware 

cost, power consumption, and delay time, respectively. It is seen that the area cost, 

power consumption, and delay time of N2-transistor barrel shifter are almost smaller 

than the others. However, this design is hard to implement by synthesis in the 

cell-based design flow. Thus the alternative of logarithmic barrel shifter is chosen, and 

synthesized in the implementation of the proposed GDA design and its applications.  
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(c) 

Fig. 2.6: Comparison of the four barrel shifters in (a) hardware cost, (b) power 

consumption, and (c) delay time. 
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2.2.3 Evaluation of hardware cost 

In the following, we evaluate the delay time and hardware cost of the designs with 

the proposed GDA approach and the traditional DA approach for illustrating the 

advantages of the proposed approach. For a fair comparison, we adopt Avant 0.35μm 

CMOS cell-library [43] in the performance evaluation. The delay time for accessing a 

partial product from a memory module is taddr_dec + trom_acc in the traditional DA 

designs, and taddr_dec + trom_acc + tbar_shf  in the GDA design, where taddr_dec denotes the 

delay time of address decoder, trom_acc denotes the access time of memory, and tbar_shf 

denotes the delay time of the barrel shifter. Since the memory size required in the 

GDA design is much smaller than that in the traditional DA design, the delay time of 

address decoder and access time of memory in the GDA design are accordingly much 

smaller than that in the traditional DA design. However, the extra delay time of the 

barrel shifter must be counted in the GDA design. As a result, the total delay of the 

GDA design is almost similar to that of the traditional DA design. As for the hardware 

cost evaluation, the hardware for accessing a partial product is Arom in the traditional 

DA design, and is Agrp_rom + Abar_shf  in the proposed GDA design, where Agrp_rom 

denotes the area cost of Group memory, and Abar_shf denotes the area cost of a barrel 

shifter. 

 

Table 2.2: Comparison of memory size in both the traditional memory-based DA and 

the proposed GDA designs for different values of N. 

Length of cyclic convolution 
(N) 3 4 5 6 7 8 9 10 11 12 13 14 …

Traditional DA 23 24 25 26 27 28 29 210 211 212 213 214 …
GDA 

(# of group: G(N)) 4 6 8 14 20 36 60 108 188 352 632 1197 …

memory size reduction ratio 
(DA / GDA) 2 2.7 4 4.6 6.4 7.1 8.5 9.5 10.9 11.6 13 13.7 …

 

Table 2.2 shows the comparison of memory size required in the two designs under 

different N. We can see that the proposed GDA design is much more hardware 

efficient than the traditional DA design. Fig. 2.7 shows the measure of delay-area 

product to evaluate the performance for the proposed GDA design and the traditional 

DA design. We find that the delay-area product of the proposed GDA design is much 
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smaller than that of the traditional DA design as N increases, which illustrates that the 

proposed GDA design possesses better performance than the traditional DA designs in 

terms of delay-area product. 
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Fig. 2.7: The delay-area product comparison in the proposed GDA design and the 

traditional memory-based DA design with 16-bit data word length. 

 

2.3 Consideration of low power design  

With the approach of address grouping in GDA design, the number of adress 

appears on DA input has been reduced significantly such that the transition activity on 

the word-line of memory in original DA design is reduced. And due to reduction of 

the memory size in GDA design, the bit-line loading as well as the transition activity 

on the bit-line is also reduced. Besides, the barrel-shifter is with higher driving 

strength than ROM in conventional DA. On the power consumption point of view, the 

proposed GDA design should be not only the low hardware cost design but also a low 

power design. In the following, we will analysis and evaluate the GDA design to be a 

low power design.  

 

2.3.1 Analysis of transition activity 

In general, transition activity at the output of circuitry depends on the transition 

activity at the inputs and the circuitry function. The transition probability of a node 
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from 0 to 1 (i.e., 10→
α ) is p0⋅p1, where p0 and p1 denote the probability of signal is 

settled on logic-0 and logic-1, respectively [44]. The transition probability appeared in 

the input of data-path have affected power consumption of the followed circuitry. 

Considering a design example of 4-input data-path, Table 2.3 shows the comparisons 

of transition probability and Hamming distance, respectively. Since grouped binary is 

a subset of the complete binary, we can select to construct a subset as the distribution 

of group addresses with lowest Hamming distance. Thus the transition activity on the 

input nodes will be much smaller than that of complete binary such that the power 

consumption of the data-path can be reduced significantly. Fig. 2.8 shows the trend of 

sum of transition probability against the number of input-data bit.  

 

Table 2.3: Transformation of transition probability for the input data of the 4-input 

data-path. 

Complete binary Grouped binary Input data 
v3 v2 v1 v0 v3 v2 v1 v0 

 0 0 0 0 0 0 0 0 
 0 0 0 1 
 0 0 1 0 
 0 1 0 0 
 1 0 0 0 

0 0 0 1 

 0 0 1 1 
 0 1 1 0 
 1 1 0 0 
 1 0 0 1 

0 0 1 0 

 0 1 0 1 
 1 0 1 0 

0 1 0 0 

 0 1 1 1 
 1 1 1 0 
 1 1 0 1 
 1 0 1 1 

1 0 0 0 

 1 1 1 1 0 0 1 1 
Transition probability 64/256 64/256 64/256 64/256 5/36 5/36 8/36 8/36 

Sum of transition 
probability 1 0.722 

Average Hamming 
distance 2 1.444 

improvement 27.8 % 
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Fig. 2.8: Trend of the improvement of transition probability versus the number of 

input-data bit. 

 

 

2.3.2 Address morphing approach 

With the GDA design approach, the distribution of DA input address is reduced 

into few groups. Shown as Table 2.4, we can realize the cyclic convolution by using 

the scheme of address morphing that converts the distribution of DA input address 

into a subset of it with minimal transition activity such that the transition activity on 

the word lines of memory is reduced. Even in the case of never removing the unused 

entries of memory, due to the lower input activity, the power consumption of memory 

shown in Fig. 2.9 is reduced. Actually due to the number of memory entry is reduced 

in Fig. 2.9; the bit-line loading of memory and transition activity on the bit-lines are 

also reduced. Thus the power consumption of memory in the GDA design is reduced 

significantly. However, the barrel shifter in the overhead of GDA design consumes 

extra power such that the overall power consumption of GDA design with short length 

is improved inconspicuously. 
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Table 2.4: The relation ship of the address morphing. 

DA input address (Vq)
{v1,q, v2,q, v3,q, v4,q} 

Rotating 
factor (Rq)
{r1,q, r2,q}

Morphed 
address 

0001 0 
0010 1 
0100 2 
1000 3 

0001 

0011 0 
0110 1 
1100 2 
1001 3 

0011 

0111 0 
1110 1 
1101 2 
1011 3 

0111 

0101 0 
1010 1 

0101 

0000 0 0000 
1111 0 1111 

 

           
 

Fig. 2.9: The description of architecture transformation from DA to GDA 

 

2.3.3 Exploration of dynamic range of the input data 

The power consumption of a circuit highly depends on the transition activity of 

input data. In some video codec systems, the data to be processed is the difference of 

the adjacent frames such as the inter frame used in the video codec standards of 
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MPEG-2, MPEG-4, H.26X, and etc. As most of the pixels in the inter frame, the 

difference is with smaller value such that some of the higher bit in DA computation 

can be omitted to achieve lower power consumption. On the second concept, with the 

choice of DSP algorithm, sometimes the data fed into the processing unit needs to be 

processed previously such as the difference of input data. It means that we can exploit 

the property of correlation for the local data such that the dynamic range of these 

being processed data is reduced significantly. For example of 7-point DCT in cyclic 

convolution formulation, the data on the input of processing unit is not the direct input 

data. These data need to be computed previously with the combination of subtractions 

and additions. Fig. 2.10, Fig. 2.11, and Fig. 2.12 show the test image, gray-level of the 

pixels in this image, and histogram of the gray-level distribution, respectively. Fig. 

2.13 and Fig. 2.14 respectively show the preprocessed gray-level and the histogram of 

the input data of processing unit in DCT design. It reveals that most of the 

preprocessed data values is small than the original one. Thus, the dynamic range is 

reduced for most of the input data. Combined with the second concept above, the 

number of cycle of DA computation in the DCT design will be reduced to achieve 

lower power consumption.  

 

 
 

Fig. 2.10: The test image with the size of 252 * 252 pixels. 
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Fig. 2.11: gray-level of the pixels in the image of Fig. 2.10. 

 

 
Fig. 2.12: histogram of the gray-level distribution in the image of Fig. 2.10. 

 



 23

 
Fig. 2.13: The preprocessed gray-level of the image in Fig. 2.10. 

 

 
Fig. 2.14: Histogram of the preprocessed data used in the example of 7-point DCT 

design. 
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2.3.4 Low Power Design with pre-computation scheme 

Exploiting the property of spatial correlation in natural images, for the algorithm 

with the inputs formed as sum and difference of the primary inputs, the sum of inputs 

are likely to have a number of equal high-order bits, and the difference inputs are 

likely to have small dynamic range. Then for some cases, such as the 8-point 1-D 

DCT, the cycles of DA computation for the high-order bits of sum inputs can be 

skipped. On the other hand, since most of the bits in high-order bits of the difference 

of inputs are the sign-extension bits, with the manner of bit-serial and word-parallel, 

the cycles in DA computation for these extended sign-bits can also be skipped to 

achieve lower computation power [45]. In the following, we will illustrate the 

high-order bits rejection technique briefly, where this technique named most 

significant bit rejection (MSBR) in [45], and explore the distribution of pre-computed 

input data for the cyclic convolution formulation of prime-length DCT. For the 

realization of prime-length DCT, combining the proposed GDA design with the 

MSBR technique facilitates not only reducing the memory size, but also improving 

the power consumption. 

 

MSBR technique 

Considering the even and odd outputs of the reformulated 8-point 1-D DCT as 
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Observing the Table 2.5, we can see that some of candidates of DA input, i.e., 

0000 and 1111, cause the even output to be zero. It means that the computation, 

shown as the rejected bits in Fig. 2.15, can be skipped in DA computation. 
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Table 2.5: Relationship between the sum of primary inputs 

and the even outputs. 

{x0+x7, x1+x6, 
x2+x5, x3+x4} X0 X2 X4 X6 

0000 0 0 0 0 
0001 A -B A -C 
0010 A -C -A B 
0011 2A -(B+C) 0 B-C 
0100 A C -A -B 
0101 2A -(B-C) 0 -(B+C) 
0110 2A 0 -2A 0 
0111 3A -B -A -C 
1000 A B A C 
1001 2A 0 2A 0 
1010 2A B-C 0 B+C 
1011 3A -C A B 
1100 2A B+C 0 -(B-C) 
1101 3A C A -B 
1110 3A B -A C 
1111 4A 0 0 0 

 

 

  

Fig. 2.15: The skipped bits in DA computation for the even outputs. 

 

As for the computation of odd outputs, with the property of high spatial 

correlation for the pixels in an image, shown as Fig. 2.16 the difference of primary 

inputs reveals the property of small dynamic range, and thus most of the high-order 

bits in these difference inputs are the sign-extension bits. Then we need only 

computing for the least significant bit of sign-extension bits to have the exactly final 

result of DA computation. Similar to the sum inputs, the number of cycles in DA 

computation for these extended sign-bits can also be reduced significantly. However, 

due to the huge amount of overhead for skippable bits detection, development of the 
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efficient detection scheme is still the issue of low power GDA-based design with 

MSBR technique. 

 

 

Fig. 2.16: The skipped bits in DA computation for the odd outputs. 

 

Exploration of the input data for prime-length DCT in cyclic convolution 

In the following, we illustrate how the MSBR technique can apply to the 

prime-length DCT design with the example of 7-point DCT. Considering the kernel of 

DCT T((3k)7) in (2.7), where x((3n-k+1)7 ) denotes the indirect inputs pre-computed 

from the primary input y(n) as (2.8). 
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We can write the kernel T((3k)7) as the matrix form 
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where a denotes 
7
π .  

And then exploiting the symmetry property of DCT coefficients, (2.9) is reformulated 
as 
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To separate the even and odd outputs, two smaller perfect cyclic forms are shown as  
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
×
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+++
+++
+++

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

)4cos(
)6cos(
)2cos(

)1()6()5()2()3()4(
)3()4()1()6()5()2(
)5()2()3()4()1()6(

)4(
)6(
)2(

a
a
a

xxxxxx
xxxxxx
xxxxxx

T
T
T

           (2.12) 

and 
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With the property of spatial correlation, the difference of the indirect inputs will 
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remain most of the high-order bits as sign-extension bits such that the cycles of DA 

computation for most of the bits can be skipped. Similar to the benefit of MSBR 

technique in 8-point DCT design, combining this technique with the proposed GDA 

approach for the prime-length DCT design facilitates not only low hardware cost but 

also low power consumption.  

 

2.3.5 Evaluation of power cost 

We have synthesized and verified the power consumption of 1-D 5-point to 

13-point DCT designs at the clock frequency of 166MHz by using respectively 

DesignCompiler and PrimePower with the UMC 0.18um cell-library and the test 

benches of Lena, Babon, and Peper. As shown in Fig. 2.17, the simulation result 

shows that power consumption of the 1-D prime-length DCT with GDA design is 

lower than that of the conventional DA design for the test benches with different 

characteristics of content. With the power consumption point of view, it reveals that 

the proposed GDA design is also a low power design.  
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Fig. 2.17: Power consumption of the GDA-based 1-D DCT designs. 
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2.4 Partitioning of cyclic convolution 

Because of the inherent issue of DA-based design that the memory size 

increases exponentially as the length of input data increases, the partition issue must 

be regarded. In the conventional DA design, we can arbitrarily partition the input data 

of DA, and then sum up the partial sums from the different memory modules to 

achieve low hardware cost. However, because of the necessity of cyclic preserving, 

the manner of arbitrarily partitioning cannot be applied to the proposed GDA design. 

Otherwise, the benefit of low hardware cost in GDA design will not exist. To solve the 

problems mentioned above, we combine applicably the proposed GDA approach with 

the partition methods for prime length and non-prime length cyclic convolutions 

respectively such that the case of long length GDA can be partitioned, and composed 

of the short cyclic-convolution blocks. It facilitates that we can still realize each of the 

shortened cyclic convolution blocks with the proposed GDA design to achieve low 

hardware cost. 

 

2.4.1 Agarwal-Cooley algorithm 

The approach of Agarwal-Cooley algorithm is to convert one-dimensional cyclic 

convolution into a multidimension cyclic convolution [41]. In essence, a 

one-dimensional cyclic convolution of length n, where n = n1 * n2, and n1 and n2 are 

relatively prime, can be expressed as a two-dimensional cyclic convolution of length 

n1 and n2, respectively. The extension of the idea to convert one-dimensional cyclic 

convolution to a d-dimensional cyclic convolution when n has d relatively co-prime 

factors, that is n = n1 * n2… nd, and ni and nj are relatively prime, i ≠ j, is 

straightforward. The Agarwal-Cooley algorithm consists in the application of Chinee 

remainder theorem for integers (CRT-I) [46] to the indices of sequences being 

convoluted. Therefore, it is valid for data sequences defined over any arbitrary 

number system. A major advantage of the Agarwal-Cooley algorithm is that the long 

length cyclic convolution can be constructed from short length cyclic convolution. 

Table 2.6 shows the covered lengths that the cyclic convolution can be decomposed 

with Agarwal-Cooley algorithm. 
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Table 2.6: Analysis for the covered lengths of cyclic convolution can be decomposed. 

Length of 
cyclic 

convolution 

Decomposition 
factors 

Length of 
cyclic 

convolution 

Decomposition 
factors 

Length of 
cyclic 

convolution

Decomposition 
factors 

Length of 
cyclic 

convolution 

Decomposition 
factors 

7 7 20 4*5 33 3*11 43 43 
10 2*5 21 3*7 34 2*17 44 4*11 
11 11 22 2*11 35 5*7 45 9*5 
12 4*3 23 23 36 4*9 46 2*13 
13 13 24 8*3 37 37 47 47 
14 2*7 26 2*13 38 2*19 48 3*16 
15 3*5 28 4*7 39 3*13 50 5*10 
17 17 29 29 40 8*5 51 51 
18 2*9 30 6*5 41 41 M  M  
19 19 31 31 42 6*7   

Note: Power of two and power of prime-value cannot be covered. 

 

2.4.2 Pseudocirculant matrix factorization algorithm 

Since the partitioning factors for cyclic convolution are not relatively co-prime, 

the Chinese Remainder Theorem I (CRT-I) cannot be used in the indices of sequences 

being convoluted. Thus for preserving the cyclic property for GDA design, we use the 

pseudocirculant matrix factorization algorithm [42] for further partitioning the 

long-length cyclic convolution. With this algorithm, shown as (2.14) and (2.15), the 

cyclic convolution with the length of N can be factorized as the factors of N/r and r. 
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where {v1, v2, v3, v4, ... , vN } are input data, { c1, c2, c3, c4, ... , cN } are coefficients, 

and { u1, u2, u3, u4, ... , uN } are output data. The cyclic shift operator SN/r can be 

written in form as  
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Using the commutative property of convolution, we can rewrite (2.14) and (2.15) 

as follow: 
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2.4.3 Long length cyclic convolution design 

 

The case of the partitioning factors is relatively co-prime 

Consider the example of computing the cyclic convolution example shown in 

(2.18), where {v1, v2, v3, v4, v5, v6} are input data, {a, b, c, d, e, f} are coefficients, and 

{u1, u2, u3, u4, u5, u6} are output data. 
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In the case of cyclic formulation with 6 input data, it can be factorized into 2 and 3. 

Since the factors of 2 and 3 are relatively prime, there exists a data permutation on the 

rows and columns of the matrix such that the resulting matrix of input data shown in 

(2.19) can be partitioned into the form of block circulants of 2× 2 with circulant 

blocks of 3× 3. 
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From the hardware point of view, we have partitioned the original memory 

module into two smaller ones. One memory module stores the combination of the 

coefficients {a, e, c} for u1, u5, and u3 as well as u4, u2, and u6. Similarly, the other one 

stores the combination of the coefficients {d, b, f} for u1, u5, and u3 as well as u4, u2, 

and u6. In performing the memory access, we can access the partial products for u1, u5, 

and u3 by using the memory address generated from {v1, v5, v3} through first memory 

module and access the partial products for u1, u5, and u3 by using the memory address 

generated from {v4, v2, v6} through second memory module at the same time. Then we 

sum up the two partial products to have u1, u5, and u3 using the extra adders. With the 

identical hardware and extra input-data-rotator, we can compute u4, u2, and u6 in the 

next iteration. The cyclic convolution realized with this partitioning scheme and GDA 

approach is named block-based group distributed arithmetic (BGDA) in our research. 

Fig. 2.18 shows low-cost hardware architecture to realize the design example 

illustrated in (2.19) based on the proposed BGDA design approach. To meet the 

requirement of high performance, we can easily duplicate the BGDA modules to 

construct the high performance version of BGDA design as shown in Fig. 2.19.  
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Fig. 2.18: The low cost version of BGDA design realizing the cyclic convolution 

example shown in (2.19). 
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Fig. 2.19: The BGDA design on realizing the cyclic convolution example shown in 

(2.19) with high performance. 

 

 

The case of the partitioning factors is not relatively co-prime 

Considering the example of computing the cyclic convolution shown in (2.20), 

{v1, v2, v3, v4, v5, v6, v7, v8} denote the input data, {a, b, c, d, e, f, g, h} denote the 

coefficients, and { u1, u2, u3, u4, u5, u6, u7, u8} denote the output data. 
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In the case of cyclic formulation with eight input data, we permute the data on the 

rows and columns of the matrix such that the resulting matrix of input data shown in 

(2.21) can be partitioned into the form of block pseudocirculants of 2× 2 with 

circulant blocks of 4× 4. 
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where  
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From the hardware point of view, we have partitioned the original memory 

module into two smaller ones. One memory module stores the combination of the 

coefficients {a, c, e, g} for u1, u3, u5, and u7 as well as u2, u4, u6, and u8. Similarly, the 

other one stores the combination of the coefficients {b, d, f, g} for u1, u3, u5, and u7 as 

well as u2, u4, u6, and u8. In performing the memory access, we can access the partial 

products for u1, u3, u5, and u7 by using the memory address generated from {v1, v3, v5, 

v7} through first memory module and access the partial products for u1, u3, u5, and u7 

by using the memory address generated from {v2, v4, v6, v8} through second memory 

module at the same time. Then we sum up these two partial products for obtaining u1, 

u3, u5, and u7 by using extra adders respectively. With the help of the identical 

hardware and extra input-data-rotator, we can compute u2, u4, u6, and u8 in the same 

way. However, for the operation of input data rotation, in the case of partitioning 

factors is not relatively co-prime, the number of rotated bit for VB’ is larger than VA by 

one bit. Fig. 2.20 and Fig. 2.21 show the low-cost and high performance GDA 

architectures to realize this design example illustrated in (2.21).  

 

 

Fig. 2.20: The low cost version of GDA realization of the example shown in (2.21). 
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Fig. 2.21: The high performance version of GDA realization of the example shown in 

(2.21). 

 

2.4.4 Evaluation of long length cyclic convolution GDA design 

As shown in Fig. 2.18, the proposed low-cost BGDA design with co-prime only 

requires two small memory modules to compute all the output samples. It saves 72 

words of memory (i.e., 75% of memory cost), 6 adders, and 3 registers at the cost of 

introducing the extra barrel rotator and input-vector rotator circuitries as well as 

halfing the throughput rate as compared with the traditional DA-based design. For the 

requirement of high performance, the proposed BGDA design (shown in Fig. 2.19) 

can save 48 words of memory (i.e., 50% of memory cost) and operate at the same 

throughput rate as compared with the traditional DA design at the cost of one extra 

barrel rotator. As to the non-coprime partitioning, the proposed low-cost BGDA 

design shows in Fig. 2.20, similar to the case of co-prime partitioning, this design 

only requires two small memory modules to compute all the output samples. It saves 
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208 words of memory (i.e., 81.25% of memory cost), 8 adders, and 4 registers at the 

cost of introducing the extra barrel rotator and input-vector rotator circuitries as well 

as halfing the throughput rate as compared with the traditional DA-based design. For 

the requirement of high performance, the proposed BGDA design (shown in Fig. 2.21) 

can save 160 words of memory (i.e., 62.5% of memory cost) and operate at the same 

throughput rate as compared with the traditional DA design at the cost of one extra 

barrel rotator. Table 2.7 summarizes the hardware cost in the architectures of low-cost 

BGDA, high performance BGDA, and traditional DA. It is concluded that the 

proposed BGDA design approach provides a hardware efficient scheme to realize the 

long-length cyclic convolution. 

 

 

Table 2.7: Comparison of the hardware cost of the design examples shown in low-cost 

BGDA, high performance BGDA, and conventional DA in the case of non-coprime 

partitioning. 

 
Address 
decoder 

(coded 
addresses) 

memory 
size 

(words)

4-bit 
Barrel 
shifter 

(words) 

Adder
(words)

SR 
(words)

P/S 
(words) 

Rotator 
(words) 

Normalized
Throughput

Conventional DA 
design 2*24 256 0 16 24 8 0 1 

Proposed BGDA 
design (high 

performance version) 
2*(16+24) 96 34 16 24 8 0 1 

Proposed BGDA 
design 

(low cost version) 
2*(6+4) 48 2 8 20 8 6 0.5 

Note: 

1 denotes the number of group-address. 

2 denotes the number of rotate-left factor. 

3 denotes equivalent area of 4*42 memory words. 
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Chapter 3  
GDA-based Design for 1-D DSST’s 
 

In this chapter, we illustrate the GDA-based designs of 1-D DSST’s with 

prime-length and any-length, including DFT, DHT, and DCT, from algorithm to 

architecture, respectively. The optimizations on algorithm level of DSST’s for further 

reducing the hardware cost are involved. Besides, we have evaluated each of the 

DSST’s designs in the corresponding subsection. 

3.1 Design of 1-D DFT 

3.1.1 Cyclic Convolution Formulation 

Prime-length case 

The 1-D N-point DFT of an input sequence {x(n), n = 0, 1, …., N-1} is defined as 

 1,....,1,0,)()(
1

0

−==∑
−

=

NkWnxkY
N

n

nk
N           (3.1) 

If N is prime, we can rewrite (3.1) in a cyclic convolution by exploiting the property 

of input/output (I/O) data permutation as 

∑
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, where (gk)N denotes the result of “gk modulo N” for short and g is a primitive 

element. T((gk)N) in (3.4) is the kernel of the N-point DFT that is written in cyclic 

convolution formulation. For facilitating the utilization of the GDA design approach, 

the GDA formulation of T((gk)N) shows as  



 40 

 q
L

q
N

Rk
qN

Rk
N

k qgTgTgT −
−

=

++ ⋅+−= ∑ 2))(())(())((
1

1
0

0                    (3.5) 

where  )()( 000 TRRT = , 

)})(( ),)(( ),)((),)(({)( 0000
00

2
0

1
000 N

RN
N

Rk
N

R
N

R gTgTgTgTRT ++++= LL , 

)})(( ),)(( ),)((),)(({ 00
2

0
1

00 N
N

N
k

NN gTgTgTgTT LL=  

and  

 )()( qqq TRRT = , 

)})(( ),)(( ),)((),)(({)( 21
N

RN
qN

Rk
qN

R
qN

R
qqq

qqqq gTgTgTgTRT ++++= LL , 

)})(( ),)(( ),)((),)(({ 21
N

N
qN

k
qNqNqq gTgTgTgTT LL= , 

and 

 ))(())((
1

1
00

)(0∑
−

=

−− ⋅=
N

n
NN

Rkn
N

k N
ngWgxgT and 

 ))(())((
1

1

)(∑
−

=

−− ⋅=
N

n
NN

Rkn
qN

k
q

N
ngq WgxgT . 

where L denotes the data word length of the variable x, N denotes the transform length, 

Rq denotes the rotating factor for qth bit that is used for indicating the number of 

position of the partial products in DA input and output should be rotated, and  )( N
ng

NW  

are the DFT coefficients. The rotation function R( ) is used to rotate the elements in 

the output vector )( qRT q  from the input vector qT  by Rq for the qth bit of DA 

computation. 

Non-prime length case 

For the case of non-prime length, the 1-D N-point DFT of an input sequence {y(n), 

n=0,1,…,N-1} is defined as 

∑
−

=
−=⋅=

1

0
,110
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n
 ,...,N,;kWy(n)Y(k) nk
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where WN
nk denotes N
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e
π2−
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Using the identity 
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2
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we can express (3.6) as  
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The T(k) in (3.8) is expressed as a cyclic convolution. To facilitate the GDA 

design of T(k), we expressed T(k) in a commutative form as  

∑
−

=
⋅+=

−1

0
)(

2)(
2
1N

n
  W)knx(T(k)

n

NN                        (3.11)  

2

2
1n

NW in (3.10) denotes the complex multiplication for the input sample, and the 2

2k

NW  

in (3.8) denotes the complex multiplication for the result of cyclic convolution 

operation. Hence the extra pre-processing and post-processing are needed for the 

cyclic convolution of any length DFT. Since the GDA design is based on bit serial 

approach, with the stage-balance point of view in pipeline architecture, the CORDIC 

(CO-ordinate Rotation Digital Computer) complex multiplier should be an proper 

combination. The detail of CORDIC is illustrated as the following. 

 

3.1.2 CORDIC (CO-ordinate Rotation Digital Computer) 

For properly combining with the feature of bit-serial in DA computation, we hope 

to realize the complex multiplication in serial manner for pre-processing and 

post-processing of the DFT in cyclic convolution. The existing realizations of 

complex multiplication have either direct manner or rotated transformation algorithm. 
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The realization of complex multiplication with direct manner needs four multipliers 

and two adders, but realization with the rotated transformation algorithm, such as the 

CORDIC, needs only a sequence of identical arithmetic shift-and-addition operations. 

With the feature of serial manner, CORDIC should be a proper choice of serial 

complex multiplication for low hardware cost in the bit-level design. So, combining 

the GDA approach with CORDIC facilitates a hardware efficient design for 

any-length cyclic convolution DFT. 

The CORDIC was developed by Volder in 1959 as a technique for solving the 

coordinate rotation problem [47] and later generalized to solve other elementary 

functions by Walther [48]. It can be applied to the rotations in three coordinates 

systems: the linear, circular, and hyperbolic coordinate systems. A complex 

multiplication with the rotation operation in the circular mode can be shown as (3.12). 

The basic concept of CORDIC computation is to decompose the desired rotation 

angle of coefficient into the weighted sum of a set of predefined elementary rotation 

angles in (3.13) so that the rotation through each of them can be accomplished with 

simple shift-and-add operations for two stages. As shown in Fig. 3.1, the architecture 

design of CORDIC is more hardware efficient than the direct realization of complex 

multiplications, which needs four multipliers and two adders.  
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Where [x, y] denotes the input vector with real part of x and imaginary part of y. R(θ) 

denotes the complex coefficient to be multiplied. 
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Table 3.1: Table for θi 

i θi  (degree) 
0 45 
1 26.56 
2 14.03 
3 7.12 
4 3.58 
5 1.79 
6 0.89 
7 0.45 
8 0.22 
9 0.11 
10 0.06 

 

Table 3.2: Determination of the si sequence 

at the θ of 56. 

i si Sum(θi) 
0 1 45 
1 1 71.5 
2 -1 57.5 
3 -1 50.4 
4 1 53.9 
5 1 55.7 
6 1 56.6 
7 -1 56.2 
8 -1 56 

 

Since the DFT algorithm θ has been given, with the table for θi in in Table 3.1, the 

corresponding set of si can be computed and stored in memory in advance. Table 3.2 

shows the example to determine the sequence of si at the θ of 56. In the two stages 

computation of CORDIC, the multiplication of the scaling factor in second stage 

imposes significant overhead. Fortunately, if ⎮si⎮equals 1, and i is given, Km can be 

computed in advance, and converted into a canonical sign-digit representation [49] as 

(3.14) so that the same processing unit shown in Fig. 3.1 can be used for the two 

stages of CORDIC computation.  
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∑
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p

i
pm

pkK
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                                   (3.14) 

where kp = ±1, ip are positive integers. Multiplication for scaling then will take p-1 

shift-and-add operations. 

 

 

Fig. 3.1: Realization of CORDIC iterations and scaling iterations. 

 

Hardware cost analysis of the complex multiplication realization with direct 

manner and CORDIC is addressed as the following. Table 3.3 shows the comparison 

of the hardware cost for the two realizations. In the direct realization, since the two 

product terms are respectively formed of the real part and imaginary part such that 

L-1 shift operations and L-1 accumulation operations are needed for each computation 

of the product term. Then 4(L-1) shift operations and 4(L-1) accumulation operations 

are needed for the complex multiplication, where the parameter L denotes the word 

length. For the CORDIC realization, 2m shift and additions operations are needed for 

the first stage, and 2(p-1) shift and accumulation operations are needed for the second 

stage. Consequently, the total number of shift and accumulation operations needed for 

the direct realization are 4(L-1) and 4(L-1) as well as 2m+2(p-1) and 2m+2(p-1) for 

the CORIC realization. Additionally, two additional additions in the direct realization 

are needed for summing up two terms of real part and imaginary part for output. In 

general, the word length of the input value is larger than the number of iteration in 
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each of the CORDIC stages. With the UMC 0.18um cell-library and the same 

constrained speed, Fig. 3.2 shows the comparison of area cost and power 

consumption for the complex multiplications realized with serial multiplier and 

CORDIC, respectively. As a result of the simulation result, the CORDIC realization 

should be better than the direct realization for hardware cost. 

 

Table 3.3: Hardware cost comparison of direct realization and 

CORDIC realization for a complex multiplication. 

 Shift Accumulation Adder 

Direct manner 4(L-1) 4(L-1) 2 

CORDIC 2m+2(p-1) 2m+2(p-1) 0 
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Fig. 3.2: Comparison of (a) area cost and (b) power consumption for the complex 

multiplications realized with serial multiplier and CORDIC. 

 

3.1.3 Symmetry exploration of the DFT in cyclic convolution 

Let us take an example of 1-D 11-point DFT with the real input sequence {x(n), n=0, 

1, …, 10}. The cyclic convolution form of T((gk)N) can be expressed as  
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As shown in (3.11), the coefficient matrix in (3.15) can be expanded as the even 

symmetries of cosine function 1,...2,1, −== − Nicc iN
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Then, we can re-write T((2k)11) in (3.15) as follows: 
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From (3.17), we see that 
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Then, we can respectively express TR(.) and TI(.) in (14) as 
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Observing (3.19) and (3.20), we find that the real part of T((2k)11) is composed of the 

same upper and lower halves, and the imaginary part of T((2k)11) is composed of the 

upper and the lower halves with the same absolute value, but different signs. Hence, 

only the unique constant multiplications in {T(i), i=1, 2, …., (N-1)/2} need to be 

calculated. Therefore, we can calculate two output values simultaneously through 

(3.17) with the same hardware. This feature facilitates the hardware sharing in 

computing T((gk)N) with even and odd indices such that only half the hardware is 

needed as compared with the direct realization on (3.15). 

 

3.1.4 Architecture design and evaluation 

Architecture design 

By exploiting the symmetrical properties of both the cosine and sine functions 

shown in (3.17) in the DFT computation, we find that the output with odd indices can 

easily be obtained by means of hardwiring, which facilitates the reduction of memory 

cost by a factor of two. Considering the example of 1-D 11-point DFT and referring to 

the reformulation of 1-D DFT in (3.19) and (3.20), we can realize the 10-point cyclic 

convolution required in 1-D 11-point DFT through the hardware architectures 

designed for the 5-point cyclic convolution as shown in Fig. 3.3. The proposed GDA 

architecture is composed of the group distributed arithmetic units (GDAU), address 

decoder, adders/subtractors, accumulators, and parallel-to-serial (P/S) converters. 

According to the rule of group mapping shown in Table 2.1, the candidate of DA input 

Xq= {xq(1), xq(9), xq(4), xq(3), xq(5)} or {xq(10), xq(2), xq(7), xq(8), xq(6)} is first fed 

into the address decoder to determine which group it should belong to, and then 

compute the group address Gq = {gq(1), gq(2), gq(3)} and the rotating factor Rq = 

{rq(1), rq(2), rq(3)} used for the GDAU. The GDAUc and GDAUs are used to 

respectively realize the operations specified in (3.19) and (3.20) for computing 5-point 

cyclic convolution. The contents of the memory modules corresponding to GDAUc 

and GDAUs are shown in Table 3.4 and Table 3.5 respectively, which illustrate the 

distribution of the partial products when computing different DFT outputs according 

to the candidate of DA input. 
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Fig. 3.3: Architecture design of the 1-D 11-point DFT with GDA approach. 
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Table 3.4: The 8 groups of memory content used for computing the 5-point cyclic 

convolution in GDAUc. 
Grouped 

candidates of DA 
input (Xq) 

Group address 
(Gq) 

TR1(2)/ TR2(2)/ 
TR1(9)/ TR2(9) 

TR1 (7) / TR2(7) 
/ TR1(4)/ TR2(4)

TR1 (8) / TR2(8) 
/ TR1(3)/ TR2(3)

TR1 (6) / TR2(6) / 
TR1(5)/ TR2(5) 

TR1 (10) / 
TR2(10) / TR1(1)/ 

TR2(1) 
0 0 0 0 0 0  

1, 2, 4, 8, 16 1 c11
10 c11

2 c11
4 c11

8 c11
6 

3, 6, 12, 24, 17 2 c11
6+c11

10 c11
10+c11

2 c11
2+c11

4 c11
4+c11

8 c11
8+c11

6 
5, 10, 20, 9, 18 3 c11

8+c11
10 c11

6+c11
2 c11

10+c11
4 c11

2+c11
8 c11

4+c11
6 

7, 14, 28, 25, 19 4 c11
8+ c11

6+c11
10 c11

6+ c11
10+c11

2 c11
10+ c11

2+c11
4 c11

2+ c11
4+c11

8 c11
4+ c11

8+c11
6 

11, 22, 13, 26, 21 5 c11
4+ c11

6+c11
10 c11

2+ c11
8+c11

10 c11
2+c11

4+ c11
6 c11

4+c11
8+ c11

10 c11
2+ c11

8+c11
6 

15, 30, 29, 27, 23 6 c11
4+ c11

8+ 
c11

6+c11
10 

c11
8+ c11

6+ 
c11

10 +c11
2 

c11
6+ c11

10 

+c11
2+c11

4 
c11

10+ c11
2 

+c11
4+c11

8 
c11

2+ c11
4+ 

c11
8+c11

6 

31 7 c11
2+ c11

4+ 
c11

8+c11
6+c11

10
c11

2+ c11
4+ 

c11
8+c11

6+c11
10

c11
2+ c11

4+ 
c11

8+c11
6+c11

10
c11

2+ c11
4+ 

c11
8+c11

6+c11
10 

c11
2+ c11

4+ 
c11

8+c11
6+c11

10 

 

 

Table 3.5: The 8 groups of memory content used for computing the 5-point cyclic 

convolution in GDAUs. 
Grouped 

candidates of DA 
input (Xq) 

Group address 
(Gq) 

TI1(2)/ TI2(2)/ 
TI1(9)/ TI2(9) 

TI1 (7) / TI2(7) / 
TI1(4)/ TI2(4) 

TI1 (8) / TI2(8) / 
TI1(3)/ TI2(3) 

TI1 (6) / TI2(6) / 
TI1(5)/ TI2(5) 

TI1 (10) / TI2(10) 
/ TI1(1)/ TI2(1) 

0 0 0 0 0 0  
1, 2, 4, 8, 16 1 -s11

10 -s11
2 s11

4 -s11
8 -s11

6 
3, 6, 12, 24, 17 2 -s11

6-s11
10 -s11

10-s11
2 -s11

2+s11
4 s11

4-s11
8 -s11

8-s11
6 

5, 10, 20, 9, 18 3 -s11
8-s11

10 -s11
6-s11

2 -s11
10+s11

4 -s11
2-s11

8 s11
4-s11

6 
7, 14, 28, 25, 19 4 -s11

8- s11
6-s11

10 -s11
6- s11

10-s11
2 -s11

10- s11
2+s11

4 -s11
2+ s11

4-s11
8 s11

4- s11
8-s11

6 
11, 22, 13, 26, 21 5 s11

4- s11
6-s11

10 -s11
2- s11

8-s11
10 -s11

2+s11
4- s11

6 s11
4-s11

8- s11
10 -s11

2- s11
8-s11

6 

15, 30, 29, 27, 23 6 s11
4-s11

8- 
s11

6-s11
10 

-s11
8- s11

6 - 
s11

10 -s11
2 

-s11
6- s11

10 

-s11
2+s11

4 
-s11

10- s11
2 

+s11
4-s11

8 
-s11

2+ s11
4- 

s11
8-s11

6 

31 7 -s11
2+ s11

4- 
s11

8-s11
6-s11

10 
-s11

2+ s11
4- 

s11
8-s11

6-s11
10 

-s11
2+ s11

4- 
s11

8-s11
6-s11

10 
-s11

2+ s11
4- 

s11
8-s11

6-s11
10 

-s11
2+ s11

4- 
s11

8-s11
6-s11

10 

 

Design evaluation 

In this section, we will illustrate the performance evaluation on the proposed 

GDA design and some existing DFT designs. The existing DFT designs in the 

evaluation include systolic array designs [10][33], memory-based DA designs 

[34][35], and adder-based DA designs [38]. For a fair comparison, we evaluate the 

hardware cost and average cycle time (ACT) of these existing designs and the 

proposed design based on Avant 0.35 μm, 3.3-volt CMOS cell-library [43]. Besides, 

we adopt the logic synthesis to obtain the measures of hardware cost and ACT for the 

component whose measures cannot be found from the cell-library, such as the address 

decoders, the specific memory cells, and RAM cells. According to the measures of 

area cost and ACT for the used components, we can fairly evaluate the performance 

of these designs in terms of delay-area products with respect to different values of N. 
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Table 3.6 and Table 3.7 respectively show the models to estimate the area cost of 1-D 

N-point DFT modules with or without partitioned cyclic convolution. Table 3.8 

shows the corresponding models to estimate the ACT for the existing systolic arrays, 

DA-based designs, and the proposed GDA design with real input data. The ACT 

denotes the time needed to perform a 1-D N-point DFT. Besides, we carefully decide 

the data word-length of the components for evaluating the different designs, 

respectively.  

In the case of 8-bit real input data and complex coefficients, the existing 

systolic array design [10] requires 2(N+1) PEs to process the real part and imaginary 

part of 1-D N-point DFT, where each PE requires one 16-bit multiplier, one 20-bit 

adder, one 8-bit register, and two 20-bit registers. The design in [33] is a 

memory-based systolic array design, which uses a different way to implement the 

multipliers. It needs an 8-bit multiplexer and demultiplexer for the preprocessing, 

and each PE is composed of two 12-bit memorys, 8-bit 2-to-1 multiplexers, and one 

20-bit adder. The designs in [34][35] are the DA-based designs. The design [35] uses 

the technique of offset binary coding (OBC) to reduce the memory size required in 

the design [34]. Due to the fact that the two designs are constructed by the same DA 

architecture, they are composed of 8-bit and 20-bit registers respectively for the 

input buffer and output buffer, 12-bit memory modules, 20-bit adders, and 20-bit 

registers for processing stage. The extra XOR gates and 16-bit 2-to-1 multiplexers 

are needed in the design [35].  

As for the adder-based DA design [38], the issue in this design is how to find 

the common terms from the nonzero sub-expressions in order to reduce the hardware 

cost of the summation network. Extracting the common terms is similar to the 

problem of logic optimization. Since this is a NP complete problem [39], it is almost 

impossible to exactly estimate the hardware cost of the adder-based DA design. Thus 

the worst-case estimation for the common terms of the adder-based DA design has 

been adopted here. 

Fig. 3.4, Fig. 3.5, and Fig. 3.6 respectively show the comparison of area cost, 

ACT, and area-delay product of the existing designs and the proposed GDA design in 

realizing the 1-D DFT, where the 5-point and 7-point 1-D DFTs are realized by using 

the GDA design, and the 11-point 1-D DFT is realized by using the BGDA design 

with the partition factors of 2 x 5 for the 10-point cyclic convolution required in the 



 53

1-D 11-point DFT. As shown in Fig. 3.6, the delay-area product of the proposed 

design is much smaller than the traditional memory-based DA design. Precisely, the 

proposed GDA design can save averagely 68%, 49%, and 29% of the delay-area 

product, respectively, as compared with the systolic array designs [10][33], 

memory-based DA designs [34][35], and adder-based DA design [38] in the case that 

the length of cyclic convolution is smaller than nine. Generally, the length of cyclic 

convolution should be smaller than nine for obtaining a reasonable memory size in 

DA-based designs. 
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Fig. 3.4: Comparison of the area cost of the existing DFT designs and the proposed 

GDA design in realizing the 1-D N-point DFT. 
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Fig. 3.5: Comparison of the ACT for the existing designs and the proposed GDA 

design in realizing the 1-D N-point DFT. 

 

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

5 7 11

Transform length (N )

D
el

ay
-a

re
a 

pr
od

uc
t (

ga
te

s*
ns

)

Systolic array [Murthy]

Memory-based systolic
array [Guo]
Traditional DA [White]

OBC-based DA [Choi]

Adder-based DA
[Chang]
GDA [Ours]

 

Fig. 3.6: Comparison of the delay-area product for the existing designs and the 

proposed GDA design in realizing the 1-D N-point DFT. 
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Table 3.6: Area cost models to estimate the 1-D N-point DFT modules in the existing systolic 

array designs, DA-based designs, and the proposed GDA design with real input data. 

 Module name 

Address 
decoder
(coded 

addresses) 

XOR 
(bit) 

Mux/Demux
(words) 

RAM
(words)

memory
(double-
words)

(N-1)-bit 
Barrel 
rotator
(double-
words)

Adder 
(double- 
words) 

Mul 
(double- 
words) 

Reg 
(words)

P/S 
(words)

Murthy [10] 
(Systolic array) 

Array 
processing 

stage 
      2(N+1) 2(N+1) 3(N+1)  

 

Input-buffer, 
output-buffer, 

and 
Preprocessing 

stage 

N  2-to-1: 2 
1-to-2: 1 N     2N  

Guo [33] 
(Memory-based 
systolic array) 

Array 
processing 

stage 

2*[(N-1)* 
2L/2*2]  2 to 1: 

2*[(N-1)+3]  2*[(N-1)* 
2L/2*2]  2*[2(N-1)+

2]    

 totally N+2*[(N-1
)* 2L/2*2]  2N+7 N (N-1)*2L/2*

4  4N  2N  

 Input and  
output buffers       1  2N  

White [34] 
(Traditional 

DA) 

DA processing 
stage 2(N-1)    2*2(N-1)* 

(N-1)/2  2*(N-1)/2  2*(N-1)/2 N-1 

 Y(0) 
computation       1  1  

 totally 2(N-1)    2(N-1)* 
(N-1)  N+1  3N N-1 

 Input and  
output buffers       1  2N  

Choi [35] 
(OBC-based 

DA) 

DA processing 
stage 

(coeff-add, 
sum, acc) 

2(N-1) -2 2(2(N-2
)+2) 

2 to 1: 
2*2*(N-1)/2
+2*(N-1)/2  2*2(N-1)-2 * 

(N-1)/2  2*(N-1)/2  2*(N-1)/2 N-1 

 Y(0) 
computation       1  1  

 totally 2(N-1) -2 4(N-1) 3(N-1)  2(N-1)-2 * 
(N-1)  N+1  3N N-1 

 Input and 
output buffers       1  2N  

Chang [38] 
(Adder-based 

DA) 

DA processing 
stage 

(DA, sum) 
     

2*[(N-1) 
+L+1]* 
(N-1)/2 

 2*(N-1)/2  

 Y(0) 
computation       1  1  

 totally       N2+N(L-1)-
L  3N  

 Input and  
output buffers       1  2N  

Proposed GDA 
design 

DA processing 
stage G(N-1)    2*G(N-1)* 

(N-1)/2
42 2*(N-1)/2  2*(N-1)/2 N-1 

 Y(0) 
computation       1  1  

 totally G(N-1)    G(N-1)* 
(N-1) 2 N+1  3N N-1 

Note:  
1. L denotes the word length that equals to 16 in the design example, and N denotes 

the transform length. 
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Table 3.7: Area cost models to estimate the 1-D N-point DFT modules with the partitioned 

cyclic convolution in the existing systolic array designs, DA-based designs, and the proposed 

BGDA design with real input data. 

 Module name 

Address 
decoder 
(coded 

addresses) 

XOR 
(bit) 

Mux/Demux
(words) 

RAM
(words)

memory
(double-
words)

(N-1)/2-bit 
Barrel 
rotator
(double-
words)

Adder 
(double- 
words) 

Mul 
(double- 
words) 

Reg 
(words)

P/S 
(words)

Murthy [10] 
(Systolic array) 

Array 
processing 

stage 
      2(N+1) 2(N+1) 3(N+1)  

 

Input-buffer, 
output-buffer, 

and 
Preprocessing 

stage 

N  2-to-1: 2 
1-to-2: 1 N     2N  

Guo [33] 
(Memory-based 
systolic array) 

Array 
processing 

stage 

2*[(N-1)* 
2L/2*2]  2 to 1: 

2*[(N-1)+3]  2*[(N-1)* 
2L/2*2]  2*[2(N-1)+

2]    

 totally N+2*[(N-1
)* 2L/2*2]  2N+7 N (N-1)*2L/2*

4  4N  2N  

 Input and  
output buffers       1  2N  

White [34] 
(Traditional 

DA) 

DA processing 
stage 2*2(N-1)/2    2*2*2(N-1)/2

* (N-1)/2  2*(N-1)/2+
2*(N-1)/2  2*(N-1)/2 N-1 

 Y(0) 
computation       1  1  

 totally 2(N+1)/2    2(N+1)/2 * 
(N-1)  2N  3N N-1 

 Input and  
output buffers       1  2N  

Choi [35] 
(OBC-based 

DA) 

DA processing 
stage 

(coeff-add, 
sum, acc) 

2*2(N-1)/2 -2 

2*2*(2
*((N-1)
/2-2)+2

) 

2 to 1: 
2*2*2*(N-1)
/2+2*(N-1)/2  2*2*2(N-1)/2-

2 * (N-1)/2  2*(N-1)/2 
+2*(N-1)/2  2(N-1)/2 N-1 

 Y(0) 
computation       1  1  

 totally 2(N-1)/2-1 4(N-3) 5(N-1)  2*2(N-1)/2-2 
* (N-1)  2(N-1)  3N N-1 

 Input and 
output buffers       1  2N  

Chang [38] 
(Adder-based 

DA) 

DA processing 
stage 

(DA, sum) 
     

2*[2*[(N-1
)/2 

+L]+1]* 
(N-1)/2 

 2*(N-1)/2  

 Y(0) 
computation       1  1  

 totally       N2+N(2L-1
)-2L  3N  

 Input and  
output buffers       1  2N  

Proposed 
BGDA design 

DA processing 
stage 

2*G((N-1)/
2)    

2*2*G((N-
1)/2)* 

(N-1)/2
42*2 2*(N-1)/2+

2*(N-1)/2  2*(N-1)/2 N-1 

 Y(0) 
computation       1  1  

 totally 2*G((N-1)/
2)    2G((N-1)/2

)* (N-1) 4 2N   3N N-1 
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Table 3.8: Average cycle time (ACT) models to estimate the not partitioned and 

partitioned 1-D N-point DFT modules in the existing systolic array designs, DA-based 

designs, and the proposed GDA design with real input data. 

 Not partitioned Partitioned 
Murthy [10] 

(Systolic array) N * (Tmul + Tadd + Tlatch) N * (Tmul + Tadd + Tlatch) 

Guo [33] 
(Memory-based 
systolic array) 

N * (Trom1 + 2Tadd + Tlatch) N * (Trom1 + 2Tadd + Tlatch) 

White [34]  
(Traditional DA) L * (Trom2 + Tadd + Tlatch) L * (Trom2 + 2Tadd + Tlatch) 

Choi [35] 
(OBC-based DA) L * (Txor + 2Tmux + Trom3 + 2Tadd + Tlatch) L * (Txor + 2Tmux + Trom3 + 3Tadd + Tlatch)

Chang [38] 
(Adder-based DA) ((N-1)+2log2L) * Tadd + Tlatch (((N-1)/2-1)+2log2L+1) * Tadd + Tlatch

Proposed GDA design L * (Trom5 + Tbar + Tadd + Tlatch) L * (Trom5 + Tbar + 2Tadd + Tlatch) 

Note:  

1. Tmul denotes the delay time of multiplier, Tmux denotes the delay time of multiplexer, Tadd 
denotes the delay time of adder, Trom denotes the access time of memory, and Tbar denotes 
the delay time of Barrel shifter with N-word width. 

2. Since the required memory sizes of the designs except for the adder-based DA are 
different, the access time of memory in these designs is also different. 

3. The timing costs of memory are the sum of delay in both the address decoder and 
memory -cell. 

4. L denotes the word length of the candidate of DA input, and N denotes the transform 
length of 1-D DFT. 

 

 

3.2 Design of 1-D DHT 

3.2.1 Cyclic Convolution Formulation 

Prime-length case 

The 1-D N-point DHT of an input sequence {x(n), n = 0, 1, …., N-1} is defined as 

1,,1,0      ;)()(
1

0
−=⋅=∑

−

=

NkHnxkY
N

n

nk
N L                 (3.21) 

where )2sin)2cos2( nkα(nk()nkcasH nk
N +== αα , α=π/N, and N denotes the 

transform length. If N is prime, we can rewrite (3.21) in a cyclic convolution by 

exploiting the property of input/output (I/O) data permutation as 
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where (gk)N denotes the result of “gk modulo N” for short and g is a primitive element. 

T((gk)N) in (3.22) is the kernel of the N -point DHT that is written in cyclic 

convolution formulation.  

Non-prime length case 

According to (3.21) and utilizing the Chirp-Z transform [50][51], we illustrate 

the derivation of cyclic convolution algorithm for non-prime length DHT in the 

following. By introducing two sequences {C(k)}and {S(k)} defined as follows: 
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we can express DHT equation in (3.21) as 

1,,1,0)];()2()2()([
)cos(2

1)( 2 −=−−+−+
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= NkkSkNSkNCkC
k
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  (3.25) 

Then, suitably evaluating the term C(k) + C(2N-k) + S(2N-k) - S(k) yields 
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1)( 2 −=+
⋅
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                     (3.26) 

where 
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In the above equations, (A)N denotes the result of A modulo N operation for short. It is 

seen that both DHT kernel operations, i.e. Tc(k) and Ts(k) in (3.27), are expressed in 

cyclic convolution forms and thus can be efficiently implemented by GDA. However, 

the non-prime length DHT algorithm requires pre-processing as indicated in (3.28) ~ 

(3.31) and post-processing as indicated in (3.26). This algorithm is useful in realizing 

the DHT with any length, which can cover the applications with broader ranges in the 

transform length than the fast algorithms being developed for 2p-point DHT and other 

prime-length DHT algorithms. 

 

3.2.2 Numerical stability 

For the above mentioned algorithms with non-prime length, the issue of division 

operation involves in them to evaluate the transform values. This will cause numerical 

instability of some results as the denominator in division operation may equal to zero 

for specific values of k. In the following, we illustrate the remedy for this issue to 

ensure the correctness of non-prime length 1-D DHT algorithm.  
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Since 0)cos( 2 =N
k π  implies 1or  1)sin( 2 −=N

k π , we can overcome this issue by 

first reformulating (3.25) as  
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Then, evaluating the term C(k) - C(2Nj-k)+ S(2Nj-k) + S(k) based on the same 

procedure shown in before yields 
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Compared with the procedure mentioned before, the sequences {Uc(k)} and {Us(k)} 

are similar to {Tc(k)} and {Ts(k)}, and the operands yf((N+k)N) and xf((N+k)N) are 

exchanged with different signs. This phenomenon reveals that this issue of numerical 

instability can be solved by using simple control in hardware realization. 

 

3.2.3 Symmetry exploration of the DHT in cyclic convolution 

Let us take an example of 1-D 11-point DHT with the real input sequence {x(n), 

n=0, 1, …, 10}. The cyclic convolution form of T((gk)N) can be expressed as  
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As shown in (3.36), the coefficient matrix in (3.35) can be expanded as the 

even symmetries of cosine function 1,...2,1, −== − Nicc iN
N

i
N , where )cos(2 N
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Then, we can re-write T((2k)11) in (3.35) as follows: 
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From (3.37), we see that 
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Then, we can respectively express TR(.) and TI(.) in (3.38) as 
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Observing (3.39) and (3.40), similar to the DFT, we find that the cosine part of 

T((2k)11) is composed of the same upper and lower halves, and the sine part of 

T((2k)11) is composed of the upper and the lower halves with the same absolute value, 

but different signs. We can also calculate two output values simultaneously through 

(3.37) with the same hardware. This feature facilitates the hardware sharing in 

computing T((gk)N) with even and odd indices such that only half the hardware is 

needed as compared with the direct realization on (3.35).  

 

3.2.4 Architecture design and evaluation 

Architecture design 

By exploiting the symmetrical properties of both the cosine and sine functions 

shown in (3.37) in the DHT computation, the outputs with odd indices can also be 

obtained by means of hardwiring to achieve the reduction of memory cost by a factor 
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of two. With the example of 1-D 11-point DHT and referring to the reformulation of 

1-D DHT in (3.39) and (3.40), we can realize the 10-point cyclic convolution in 

11-point DHT through the architectures designed for the 5-point cyclic convolution 

as shown in Fig. 3.7. The architecture is composed of GDAUs, address decoder, 

adders/subtractors, accumulators, and parallel-to-serial converters. The GDAUc and 

GDAUs are used to respectively realize the operations specified in (3.39) and (3.40) 

for computing 5-point cyclic convolution. According to the rule of group mapping 

shown in Table 2.1, the contents of the memory corresponding to GDAUc and 

GDAUs are shown in Table 3.9 and Table 3.10 respectively, which illustrate the 

distribution of partial products in the memory of GDA design. 
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Fig. 3.7: The architecture of the GDA design realizing the 1-D 11-point DHT. 
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Table 3.9: The 8 groups of memory content used for computing the 5-point cyclic 

convolution in GDAUc. 
Grouped 

candidates of DA 
input (Xq) 

Group address 
(Gq) 

TC1(2)/ TC2(2)/ 
TC1(9)/ TC2(9) 

TC1 (7) / TC2(7) 
/ TC1(4)/ TC2(4)

TC1 (8) / TC2(8) 
/ TC1(3)/ TC2(3)

TC1 (6) / TC2(6) / 
TC1(5)/ TC2(5) 

TC1 (10) / 
TC2(10) / TC1(1)/ 

TC2(1) 
0 0 0 0 0 0  

1, 2, 4, 8, 16 1 c11
10 c11

2 c11
4 c11

8 c11
6 

3, 6, 12, 24, 17 2 c11
6+c11

10 c11
10+c11

2 c11
2+c11

4 c11
4+c11

8 c11
8+c11

6 
5, 10, 20, 9, 18 3 c11

8+c11
10 c11

6+c11
2 c11

10+c11
4 c11

2+c11
8 c11

4+c11
6 

7, 14, 28, 25, 19 4 c11
8+ c11

6+c11
10 c11

6+ c11
10+c11

2 c11
10+ c11

2+c11
4 c11

2+ c11
4+c11

8 c11
4+ c11

8+c11
6 

11, 22, 13, 26, 21 5 c11
4+ c11

6+c11
10 c11

2+ c11
8+c11

10 c11
2+c11

4+ c11
6 c11

4+c11
8+ c11

10 c11
2+ c11

8+c11
6 

15, 30, 29, 27, 23 6 c11
4+ c11

8+ 
c11

6+c11
10 

c11
8+ c11

6+ 
c11

10 +c11
2 

c11
6+ c11

10 

+c11
2+c11

4 
c11

10+ c11
2 

+c11
4+c11

8 
c11

2+ c11
4+ 

c11
8+c11

6 

31 7 c11
2+ c11

4+ 
c11

8+c11
6+c11

10
c11

2+ c11
4+ 

c11
8+c11

6+c11
10

c11
2+ c11

4+ 
c11

8+c11
6+c11

10
c11

2+ c11
4+ 

c11
8+c11

6+c11
10 

c11
2+ c11

4+ 
c11

8+c11
6+c11

10 

 

Table 3.10: The 8 groups of memory content used for computing the 5-point cyclic 

convolution in GDAUs. 
Grouped 

candidates of DA 
input (Xq) 

Group address 
(Gq) 

TS1(2)/ TS2(2)/ 
TS1(9)/ TS2(9) 

TS1 (7) / TS2(7) / 
TS1(4)/ TS2(4) 

TS1 (8) / TS2(8) / 
TS1(3)/ TS2(3) 

TS1 (6) / TS2(6) / 
TS1(5)/ TS2(5) 

TS1 (10) / 
TS2(10) / TS1(1)/ 

TS2(1) 
0 0 0 0 0 0  

1, 2, 4, 8, 16 1 s11
10 s11

2 -s11
4 s11

8 s11
6 

3, 6, 12, 24, 17 2 s11
6+s11

10 s11
10+s11

2 s11
2-s11

4 -s11
4+s11

8 s11
8+s11

6 
5, 10, 20, 9, 18 3 s11

8+s11
10 s11

6+s11
2 s11

10-s11
4 s11

2+s11
8 -s11

4+s11
6 

7, 14, 28, 25, 19 4 s11
8+ s11

6+s11
10 s11

6+ s11
10+s11

2 s11
10+ s11

2-s11
4 s11

2- s11
4+s11

8 -s11
4+ s11

8+s11
6 

11, 22, 13, 26, 21 5 -s11
4+ s11

6+s11
10 s11

2+ s11
8+s11

10 s11
2-s11

4+ s11
6 -s11

4+s11
8+ s11

10 s11
2+ s11

8+s11
6 

15, 30, 29, 27, 23 6 -s11
4+s11

8+ 
s11

6+s11
10 

s11
8+ s11

6 + 
s11

10 +s11
2 

s11
6+ s11

10 

+s11
2-s11

4 
s11

10+ s11
2 

-s11
4+s11

8 
s11

2- s11
4+ 

s11
8+s11

6 

31 7 s11
2- s11

4+ 
s11

8+s11
6+s11

10
s11

2- s11
4+ 

s11
8+s11

6+s11
10

s11
2- s11

4+ 
s11

8+s11
6+s11

10
s11

2- s11
4+ 

s11
8+s11

6+s11
10 

s11
2- s11

4+ 
s11

8+s11
6+s11

10 

 

Design evaluation 

The evaluation of GDA-based DHT design and some existing DHT designs 

involves in the subsequent section of long length DSST’s designs.  

 

3.3 Design of 1-D DCT 

3.3.1 Cyclic Convolution Formulation 

Prime-length case 

If transform length N is prime, we can write the 1-D N-point DCT of an input 

sequence {y(n), n = 0, 1, …., N-1} in cyclic convolution form by exploiting the 

property of I/O data permutation as 
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By using the symmetry property of cosine kernel as 
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we can re-write the T((gk)N) in (3.41) as  
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To describe the proposed algorithm in more detail, we can write the kernel T((3k)7) in 

a design example of 1-D 7-point DCT in matrix form as 

,
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where a denotes 
7
π . However, the input data elements of the kernel possess different 

signs so that it is not easy to apply the proposed memory efficient approach directly to 

DCT realization. According to the symmetry property of DCT coefficients as that we 

show in (3.43), we can write (3.45) as  
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and the data elements in the matrix of (3.46) can be merged as  
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To separate the even and odd outputs in (3.47), we can obtain two smaller perfect 

cyclic convolution forms as following: 
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and  
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From (3.46), (3.47), (3.48), and (3.49), we find that exploiting the symmetry 

property of the DCT coefficient can help merging the input data elements in the DCT 

kernel and separating the kernel into two perfect cyclic forms, which facilitates the 

efficient realization of the DCT through the proposed design approach. Fig. 3.8 shows 

the area reduction of the memory cost when applying the symmetry property of the 

DCT coefficients (shown in (3.48) and (3.49)) or not (shown in (3.45)). We find that it 

is helpful in reducing the memory size greatly when using the symmetry property of 

the DCT coefficients.  
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Fig. 3.8: The area reduction of the memory cost when applying the symmetry property 

of DCT coefficients or not. 

 

For facilitating the proposed memory efficient design approach, we further 

formulate the T((gk)N) specified in (3.44) as  
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where L denotes the data word length of the variable x, N denotes the transform length, 

the variable G( ))((gx N
kn

j
− ) denotes the jth-bit group address of the memory access 

operations, and the preprocessed input sequence {x(n)} is defined as 
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The value of m is determined by  
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Non-prime length case 

By introducing a indirect sequence {x(n)}, we can express the non-prime length 

1-D DCT as 
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By introducing a new sequence {C(k)} as 
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Now appropriately evaluating the term C(k)+C(2N-k) 
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and the sequences {xc(n)} and {xs(n)} are defined respectively as 
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In the above equations, the both DCT kernel operations Tc(k) and Ts(k), are 

expressed in cyclic convolution forms and thus can be efficiently implemented by 

GDA. However, the non-prime length DCT algorithm also requires pre-processing as 

indicated in (3.60) ~ (3.64) and post-processing as indicated in (3.54). This algorithm 

is useful in realizing the DCT with any length, which can cover the applications with 

broader ranges in the transform length than the algorithms being developed for 

2p-point DCT. 

 

3.3.2 Numerical stability 

Similar to the non-prime length 1-D DHT, the issue of numerical instability is 

also involved in the non-prime length 1-D DCT algorithm, and causes numerical 

instability of some results as the denominator in division operation may equal to zero 

for specific values of k. For ensuring the correctness of non-prime length 1-D DCT, 

we first introduce a sequence {S(k)} that is different from the {C(k)} mentioned above. 

That is, 



 72 

1,,1,0];)2sin[()()(
1

0

2 −=−⋅= ∑
−

=

NknkknxkS
N

n
Lβ  

Using this sequence, we can first express the sequence {T(k)} as 

1,1,0)];2()([
)sin(2

1)( 2 −=−+
⋅

= NkkNSkS
k

kT L
β

 

Then, based on the similar procedures shown in before, we can rewrite the T(k) as  
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The sequences {Uc(k)} and {Us(k)} are similar to {Tc(k)} and {Ts(k)}, and the 

operands cf((N+k)N) and sf((N+k)N) are exchanged with different signs. Thus we also 

can solve this issue of numerical instability by using simple control in hardware 

realization. 

 

3.3.3 Architecture design and evaluation 

Architecture design 

Fig. 3.9 shows the proposed pipeline architecture that realizes the 1-D N-point DCT. 

It consists of the pre-processing stage, DA processing stage, and post-processing stage. 

For the 1-D 7-point DCT design example, the input buffer and pre-processing in the 

preprocessing stage shown as Fig. 3.10 are designed by using the bidirectional shift 

registers and an accumulator, which is used to generate the data sequence x(n) from 

input sequence y(n). The detail cycle information shows that the latency consumed by 

input data sampling and x(n) computation is 14 cycles. The DA processing stage 

shown as Fig. 3.11, named group distributed arithmetic unit (GDAU), is designed 

with the proposed memory efficient approach to carry out the computation of T((3k)7) 

in the design example of 1-D 7-point DCT. Due to the same content of group memory, 

only one group memory in the GDAU is required to compute the outputs of the 
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separated cyclic operations. In Fig. 3.11, the candidate of DA input for qth bit Xq={x3,q, 

x2,q, x1,q} is first fed into an address decoder to determine which group it should 

belong to. The address decoder will compute the seed-value X’q={x’3,q, x’2,q, x’1,q}, 

group address Gq={g2,q, g1,q}, and the rotating factor Rq={r2,q, r1,q} by decoding the 

input vector according to Table 3.11. Table 3.12 shows the original partial product 

distributions for computing the outputs of DCT kernel under the same input value. 

From Table 3.12, the rotation relationship between these partial products is also 

visible, and then the memory content arrangement in the proposed design is shown in 

Table 3.13. It is noted that we only need one small group memory module of size 

(N-1)/2 × Gnum words for computing T((3k)7). In above, Gnum denotes the number of 

groups in the group memory modules, which is dependent on the transform length N. 

The post-processing stage shown in Fig. 3.12(a) is used to perform the post 

computation for GDAU outputs, including the operations of multiplying by two, 

adding with x(0), and multiplying serially by the cosine coefficients in formulation. 

Since the operation of multiplying by two is performed by the manner of hardwiring, 

it has no hardware cost required. The output buffer shown in Fig. 3.12(b) in 

post-processing stage is used to perform the operations of pre-loadable shifting for 

serially generating the results of DCT in order. 
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Fig. 3.9: Block diagram of the proposed pipeline architecture for computing the 1-D 

N-point DCT. 
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Fig. 3.10: Design of the preprocessing stage in the 1-D 7-point DCT. 
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Fig. 3.11: Design of the DA processing stage that is used to compute the kernel of 

T((3k)7) in the 1-D 7-point DCT. 
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Table 3.11: The seed-value, group address, and rotating factor used in the design of 

group address decoder of 1-D 7-point DCT. 

Grouped DA input value (Xq) 
{x3,q, x2,q, x1,q} 

Seed-value (X’q) 
{x’3,q, x’2,q, x’1,q} 

1Rotating 
factor (Rq) 
{r2,q, r1,q} 

Group 
address (Gq)

{g2,q, g1,q} 

001 0 
010 1 
100 

001 
2 

0 

011  0 
110 1 
101 

011 
2 

1 

000 000 0 2 
111 111 0 3 

Note:  
1. Rotating factor denotes the number of position of the output data, 

corresponding to the candidate of DA input value in a group, should be 
rotated. 

 

 

Table 3.12: The partial products distribution for different DCT outputs under the same 

input value. 

Input 
(Xp,q)/(Xm,q) 

T(2)/ T(5) T(6) / T(1) T(4) / T(3) Group 
address 

000 0 0 0 2 
001 cos(4a) cos(2a) cos(6a) 0 
010 cos(6a) cos(4a) cos(2a) 0 
011 cos(6a)+ 

cos(4a) 
cos(2a)+ 
cos(4a) 

cos(2a)+ 
cos(6a) 1 

100 cos(2a) cos(6a) cos(4a) 0 
101 cos(2a)+ 

cos(4a) 
cos(2a)+ 
cos(6a) 

cos(6a)+ 
cos(4a) 1 

110 cos(2a)+ 
cos(6a) 

cos(6a)+ 
cos(4a) 

cos(2a)+ 
cos(4a) 1 

111 cos(2a)+ cos(4a)+ 
cos(6a) 

cos(2a)+ cos(4a)+ 
cos(6a) 

cos(2a)+ cos(4a)+ 
cos(6a) 3 

Note:  
1. Xp,q denotes the sum of inputs for the qth bit. 
2. Xm,q denotes the difference of inputs for the qth bit. 
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Table 3.13: 8-word memory contents arranged into groups. 
Original 
address 

Group 
address    

1, 2, 4 0 cos(4a) cos(2a) cos(6a) 

3, 5, 6 1 cos(6a)+ 
cos(4a) 

cos(2a)+ 
cos(4a) 

cos(2a)+ 
cos(6a) 

0 2 0 0 0 

7 3 cos(2a)+ cos(4a)+ 
cos(6a) 

cos(2a)+ cos(4a)+ 
cos(6a) 

cos(2a)+ cos(4a)+ 
cos(6a) 
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Fig. 3.12: Design of the post-processing stage in the 1-D 7-point DCT including (a) 

the post-processing, and (b) the output buffer. 
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Design evaluation 

In this section, we will illustrate the performance evaluation of the design 

using the proposed design approach and some existing DCT designs. The existing 

DCT designs used in this evaluation include memory-based systolic array design [33], 

direct DA design [34], OBC DA design [35] and adder-based DA design [52].  For a 

fair comparison, we also adopt the Avanti 0.35 μm, 3.3-volt CMOS cell-library [43] 

in the performance evaluation in terms of the delay time and area cost. According to 

these two measures, we can evaluate these designs in terms of delay-area product with 

respect to different values of N. Table 3.14 shows the comparisons of these designs. 

The design in [33] is a memory-based systolic array design. It needs about N adders, 

N-1 16-bit Flip-Flop and (N-1)⋅2(L/2) words of memory if the memory tables in the 

design are partitioned once. The silicon area of this design is equal to 1237N-1217 

Kum2. The design in [34] is the conventional memory-based DA design; it requires 

about N 16-bit adders, N 16-bit Flip-Flops used for PISO and 2N N words of memory. 

The silicon area of this design is equal to 13.7N+4.75 2N N Kum2. The design in [35] 

is the modified memory-based DA design using the reduction technique of OBC, it 

requires about 2N 16-bit adders, N 16-bit Flip-Flop and 2(N-2) N words of memory. 

The silicon area of this design is equal to 19.6N+4.75 2(N-2) N Kum2. The design in 

[52] is the adder-based DA design; it requires about four 16-bit multipliers, 2N+2L+5 

16-bit adders, 4N+3 16-bit Flip-Flops and 4N words of RAM. The silicon area of this 

design is equal to 73N+380 Kum2. Fig. 3.13 shows the delay-area product of the 

proposed design and the existing designs [33]-[35][52] in realizing the 1-D DCT with 

various values of N. As shown in Fig. 3.13, in case of 16-bit data word-length, the 

delay-area product of the proposed design is much smaller than the memory-based 

systolic array DCT design [33] and the other DA-based designs [34][35][52].  
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Table 3.14: The comparison of the proposed design and the existing DCT designs 

[33]-[35][52] in realizing the 1-D N-point DCT in terms of delay and silicon area. 

 Cycle time (T) Mul
(16-bit)

Adder 
(16-bit) 

FF 
(16-bit) 

memory 
(16-bit) 

Barrel shifter 
(16-bit) 

RAM 
(16-bit) Delay*Area (ns * Kum2) 

Guo [33] 
(Memory-based 
systolic array) 

T=tmux+trom 
+tadd+tadd  5.9N 7.8(N-1) 1216 (N-1)  7.4 (N-1) [(N-1)T/N] (1237N-1217) 

White [34] 
(directly DA) T = trom+ tadd  5.9N 23.4N 4.75 2N N   [(16T)/N]*(29.3N+4.75 2N  N) 

Choi [35] 
(OBC-based DA) T = trom+2 tadd  11.8N 23.4N 4.75 2(N-2) N   [(16T)/N]* (35.2N+4.75 2(N-2) N)

Guo [52] 
(Adder-based DA) 

T =max{tmul, tadd+tff} 34.6*4 5.9(2N+37) 7.8(4N+3)   7.4(4N) [(NT)/N]*(73N+380) 

The proposed 
design T= trom+tbr+tadd  11.8N 23.4(N-1) )275.4 2

1(2
)1(

7
6 −⋅⋅

− NN 12* [-0.072 + 0.435 * 
(N-1) + 0.053 * (N-1)2]  

[(32T)/N]*[-28.8 + 39.1N + 0.64N2 

+ [ )275.4 2
1(2

)1(
7
6 −⋅⋅

− NN
] 

Note: 
1.  tmul denotes the delay time of multiplier. 
2.  tmux denotes the delay time of multiplexer. 
3.  tadd denotes the delay time of adder. 
4.  trom denotes the access time of memory associated with N for DA-based 

design or associated with wordlength for memory-based systolic array design. 
5.  tbr denotes the delay time of barrel shifter associated with N. 
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Fig. 3.13: The delay-area product of the proposed design and the existing DCT 

designs [33]-[35][52] in realizing the 1-D DCT. 
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3.3.4 Chip implementation 

We have verified the proposed design for 1-D 7-point DCT in VERILOG 

modeling. According to the synthesis result with Avanti 0.35um cell-library, this 

design consumes 7485 gates, and possesses the maximum path delay of 12.1ns. The 

working frequency of the chip is above 82.6 MHz. In other words, the chip can 

maintain the throughput rate of 18.1 M samples/second, i.e., (82.6 MHz / 32 cycles) * 

7 samples. Fig. 3.14 shows the layout view of the 1-D 7-point GDA-based DCT 

design fabricated using TSMC 0.35um CMOS 1P4M process. The core size of 

proposed DCT design is equal to 1734 * 1732 um2. 

 

 

Fig. 3.14: Layout view of the 1-D 7-point GDA-based DCT design. 
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Chapter 4  
Long-length DSST’s designs  
 

Regarding the long length DSST’s design, we adopt the methodology of two 

level decomposition for realization of the long length DSST’s with short ones. In our 

research, we not only partition the cyclic convolution in DSST’s kernel with 

Agwal-Cooley algorithm and pseudocirculant factorization algorithm for the cases of 

prime-length and non-prime length respectively but also combine with the other 

decomposition algorithms [53]-[56] for different cases of transform length, such as 

the Cooley-Tukey algorithm for the case of (a, b) > 1, where the transform length N = 

a ⋅ b, prime factor algorithm (PFA) for the case of (a, b) = 1, and Rader’s algorithm 

for the case of N = pc, where p is prime, and c > 1, to decompose the long length 

DSST’s for short ones. 

 

4.1 Decomposition of long-length DSST’s 

4.1.1 Cooly-Tukey Algorithm 

For the long-length 1-D DFT with non-prime length, firstly we can apply 

Cooly-Tukey FFT Algorithm to decompose a 1-D N-point DFT into a 2-D DFT with 

the lengths of N1 by N2. Based on the common factor map (CFM) [57], this algorithm 

can map the time index n and frequency index k in 1-D DFT into the time indices n1, 

n2 and frequency indices k1, k2 as 

211

212  
kNkk
nnNn
⋅+=
+⋅=

                                     (4.1) 

where 1,0 111 −≤≤ Nkn , 1,0 222 −≤≤ Nkn . Thus, the 1-D N-point DFT can be 

decomposed into a 2-D N1 x N2 DFT as shown in the following 
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   where 12
1

11

1
),( ),(~,)(),( 1212

1

01
21212

kn
N

N

n

kn
N WknGknGWnnNxknG ⋅=⋅+= ∑
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In the above derivation, we can see that Y(k) can be viewed as a 1-D N2-point 

DFT with input ),(~
12 knG , and ),( 12 knG  can be viewed as a 1-D N1-point DFT with 

input x(N2n1+n2). We can obtain ),(~
12 knG  by multiplying ),( 12 knG  with a twiddle 

factor 12kn
NW . These twiddle factors multiplications can be absorbed into the 

post-processing in the cyclic convolution formulation of 1-D N1-point DFT. By 

realizing the computation of  ),(~
12 knG  and ),( 12 knG  based on the proposed GDA 

approach, we can achieve the design of long-length 1-D DFT 

 

4.1.2 Prime Factor Algorithm 

Prime Factor Decomposition of 1D DFT 

A design example of decomposing 1-D N-point DFT into 2-D N0 x N1 DFT is 

illustrated in the following. Based on prime factor map (PFM) [57], the mapping of 

1-D indices n and k to 2-D indices n1, n2, k1, and k2 are typically given by: 

NNN

N

kNNkNNk

nNnNn

))()((

) (

1
1

000
1

11

1001

10
⋅+⋅=

⋅+⋅=
−−                      (4.3) 

where 10 000 −≤≤ N,kn , 1,0 111 −≤≤ Nkn , with N0 and N1 the relatively prime 

factors of the transform length N. Then, the 1-D N-point DFT shown in (4.2) can be 
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decomposed into the 2-D N0 x N1 DFT as 
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Using the index mappings, we can express the DFT in (4.4) as  
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(4.5) 

Now, according to the PFA, the 1-D N-point DFT is decomposed into a 2-D N0 

x N1 DFT with no twiddle factor such that the GDA design can directly be applied to 

realize each of the 1-D N0-point DFT and N1-point DFT computation. 

 

Prime Factor Decomposition of 1D DHT 

For the long length DHT design, we firstly exploit the prime factor algorithm 

(PFA) to decompose the long length DHT into shortened ones and then implement 

each of the shortened DHT [53][56][58][59]. Based on PFA, the computation of the 

long length DHT can be effectively achieved, whereby a 1-D DHT of N = N1×N2 

samples can be formulated into a separable 2-D N1×N2 DHT. The decomposition of 

1-D N-point DHT is briefly illustrated in the following. 

For input index n and output index k, the mapping of 1-D indices n and k to 2-D 

indices n1, n2, k1, and k2 are typically given by 

NNN

N

kNNkNNk

nNnNn

))()((

) (

2
1

111
1

22

2112

21
⋅+⋅=

⋅+⋅=
−−       (4.6) 

where 1,0 111 −≤≤ Nkn , 1,0 222 −≤≤ Nkn , with N1 and N2 the prime factors of 

the transform length N. Thus, the 1-D N-point DHT can be decomposed into a 2-D N1 

x N2 DHT as shown in the following 

)],(),(),(),([
2
1),( 221142213211221121 kNkNYkNkYkkNYkkYkk −−+−+−+=Ψ   (4.7) 



 83

where )
2

()
2

(),(),( 22
2

1

0
11

1

1

0
2121

2

2

1

1

kn
N

caskn
N

casnnxkkY
N

n

N

n
i

ππ
⋅

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
⋅= ∑ ∑

−

=

−

=
,  

and θθθ sincos +=cas . 

Now, the 1-D N-point DHT is decomposed into a 2-D N1 x N2 DHT. In this case, 

the shortened DHTs are much more efficient in the hardware realization than the 

direct realization of long length DHT. 

 

4.1.3 Rader’s Algorithm 

  [53][61] have shown that the DFT/DHT can be converted to convolution when the 

transform length N is a power of the odd prime, i.e., N = pr for a prime p ≠ 2. For the 

conversion with this algorithm, we must first remove all integers which contain a 

factor p from the set {1, 2, ..., N-1} to get a cyclic group with pr-1(p-1) elements. This 

cyclic group leads to a circular convolution of length pr-1(p-1) as before. The 

remaining computation consists of two DFT’s of length pr-1. The generalized 

algorithm shows that if N = pr the length N transform is computed with one length 

pr-1(p-1) circular convolution, two pr-2(p-1) circular convolutions, four pr-3(p-1) 

circular convolutions, ..., terminating 2r-1(p-1) circular convolutions, An example of 

DFT with the length N = 9 = 32 illustrates this algorithm in detail begin with the 

matrix representation as 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

)8(
)7(
)6(
)5(
)4(
)3(
)2(
)1(
)0(

1
1

111
1
1

111
1
1

111111111

)8(
)7(
)6(
)5(
)4(
)3(
)2(
)1(
)0(

1
9

2
9

3
9

4
9

5
9

6
9

7
9

8
9

2
9

4
9

6
9

8
9

1
9

3
9

5
9

7
9

3
9

6
9

3
9

6
9

3
9

6
9

4
9

8
9

3
9

7
9

2
9

6
9

1
9

5
9

5
9

1
9

6
9

2
9

7
9

3
9

8
9

4
9

6
9

3
9

6
9

3
9

6
9

3
9

7
9

5
9

3
9

1
9

8
9

6
9

4
9

2
9

8
9

7
9

6
9

5
9

4
9

3
9

2
9

1
9

x
x
x
x
x
x
x
x
x

WWWWWWWW
WWWWWWWW
WWWWWW
WWWWWWWW
WWWWWWWW
WWWWWW
WWWWWWWW
WWWWWWWW

Y
Y
Y
Y
Y
Y
Y
Y
Y

       (4.8) 

We remove rows and columns corresponding to the indices of 0, 3, and 6, and 

compute the remaining length six transform 
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using the permutation 

       
5,4,3,2,1,0
5,7,8,4,2,1

  ,9 mod2
=
=

=
m
n

n m  

to obtain the circular convolution (with input reversed as before) 
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and  
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where 2
3

6
9

1
3

3
9  , WWWW == . 

For the deleted column we have 
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and the equivalent form as 
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Only the last two entries Y”(1) and Y”(2) are needed from (4.13) to compute the 

rest of (4.8) as  
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As for the DHT with the length of power of odd prime, the derivation of cyclic 

convolution formulation is similar to that of the DFT. 

 

4.2 Long length DHT Design and Evaluation  

Architecture design 

To facilitate the GDA realization of the shortened DHT without suffering from 

exponential memory size, after algorithm decomposition of the long-length DHT, we 

need to further partition these shortened DHTs, where the cyclic property must be 

preserved in each partition of them. We recall the kernel T((gk)N) of 1-D DHT in 

(3.23), and further partition it into short ones by the Agarwal-Cooley algorithm. With 

this algorithm, we can preserve the cyclic property in each of the partitions and thus 
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apply GDA design approach efficiently to the implementation of the shortened 1-D 

DHT. It means that the original (N-1)-point cyclic convolution can be partitioned into 

s * s short-length cyclic convolutions with the size of t * t, where s and t denote the 

partitioning factors, i.e., N-1 = s * t. Thus, the permutated T((gk)N) in 1-D DHT 

formulation can be written as the sum of some short-length cyclic convolutions. That 

is, 
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(4.31) 

where n’i=1+(ni-1)t+t(ni-1)t+t(s-int((ni-1)/t))s and k’=1+(k-1)t+t(k-1)t+t(s-int((k-1)/t))s 

denote the mapped indices for maintaining the partitioned matrix still preserves the 

cyclic property. Let us examine an example of 1-D 29-point DHT with the real input 

sequence {x(n), n=0, 1,… 28}. The cyclic convolution form of T((gk)N) can be 

expressed as  
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2  1 2 4 8 16 3 6 12 24 19 9 18 7 14 28 27 25 21 13 26 23 17 5 10 20 11 22 15 2
4  15 1 2 4 8 16 3 6 12 24 19 9 18 7 14 28 27 25 21 13 26 23 17 5 10 20 11 22 4
8  22 15 1 2 4 8 16 3 6 12 24 19 9 18 7 14 28 27 25 21 13 26 23 17 5 10 20 11 8
16  11 22 15 1 2 4 8 16 3 6 12 24 19 9 18 7 14 28 27 25 21 13 26 23 17 5 10 20 16
3  20 11 22 15 1 2 4 8 16 3 6 12 24 19 9 18 7 14 28 27 25 21 13 26 23 17 5 10 3
6  10 20 11 22 15 1 2 4 8 16 3 6 12 24 19 9 18 7 14 28 27 25 21 13 26 23 17 5 6
12  5 10 20 11 22 15 1 2 4 8 16 3 6 12 24 19 9 18 7 14 28 27 25 21 13 26 23 17 12
24  17 5 10 20 11 22 15 1 2 4 8 16 3 6 12 24 19 9 18 7 14 28 27 25 21 13 26 23 24
19  23 17 5 10 20 11 22 15 1 2 4 8 16 3 6 12 24 19 9 18 7 14 28 27 25 21 13 26 19
9  26 23 17 5 10 20 11 22 15 1 2 4 8 16 3 6 12 24 19 9 18 7 14 28 27 25 21 13 9
18  13 26 23 17 5 10 20 11 22 15 1 2 4 8 16 3 6 12 24 19 9 18 7 14 28 27 25 21 18
7  21 13 26 23 17 5 10 20 11 22 15 1 2 4 8 16 3 6 12 24 19 9 18 7 14 28 27 25 7
14  25 21 13 26 23 17 5 10 20 11 22 15 1 2 4 8 16 3 6 12 24 19 9 18 7 14 28 27 14
28 = 27 25 21 13 26 23 17 5 10 20 11 22 15 1 2 4 8 16 3 6 12 24 19 9 18 7 14 28 • 28
27  28 27 25 21 13 26 23 17 5 10 20 11 22 15 1 2 4 8 16 3 6 12 24 19 9 18 7 14 27
25  14 28 27 25 21 13 26 23 17 5 10 20 11 22 15 1 2 4 8 16 3 6 12 24 19 9 18 7 25
21  7 14 28 27 25 21 13 26 23 17 5 10 20 11 22 15 1 2 4 8 16 3 6 12 24 19 9 18 21
13  18 7 14 28 27 25 21 13 26 23 17 5 10 20 11 22 15 1 2 4 8 16 3 6 12 24 19 9 13
26  9 18 7 14 28 27 25 21 13 26 23 17 5 10 20 11 22 15 1 2 4 8 16 3 6 12 24 19 26
23  19 9 18 7 14 28 27 25 21 13 26 23 17 5 10 20 11 22 15 1 2 4 8 16 3 6 12 24 23
17  24 19 9 18 7 14 28 27 25 21 13 26 23 17 5 10 20 11 22 15 1 2 4 8 16 3 6 12 17
5  12 24 19 9 18 7 14 28 27 25 21 13 26 23 17 5 10 20 11 22 15 1 2 4 8 16 3 6 5
10  6 12 24 19 9 18 7 14 28 27 25 21 13 26 23 17 5 10 20 11 22 15 1 2 4 8 16 3 10
20  3 6 12 24 19 9 18 7 14 28 27 25 21 13 26 23 17 5 10 20 11 22 15 1 2 4 8 16 20
11  16 3 6 12 24 19 9 18 7 14 28 27 25 21 13 26 23 17 5 10 20 11 22 15 1 2 4 8 11
22  8 16 3 6 12 24 19 9 18 7 14 28 27 25 21 13 26 23 17 5 10 20 11 22 15 1 2 4 22
15  4 8 16 3 6 12 24 19 9 18 7 14 28 27 25 21 13 26 23 17 5 10 20 11 22 15 1 2 15
1  2 4 8 16 3 6 12 24 19 9 18 7 14 28 27 25 21 13 26 23 17 5 10 20 11 22 15 1 1

T( )            x( )     HNj
( )

(4.32) 

 

Exploiting the Agarwal-Cooley algorithm, we can convert the cyclic convolution 

with long length to a four by four short-length cyclic convolutions, and express (4.32) 

as  
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    GDAU1          GDAU2          GDAU3           GDAU4 

2  1 24 25 20 16 7 23 17 2 19 21 11 3 14 28 5 4 9 13 22 6 12 27 10 8 18 26 15 2
19  23 1 24 25 20 16 7 14 17 2 19 21 11 3 6 28 5 4 9 13 22 15 12 27 10 8 18 26 19
21  7 23 1 24 25 20 16 3 14 17 2 19 21 11 22 6 28 5 4 9 13 26 15 12 27 10 8 18 21
11  16 7 23 1 24 25 20 11 3 14 17 2 19 21 13 22 6 28 5 4 9 18 26 15 12 27 10 8 11
3  20 16 7 23 1 24 25 21 11 3 14 17 2 19 9 13 22 6 28 5 4 8 18 26 15 12 27 10 3
14  25 20 16 7 23 1 24 19 21 11 3 14 17 2 4 9 13 22 6 28 5 10 8 18 26 15 12 27 14
17  24 25 20 16 7 23 1 2 19 21 11 3 14 17 5 4 9 13 22 6 28 27 10 8 18 26 15 12 17

5  12 27 10 8 18 26 15 1 24 25 20 16 7 23 17 2 19 21 11 3 14 28 5 4 9 13 22 6 5
4  15 12 27 10 8 18 26 23 1 24 25 20 16 7 14 17 2 19 21 11 3 6 28 5 4 9 13 22 4
9  26 15 12 27 10 8 18 7 23 1 24 25 20 16 3 14 17 2 19 21 11 22 6 28 5 4 9 13 9
13  18 26 15 12 27 10 8 16 7 23 1 24 25 20 11 3 14 17 2 19 21 13 22 6 28 5 4 9 13
22  8 18 26 15 12 27 10 20 16 7 23 1 24 25 21 11 3 14 17 2 19 9 13 22 6 28 5 4 22
6  10 8 18 26 15 12 27 25 20 16 7 23 1 24 19 21 11 3 14 17 2 4 9 13 22 6 28 5 6
28 = 27 10 8 18 26 15 12 24 25 20 16 7 23 1 2 19 21 11 3 14 17 5 4 9 13 22 6 28 • 28

27  28 5 4 9 13 22 6 12 27 10 8 18 26 15 1 24 25 20 16 7 23 17 2 19 21 11 3 14 27
10  6 28 5 4 9 13 22 15 12 27 10 8 18 26 23 1 24 25 20 16 7 14 17 2 19 21 11 3 10
8  22 6 28 5 4 9 13 26 15 12 27 10 8 18 7 23 1 24 25 20 16 3 14 17 2 19 21 11 8
18  13 22 6 28 5 4 9 18 26 15 12 27 10 8 16 7 23 1 24 25 20 11 3 14 17 2 19 21 18
26  9 13 22 6 28 5 4 8 18 26 15 12 27 10 20 16 7 23 1 24 25 21 11 3 14 17 2 19 26
15  4 9 13 22 6 28 5 10 8 18 26 15 12 27 25 20 16 7 23 1 24 19 21 11 3 14 17 2 15
12  5 4 9 13 22 6 28 27 10 8 18 26 15 12 24 25 20 16 7 23 1 2 19 21 11 3 14 17 12

24  17 2 19 21 11 3 14 28 5 4 9 13 22 6 12 27 10 8 18 26 15 1 24 25 20 16 7 23 24
25  14 17 2 19 21 11 3 6 28 5 4 9 13 22 15 12 27 10 8 18 26 23 1 24 25 20 16 7 25
20  3 14 17 2 19 21 11 22 6 28 5 4 9 13 26 15 12 27 10 8 18 7 23 1 24 25 20 16 20
16  11 3 14 17 2 19 21 13 22 6 28 5 4 9 18 26 15 12 27 10 8 16 7 23 1 24 25 20 16
7  21 11 3 14 17 2 19 9 13 22 6 28 5 4 8 18 26 15 12 27 10 20 16 7 23 1 24 25 7
23  19 21 11 3 14 17 2 4 9 13 22 6 28 5 10 8 18 26 15 12 27 25 20 16 7 23 1 24 23
1  2 19 21 11 3 14 17 5 4 9 13 22 6 28 27 10 8 18 26 15 12 24 25 20 16 7 23 1 1

T( )            x( )     HNj
( )

 (4.33) 

For facilitating the utilization of GDA approach, we can express each of the 

shortened cyclic convolutions in (4.33) as 
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where L denotes word length of the input data x, N denotes the transform length, and 

Rq denotes the rotating factor. 

In the following, we intend to illustrate the hardware realization in detail 

through a 1-D 29-point DHT. We make use of the partitioning scheme of cyclic 

convolution such that the length of cyclic convolution can be partitioned into the 
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composition of short ones that can be realized efficiently by the proposed GDA design 

for achieving low hardware cost. Referring to the reformulation of 1-D DHT in (4.33), 

we can realize the 28-point cyclic convolution used in 1-D 29-point DHT through the 

summation of four 7-point cyclic convolutions four times since four sets of the 

outputs in the 28-point cyclic convolution can be computed by using identical four 

7-point GDA units (i.e., GDAU1~GDAU4), where the blocks of input data should be 

rotated for each of the summation computations. The idea of exploiting computation 

sharing on the content of memory not only efficiently reduces the memory cost with 

the trade-off in slowing down the data throughput rate, but also achieves good 

performance of the proposed design in terms of the hardware cost and average 

computation time as we shall illustrate later.  
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Fig. 4.1: The GDA-based architecture design for 1-D 29-point DHT example 

 

With the derivation mentioned above, Fig. 4.1 shows the GDA-based 

architecture of 1-D 29-point DHT. It is composed of the GDA unit (GDAU), address 

decoders, adders/subtractors, accumulators, and parallel-to-serial (P/S) converters. 

The computation of this design is illustrated as follows. The input vector Xq, which 

can be {xq(1), xq(24), xq(25), xq(20), xq(16) , xq(7), xq(23)}, {xq(17), xq(2), xq(19), 

xq(21), xq(11) , xq(3), xq(14)}, {xq(28), xq(5), xq(4), xq(9), xq(13) , xq(22), xq(6)}, or 
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{xq(12), xq(27), xq(10), xq(8), xq(18) , xq(26), xq(15)}, is first fed into the address 

decoder to determine which group the DA input belongs to and how many positions 

the outputs should be rotated. The rotating factor Rq = {rq(1), rq(2), rq(3)} decoded 

from the address decoder is used to control how many bits the barrel shifter should be 

rotated left, where LROM 7-bit barrel shifters are involved in the GDAU and LROM 

denotes the word length of memory. Table 4.1 shows the relationship between the 

original DA input address and the group address as well as the rotating factor. 

 

Table 4.1: Function of the address decoders in the 1-D 29-point DHT design 

Group 
number 

Grouped candidates of DA input (Xq) 
{xq(1), xq(24), xq(25), xq(20), xq(16) , 

xq(7), xq(23)},  
{xq(17), xq(2), xq(19), xq(21), xq(11) , 

xq(3), xq(14)},  
{xq(28), xq(5), xq(4), xq(9), xq(13) , 

xq(22), xq(6)}, or  
{xq(12), xq(27), xq(10), xq(8), xq(18) , 

xq(26), xq(15)} 

Rotating-left 
factor 

(Rq) 
{rq(1), rq(2) , 

rq(3)} 

Group address  (Gq) 
{gq(1), gq(2), gq(3), gq(4), gq(5)}

Group 
number

Grouped candidates of DA input (Xq)
{xq(1), xq(24), xq(25), xq(20), xq(16) , 

xq(7), xq(23)},  
{xq(17), xq(2), xq(19), xq(21), xq(11) , 

xq(3), xq(14)},  
{xq(28), xq(5), xq(4), xq(9), xq(13) , 

xq(22), xq(6)}, or  
{xq(12), xq(27), xq(10), xq(8), xq(18) , 

xq(26), xq(15)} 

1Rotating-left 
factor 

(Rq) 
{rq(1), rq(2) , 

rq(3)} 

Group address  (Gq) 
{gq(1), gq(2), gq(3), gq(4), gq(5)}

0 10000000 0 00000 10 
0001111,0011110,0111100,1000111, 

1100011,1110001, 1111000 
0,1,2,6,5,4,3 01010 

1 
0000001,0000010,0000100,0001000, 

0010000,0100000, 1000000 
0,1,2,3,4,5,6 00001 11 

0010111,0101110,0111001,1001011, 
1011100,1100101, 1110010 

0,1,3,6,2,5,4 01011 

2 
0000011,0000110,0001100,0011000, 

0110000,1000001,1100000 
0,1,2,3,4,6,5 00010 12 

0011011,0110011,0110110,1001101, 
1011001,1100110, 1101100 

0,4,1,6,3,5,2 01100 

3 
0000101,0001010,0010100,0100001, 

0101000,1000010, 1010000 
0,1,2,5,3,6,4 00011 13 

0011101,0100111,0111010,1001110, 
1010011,1101001, 1110100 

0,5,1,6,4,3,2 01101 

4 
0001001,0010010,0010001,0100010, 

0100100,1000100, 1001000 
0,1,4,5,2,6,3 00100 14 

0101011,0101101,0110101,1010101, 
1010110,1011010, 1101010 

0,2,4,6,1,3,2 01110 

5 
0000111,0001110,0011100,0111000, 

1000011,1100001, 1110000 
0,1,2,3,6,5,4 00101 15 

0011111,0111110,1001111,1100111, 
1110011,1111001, 1111100 

0,1,6,5,4,3,2 01111 

6 
0001011,0010110,0101100,0110001, 

1000101,1011000, 1100010 
0,1,2,4,6,3,5 00110 16 

0101111,0111101,1010111,1011110, 
1101011,1110101, 1111010 

0,2,6,1,5,4,3 10000 

7 
0001101,0011010,0100011,0110100, 

1000110,1010001, 1101000 
0,1,5,2,6,4,3 00111 17 

0110111,0111011,1011011,1011101, 
1101101,1101110,1110110 

0,3,6,2,5,1,4 10001 

8 
0010011,0100110,0011001,0110010, 

1001001,1001100, 1100100 
0,1,3,4,6,2,5 01000 18 

0111111,1011111,1101111,1110111, 
1111011,1111101, 1111110 

0,6,5,4,3,2,1 10010 

9 
0010101,0100101,0101001,0101010, 

1001010,1010010, 1010100 
0,5,3,1,6,4,2 01001 19 1111111 0 10011 

Note:  
1. Binary value with Boldface font denotes the seed-value of the group 

 

 

Design evaluation 

Table 4.2 lists the comparison of performance of the proposed design with the 

existing designs [22][26]-[29]. The I/O channel of the proposed design is just a single 

input/output and independent of the transform length N. Based on Avant 0.35μm 

cell-library [43], we respectively show the comparison of area, cycle time, and 

area-delay product in Fig. 4.2, Fig. 4.3 and Fig. 4.4 to illustrate the advantages of the 
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proposed design. The results show that the normalized area cost of the proposed 

design is not always improved significantly if the length of partitioned cyclic 

convolution is not short enough. However, when we consider the cycle time effect 

together with the hardware cost, we find in Fig. 4.4 that the proposed design possesses 

better performance than the other designs [22][26]-[29] in term of reducing the 

normalized area-delay product from 52% to 91%. Table 4.3 shows the decomposition 

of 1-D DHT designs of different lengths in terms of short-length DHTs realized by the 

proposed design approach. For the DHT designs with lengths longer than 121, we use 

both the Agarwal-Cooley algorithm and prime-factor algorithm in decomposing them 

into short-length DHTs with cyclic convolution formulation. However, if the lengths 

of DHT are not long enough, like 49, 77, and 121 shown in Table 4.3, we need only to 

decompose the DHT to short ones by prime-factor algorithm (PFA), and realize them 

through GDA design approach directly. Due to the shortened DHTs with lengths that 

are short enough (i.e., 6-point cyclic convolution for 7-point DHT and 10-point cyclic 

convolution for 11-point DHT), the process of cyclic convolution partitioning can be 

omitted.  

 

Table 4.2: The performance comparison of different designs for computing the 1-D 

N-point DHT 

Designs Adder 
(words) 

MUL 
(words) 

memory 
(words) 

Barrel shifter
(n2-bit) I/O No. Cycle time 

Liu [22] 5N-2 4N 0 0 (N+1)L N*(Tmul + 2Tadd) 

Kumar [26] 9N/4-6 N-4 0 0 (N+1)L 3N*(Tmul + 2Tadd) 
Dhar [27] 6N-8 8(N-1) 0 0 (N+1)L 2N*(Tmul + 2Tadd) 

Fang (DIT) [28] 12
)1(4 +⎥⎥

⎤
⎢⎢
⎡ +N  

⎥⎥
⎤

⎢⎢
⎡ +

2
)1(4 N 0 0 4NL 

[ )1(2
)1( −+⎥⎥

⎤
⎢⎢
⎡ + NN ] 

*(Tmul + 2Tadd) 
Chang [29] 5N 8N 0 0 (N+2)L 2N*(Tmul + 2Tadd) 

Proposed design N+1 0 Gnum(n2)*(N-1) n1⋅LROM 2L n1*L*(Trom + Tbar + Tcsa + Tadd)
Note: 

1. A CORDIC processor is equivalent to four multipliers and two adders. 
2. L denotes word-length of the input data.  
3.Gnum denotes the number of groups contained in the group memory modules. 

Usually, Gnum is linearly related to N for small N values. 
4. N-1 equals to n1*n2. 
5. LROM denotes the word-length of memory. 
6.Tmul denotes the delay time of a multiplier, Tadd denotes the delay time of an adder, 

Trom denotes the access time of memory, Tbar denotes the delay time of a Barrel 
shifter with n2-bit width, and Tcsa denotes the delay time of a carry save adder, 
where Tcsa is equivalent to the delay time of n1-1 adders. 
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Fig. 4.2: Comparison of the normalized area cost in the realization of 1-D N-point 

DHT using the proposed design and the existing designs 
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Fig. 4.3: Comparison of the normalized cycle time in the realization of 1-D N-point 

DHT using the proposed design and the existing designs 
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Fig. 4.4: Comparison of the normalized area-delay product in the realization of 1-D 

N-point DHT using the proposed design and the existing designs 

 

Table 4.3: Length of 1-D DHT constructed by the decomposed short 

length DHTs 

Length of the decomposed DHT  
7 11 19 29 57 

7 49 77 133 203 399 
11 77 121 209 319 627 
19 133 209 361 551 1083 
29 203 319 551 841 1653 

Le
ng

th
 o

f 
 t

he
 

de
co

m
po

se
d 

D
H

T 

57 399 627 1083 1653 3249 

 

For the evaluation of long length DHT decomposed by the scheme mentioned 

above, we firstly evaluate the hardware cost and cycle time for the shortened DHT, 

and then estimate overall architecture of the long length DHT, which is composed of 

the shortened DHT, in terms of the hardware cost and cycle time parameters of the 

evaluated shortened DHT. Based on the result of high level synthesis for the 1-D 

29-point and 57-point DHT designs shown in Table 4.4, we can further evaluate the 

DHT designs with the lengths of 841 (i.e., 29 * 29), 1653 (i.e., 29 * 57), and 3249 (i.e., 

57 * 57), respectively. Since the cycle times consumed by both the stage of 29-point 
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DHT and the stage of 57-point DHT in the 1653-point DHT design are not the same, 

we should take the largest one of them in these two stages. Comparing with the 

manner of directly partitioning in the conventional DA, we show the effectiveness of 

the proposed design in Fig. 4.5 in terms of the normalized area-delay products, where 

DP denotes directly partitioning for conventional DA and AC denotes partitioning 

with Agarwal-Cooley algorithm for GDA. In the DHT design examples of 841-point, 

1653-point, and 3249-point, the proposed GDA approach combining with 

Agarwal-Cooley algorithm can efficiently remove the data redundancy to achieve 

66.1% better in terms of area-delay product averagely. 

 

Table 4.4: The evaluation result of GDA-based DHT designs 

The length of DHT 
Area cost1 

(gates) 
Cycle time2 

(ns) 
29 44890 702.7 
57 89539 2749.4 
841 89780 20378.3 
1653 134429 79732.6 
3249 179078 156715.8 

Note:  
1. The area cost of the DHT with composed length (i.e. 841-point, 1653-point, 

and 3249-point) does not include the transpose memory. 
2. The cycle time denotes the time consumed by the computation of N DHT 

outputs. 
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Fig. 4.5: Average improvement of the normalized area-delay product in the designs of 

841-point DHT, 1653-point DHT, and 3249-point DHT using the proposed design 

approach  
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4.3 Variable-length DFT Design to Communication System 
Application 
 

4.3.1 Overview of Communication system 

The orthogonal frequency division multiplexing (OFDM) technique has been 

widely adopted in high-speed data transmission, such as asymmetry digital subscriber 

lines (ADSL), very high speed digital subscriber lines (VDSL), and digital 

audio/video broadcasting (DAB/DVB) systems. In these systems, the discrete Fourier 

transform (DFT) plays a main role. Table 4.5 shows the lengths of DFT required in 

these systems, where the required length of DFT is proportional to the data-rate as 

well as the distance. Thus a configurable dedicated hardware for the DFT computation 

with variable length would be desired in the various high data-rate communication 

applications. 

There are many high-speed applications [16][17][19][21][62][63] that address 

the use of dedicated hardware designs for computing the long length DFT/IDFT. The 

designs with fast algorithms are attractive for low computational complexity. 

However, hardware design of the algorithm is communication intensive and 

computation intensive to complicate the realizations of controller and arithmetic 

operation. In addition, most of the designs with fast algorithms exploit a butterfly 

datapath and a global memory in storing all of input/output data as well as the 

intermediate results. The mass data access from the global memory wastes a large 

percentage of power in this kind of designs. Besides, the cascaded structure in the fast 

algorithm makes the designs have poor numerical accuracy such that longer data 

wordlength in the datapath is needed. This fact will reduce the low complexity 

advantages of the fast algorithm and thus increase the hardware cost of the designs 

with fast algorithm. Thus, the efficient hardware design of DFT is still a challenging 

problem due to its high computational complexity and the requirement of real-time 

processing. The popular designs based on the distributed arithmetic (DA) have the 

benefit to exploit both constant and bit-level computation. However, the traditional 

DA technique suffers from large memory cost for long length designs. To solve this 

problem, we have proposed the GDA design approach that further reduces the 
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memory cost efficiently with the numerical property. In this part of research, we 

intend to extend the GDA design approach to long- and any-length design, and its 

application to the popular power-of-two variable-length DFT. 

 

 

Fig. 4.6: Transceiver /Receiver architecture in the communication system 

 

Table 4.5: DFT lengths for several communication systems 

Communication 
system  DFT length application 

IEEE 802.11a 64 Wireless Ethernet 

HIPERLAN/2 64 Wireless ATM 

ADSL 256/512 Internet access 

VDSL 512/1024/2048/4096/8192 Internet access 

DAB 256/512/1024/2048 Digital Audio Broadcasting 

DVB-T 8192/2048 Digital Video Broadcasting 

 

4.3.2 Hardware Cost Analysis 

Before designing the DFT architecture with GDA approach, we intend to 

analyze the complexities of the FFT algorithm and the proposed GDA algorithm first. 

With the Cooley-Tukey algorithm, the computation complexity of FFT algorithm is 
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around Nlog2
N [64], including 1/2Nlog2

N computations of complex-multiplication and 

Nlog2
N computations of complex-addition, that is equivalent to 2Nlog2

N computations 

of real-multiplication and 2Nlog2
N computations of real-addition. Based on 

Cooley-Tukey algorithm, there are two popular architecture designs. One is single 

processing element (PE) design which provides adequate performance with low 

hardware cost. The other is pipeline based design for the application with high 

throughput. Because of regularity, modularity, locality, and high throughput with 

moderate hardware cost, one dimensional linear array is more popular [65]. Besides, 

in order to compute DFT via FFT, the input data and the intermediate results need to 

be buffered and reordered by using some memory buffers, where the size of the 

memory buffers is around N(N-1) words. There are two existing buffering strategies 

proposed for the pipeline FFT architecture [66]. One is delay-commutator (DC) 

architecture. The other is delay-feedback (DF) architecture. 

 

 

Table 4.6: The computation complexity of various DFT algorithms 

Algorithm Complexity 

DFT (Mul-Add) N2 

Cooley-Tukey DFT (Mul-Add) 2
3

2N  

DA-based decomposed 
Cooley-Tukey DFT with cyclic 

partitioning (memory-word) 
14

4
5

2 +⋅ NN  

GDA-based decomposed 
Cooley-Tukey DFT with cyclic 
partitioning (memory -word) 

14
2 +⋅ NN  

 

 

 

Based on Cooley-Tukey algorithm for DFT decomposition, cyclic convolution 

and pseudocirculant matrix factorization algorithm for cyclic convolution partitioning, 

and GDA design approach, Table 4.6 shows the derivation of computation complexity 

of the proposed long length DFT algorithm from the original DFT algorithm. The 
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complexity of original DFT is N2. With Cooley-Tukey decomposition, the complexity 

is reduced to 2
3

2N  (i.e., 2)(2 NN ). And then combining with the pseudocirculant 

matrix factorization algorithm, we can realize the long length DFT with conventional 

DA, and the complexity can be changed into 14
4
5

2 +NN  (i.e., 

]22 4444

)NN()N[(N N ⋅⋅⋅⋅ ). If we replace the conventional DA with the 

proposed GDA in the DFT design, the complexity can be reduced to 14
2 +NN  (i.e., 

)]NN()N
N

[(N
N

444
4

4

22 ⋅⋅⋅⋅ ). Thus it is possible that the hardware cost of DFT 

with the proposed DFT algorithm is smaller than the existing FFT algorithms. For 

example of 4096-point DFT, according the Table 4.7, the estimated hardware costs of 

FFT and proposed GDA-based DFT are shown as Fig. 4.7. We can see that the 

hardware cost of the proposed design is better than FFT when the length of DFT is 

smaller than 4096, where the multiplier is four times the hardware cost of adder, and 

the transistor count of memory is proportional to memory word-length. However, 

actually due to some of the multiplications in FFT butterfly can be omitted, the 

hardware complexity in Table 4.7 should be changed into Table 4.8. As for the 

estimations of the delay time consumed by each sample, shown as Table 4.9, they are 

respectively sum of the delay time of multiplier, adder, and memory access in FFT, 

and L2 times the sum of the delay time of memory access, barrel-shifter, and 

accumulator divided by the length of cyclic convolution in GDA-based DFT, where L2 

denotes the maximal one of the word-length of parallel-in-serial-out module in the 

two stages of GDA-based DFT design. As shown in Fig. 4.8, the area-delay product of 

GDA-based DFT is smaller than that of FFT when the transform length is smaller than 

256, where sum of memory access time and barrel-shifter delay time is around half 

delay time of the adder for the partitioned small size memory in GDAU, and the delay 

time of multiplier in FFT is assumed as four times delay time of the adder. Thus the 

GDA-DFT takes around 0.32 time delay time of FFT for each sample, where L2 and 

N1/4 equal 12 and 8 respectively in our design). 
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Table 4.7: The estimation of hardware costs of the FFT and the 

proposed GDA-DFT 

Algorithm Hardware cost 

FFT 0.5Nlog2
N Amul + Nlog2

N Aadd  

GDA-based DFT 14
22 +⋅⋅ NN  AROM-word  

 
Note: 

1. Assume overall GDAU is two times hardware cost of ROM while 
N1/4 equals 8. 

2. Amul denotes the hardware cost of multiplier in unit of equivalent 
gate count. 

3. Aadd denotes the hardware cost of adder in unit of equivalent gate 
count. 

4. AROM-word denotes the hardware cost of the word of ROM in unit of 
equivalent gate count. 

 

 

 

 

Table 4.8: The estimation of hardware costs of the FFT with actual 

complexity and the proposed GDA-DFT 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm Hardware cost (gates) 

FFT (radix-2 SDF) 3(log2
N -2)Amul + 6(log2

N -2)Aadd +2(N-1)Amem 
+ 9(log2

N -2)Amux 

GDA-based DFT 14
22 +⋅⋅ NN  AROM-word  
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Table 4.9: The estimation of cycle times of the FFT and the 

proposed GDA-DFT for each sample 

 

Note: 

1. tmul denotes delay time of the multiplier. 
2. tadd denotes delay time of the adder. 
3. tacc denotes access time of the memory used in GDA-based 

DFT design. 
4. tbr denotes delay time of the barrel-shifter used in 

GDA-based DFT design. 
5. L2 denotes the word-length of input data. 
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Fig. 4.7: Hardware cost of the original FFT versus the proposed GDA-based 

DFT 

 

 

Algorithm Delay time 

FFT tadd +2 tmux + tmul 

GDA-based DFT L2 (tacc + tbr + tadd)/N1/4 
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Fig. 4.8: Delay-area product of the FFT versus the proposed 

GDA-based DFT 

 

 

4.3.3 GDA-based Variable Length DFT Design and Evaluation 

Exploiting the Cooley-turkey decomposition algorithm, we first decompose the 

long length 1-D DFT into 2-D short length DFT, and form the shortened DFTs in each 

dimension in cyclic convolution. Then, with the pseudocirculant factorization 

algorithm, we factorize the cyclic convolutions as the sum of the shortened cyclic 

convolutions, and apply the proposed GDA design to realize of the short-length cyclic 

convolutions for achieving a hardware efficient long-length DFT design. Table 4.10 

shows the proposed design can flexibly be used to compute the 1-D 

64/128/256/512/1024/2048/4096-point DFT by cascading the decomposed short 

length DFT. 
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Table 4.10: Length of 1-D DFT constructed by the decomposed 

short length DFTs 

Length of the decomposed DFT  
8 16 32 64 

8 64 128 256 512 
16 128 256 512 1024 
32 256 512 1024 2048 

Le
ng

th
 o

f 
th

e 
de

co
m

po
se

d 
D

FT
  

64 512 1024 2048 4096 

 

Architecture design 

Fig. 4.9 shows the block diagram of the proposed GDA-based DFT architecture with 

variable length with the Cooley-Turkey decomposition. This architecture consists of 

two configurable GDA units for respectively computing the row and column 1-D 

8/16/32/64-point DFT, a multiplier for performing the twiddle factor multiplications 

serially, and a transpose memory for data transposition. Fig. 4.10 shows the block 

diagram more detail with real input data and complex output data. For efficiently 

realizing the twiddle factor multiplications, the complex number multiplier with serial 

manner, such as CORDIC processor or the serial multiplier set, can be a proper choice 

combined with DA-based design. In cyclic convolution formulation, the architecture 

in Fig. 4.10 can be redrawn as Fig. 4.11. It is composed of serial multiplication for 

preprocessing, GDA computation for Tij ( ), and serial multiplication for 

post-processing. Each the Tij ( ) block can be configured for the 1-D DFT computation 

with different length, where i, j denote the computation with real part of input data 

and real part of DFT coefficient (i.e., RR), imaginary part of input data and imaginary 

part of DFT coefficient (i.e., II), real part of input data and imaginary part of DFT 

coefficient (i.e., RI), or imaginary part of input data and real part of DFT coefficient 

(i.e., IR). In Fig. 4.11, we can see that the output data of Tij ( ) is sequentially 

multiplied by the post-processing coefficient of row 1-D DFT, the twiddle factor, and 

preprocessing coefficient of column 1-D DFT. Thus we can combine the three 

multiplications, and replace with one multiplication only. According to the tradeoff 

between word-length of the transpose memory and word-length of the multiplier, as 

shown in Fig. 4.12 and Fig. 4.13, this multiplication can selectively be located in front 

or real of the transpose memory.  
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Fig. 4.9: Block diagram of the proposed variable-length DFT architecture. 

 

 

 

Fig. 4.10: Architecture of 2-D DFT with real input. 
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Fig. 4.11: Architecture design of the 2-D DFT in cyclic convolution formulation. 
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Fig. 4.12: Version 1 of the reduced architecture of 2-D DFT in cyclic convolution 

formulation. 
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Fig. 4.13: Version 2 of the reduced architecture of 2-D DFT in cyclic convolution 

formulation. 

 

For the purpose of performing the variable-length DFT computation with 

identical hardware, we adopt the pseudocirculant matrix factorization algorithm to 

factorize the cyclic convolution Tij( ) in 1-D DFT with different length as the 

composition of 8-point cyclic convolutions. For the case of 64-point cyclic 

convolution, as shown in Fig. 4.14, the matrix of input data can be decomposed as an 

eight by eight blocked matrix. Since each block in the matrix has preserved as an 

8-point cyclic convolution, we can allocate the computation of every eight row blocks 

into eight 8-point GDAU and sum up the outputs of GDAUs to have eight outputs of 
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the 64-point cyclic convolution. Observing the matrix form in left side of the Fig. 4.14, 

we can see that each computation of eight row blocks with rotated order can be folded 

onto the identical eight 8-point GDAUs. Totally, eight iterations are needed to 

compute all the outputs of 64-point cyclic convolution. For the case of 32-point cyclic 

convolution, due to it is composed of four by four blocked matrix with 

pseudocirculant, as shown in Fig. 4.15, we can compute every eight outputs of the 

32-point cyclic convolution by summing up the results of four 8-point cyclic 

convolution. With the same amount of GDA computation hardware resource, it needs 

two iterations to compute all the 32 outputs of 32-point cyclic convolution. With the 

same way, the case of 16-point cyclic convolution can also be composed of two by 

two blocked matrix with pseudocirculant. In the proposed design, we have constructed 

the hardware with eight 8-point cyclic convolution modules for the computation of 

cyclic convolution in the variable-length DFT. This hardware can compute the 64 

outputs of 64-point cyclic convolution by eight iterations, the 32 outputs of 32-point 

cyclic convolution by two iterations, the 16 outputs of 16-point cyclic convolution by 

one-second iteration, and the 8 outputs of 8-point cyclic convolution by one-eighth 

iteration. Thus for the computation of 64/256/1024/4096-point 1-D DFT, the lengths 

of row DFT and column DFT are respectively 8/16/32/64, and the number of 

iterations with the identical hardware is 1/8/64/512. 

 

     

Fig. 4.14: Folding of the computation of each eight row blocks in 64-point cyclic 

convolution. 
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Fig. 4.15: Folding of the computation of each four row blocks in 32-point cyclic 

convolution. 

 

With the identical hardware, due to the numbers of iterations for the 

computations of DFT with different lengths are not the same, the variable-length DFT 

design must be worked with different control states. Since the hardware resource in 

the proposed design can compute eight 8-point 1-D DFTs in each iteration, the 

64-point 1-D DFT needs only one iteration to compute all the output data in row and 

column DFT. For the computation of 256-point 1-D DFT, each of the iterations can be 

used for the computation of two 16-point DFTs in each dimension so that 16 16-point 

DFT computations need totally eight iterations, as well as 64 iterations needed for 

1024-point 1-D DFT and 512 iterations needed for 4096-point 1-D DFT. Due to the 

coefficients of 8, 16, 32, and 64-point DFT are different, we use RAM instead of 

ROM for replacing the contents of memory needed for computing the variable-length 

DFT. The partial products stored in this memory for DA computation can be 

downloaded in the initialization phase from the main frame. Since there are thirty-six 

memory entries in the 8-point GDAUs, thirty-six write cycles are consumed in each of 

the initial phases. Due to the data rate and the length of DFT in a communication 

system is fixed while the condition of environment is remained, once for loading 

coefficients of the DFT with decided length into the memory of variable-length DFT 

core is required. However, if the length of DFT is decided larger than 64, there are 
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required respectively 4, 16, and 64 initial phases for 256-, 1024-, and 4096-point DFT. 

All the coefficients of DFTs with different lengths can be stored previously in the low 

cost memory of main frame. 
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Fig. 4.16: Detail architecture of (a) the row 1-D DFT with input buffer and (b) the 

column 1-D DFT with output buffer. 

 

Fig. 4.16 shows the proposed variable-length DFT design more detail in row stage 

and column stage, including input buffer (IBUF), serial multiplier (SMUL), 

parallel-in-serial-out (PISO), 1-bit three-dimension (3-D) rotator, variable-length 

GDA-based module, and output buffer (OBUF). The length of DFT in each stage can 

be configured with 8/16/32/64-point. In the following, we will illustrate detail design 

of the modules in the proposed variable-length DFT. 

Similar to most of the DA-based designs, Fig. 4.17 (a), (b), and (c) show the 

input buffer for serially storing input data, the parallel-in serial-out (PISO) module for 

issuing the input data of DA with word-parallel-bit-serial manner, and the output 

buffer for serially outputting the output data. 
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Fig. 4.17: Detail design of (a) input buffer groups, (b) PISO groups, and (c) output 

buffer groups in the proposed 1-D DFT architecture. 
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On the consideration of input data permutation for GDAUs, according to the 

formulation of any-length cyclic convolution in (2.6), the input data of the eight 

8-point GDAUs in each of the iterations is block rotated and in-block rotated. Then a 

1-bit rotator is needed for preparing the exact data on the inputs of GDAUs. Since the 

rotator needs to work with different lengths for variable-length DFT, a specific 1-bit 

3-D barrel rotator is designed as Fig. 4.18 (a). The mode of 1-bit 3-D rotator can be 

decided by three variables for how many bits are rotated in a block, how many blocks 

are rotated in cyclic convolution for the chosen length of DFT, and which length of 

DFT is chosen. It performs the in-block rotation with 8-bit barrel rotator (BR) in stage 

1. For the block rotation, in the stage 2, the barrel rotator group (BRG) with eight 

2-bit barrel rotators is used in 16-point DFT in each dimension of the 256-point DFT. 

In the stage 3, the barrel rotator group (BRG) with eight 4-bit barrel rotators is used in 

32-point DFT in each dimension of the 1024-point DFT. In the stage 4, the barrel 

rotator group (BRG) with eight 8-bit barrel rotators is used in 64-point DFT in each 

dimension of the 4096-point DFT. Table 4.11 shows the condition of BR in each stage 

for DFT with the lengths of 64, 256, 1024, and 4096. This specific 1-bit 3-D rotator 

design provides to permute the exact data on the inputs of GDAUs for computation of 

the proposed variable-length DFT design. 

 

Table 4.11: Condition of BR in each stage for DFT with the 

lengths of 64, 256, 1024, and 4096. 

length of DFT stage 1 stage 2 stage 3 stage 4 

64 P P P P 

256 R R P P 

1024 R P R P 

4096 R P P R 

Note:  
1. D denotes the BR works on bypass mode. 
2. R denotes the BR works on rotation mode. 
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(a) 

   

(b)                      (c)                      (d) 

Fig. 4.18: (a) design of the 1-bit 3-D rotator and the routing for (b) 2-bit BRG in stage 

2, (c) 4-bit BRG in stage 3, and (d) 8-bit BRG in stage 4. 
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Following the 1-bit 3-D barrel-rotator, with identical hardware, the module with 

GDAUs is used to compute all the output data or part of the output data in each of the 

iterations for DFT with variable length. As shown in Fig. 4.19, each of the GDAUs 

performs the computation of 8-point cyclic convolution. In the following stage, shown 

in Fig. 4.20, an adder-group tree is used to sum up the partial outputs from these 

GDAUs for the shortened cyclic convolutions in case of the length of row or column 

DFT is larger than eight, where the different dash lines respectively denote the 

data-flows in the row or column DFT with different lengths. In each of the iterations 

for DFT computation, the numbers of output data computed by the identical 

computation resource for the 1-D DFT with lengths of 64/256/1024/4096 are 

64/32/16/8. With the limitation of the number of GDAUs, we place the multiplexers 

with different width to select out the different number of output data for the 1-D DFT 

with different length. 

 

 

Fig. 4.19: Detail design of variable-length GDA-based module used for the 

computation of Tij( ) in the proposed 1-D DFT architecture. 
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Fig. 4.20: Data-flow of the adder-group tree follows the GDAUs in the proposed 

variable-length DFT design. 

 

As the formulation mentioned in the chapter 3, the multiplications need for pre- 

and post- processing of the 1-D DFT in cyclic convolution. For reducing hardware 

cost of the multiplications, we combine the multiplication of pre-processing in row 

DFT and the multiplication of post-processing in column DFT with the multiplication 

of twiddle-factor processing such that only one multiplier is remained between row 

DFT and column DFT. With the feature of serial manner in DA computation, the 

complex multiplier with serial manner should be a proper choice for the 

multiplication. 
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Fig. 4.21: Detail design of serial multiplier groups in the proposed 1-D DFT 

architecture. 

 

 

Since the output data is out of order in the row DFT, shown as Fig. 4.22, for the 

usage of column DFT, we can reorder these data while writing them into the transpose 

memory by using a specific address generator. 

 

 

Fig. 4.22: The transpose memory with the specific address generator 
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Design evaluation 

Based on the proposed GDA-based 1-D variable length DFT architecture as Fig. 

4.16, the number of cycle consumed for computing the 64/256/1024/4096-point DFT 

with the 8/16/32/64-point DFT in two dimensions is proportional to )8( 3log2 LO N ×− , 

where N denotes the length of 1-D DFT, and L denotes the word-length of GDA input 

data. Referring to the simulation results of the DFT with lengths of 8, 16, 32, and 64, 

we can further evaluate the DFT designs with the lengths of 128 (i.e., 8 * 16), 512 (i.e., 

16 * 32), and 2048 (i.e., 32 * 64), respectively. However, since the cycle count 

consumed in two stages of 8-point DFT and 16-point DFT in the 128-point DFT 

design as well as in the 512- and 2048-point DFT designs, are not the same, we must 

take the largest one of the two stages. 

We have evaluated the proposed design with UMC 0.18um cell-library. For 

fairly compared with the existing long-length and variable-length FFT designs 

[67]-[71], we eliminate the factor of different technology by normalizing all the 

design areas with the normalized index [72] as (4.36). As the simulation result, except 

for the advantages of short latency and high hardware utilization efficiency in the 

GDA-based design, checked with the hardware cost analysis mentioned above, Table 

4.12 also reveals that the power of two variable-length DFT realized with the 

proposed decomposition approach and GDA design can achieve competitive hardware 

cost under the same throughput rate, especially the length of DFT is ranged between 

64 and 512. Thus the proposed variable-length DFT can be a more efficient dedicated 

design to the application of ADSL system. 

 

 

2)18.0/log(
 

umyTechno
AreaAreaNormalized =                (4.36) 
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Table 4.12: Comparison of the existing FFT designs and our DFT design 

 Bidgt [67] Jia [68] Kuo [69] Pao [70] Lin [71] ours 

DFT size 8192 8192 64 ~ 2048 512 ~ 8192 512~2048 64 ~ 4096 

Algorithm Radix-4 FFT Radix-2/4/8 
FFT Cached FFT

Radix-4 
DHT-based 

FFT 

Radix-2/4/8 
FFT 

Cooly-Turkey/ 
cyclic convolution/ 

Pseudocirculant 
factorization/GDA DFT 

Word-length 
(bit) 12 12 16 22 12 20 

Process (um) 0.5 0.6 0.35 0.25 0.35 0.18 
Clock rate 

(MHz) 20 20 60 35 45 85 

Throughput 
(sample/cycle) 1 1 1 1 1 5.33 ~ 0.67 

Latency (cycle) N N N N N 60 
Area (mm2) 100 107 12.25 25 13.05 7.79 

Normalized area 12.96 13.87 3.24 12.96 3.45 7.79 
Normalized 

area/throughput 12.96 13.87 3.24 12.96 3.45 1.46 ~ 11.62 
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Chapter 5  
Conclusion 
 

In this chapter, we summarize with some useful results and contributions 

presented in this dissertation, and point out some future research directions. 

5.1 Contributions 

In this dissertation, an entire bit-level hardware-efficient group distributed 

arithmetic (GDA) design approach has been presented for Discrete Sinusoidal 

transform (DSST’s). A new hardware-efficient GDA datapath and the essential 

partitioning schemes are involved in the development of the proposed new DA 

design approach for long-length cyclic convolution of the DSST’s, where 

Agarwal-Cooley algorithm and Pseudocirculant matrix factorization algorithm are 

respectively adopted for the cyclic convolution with prime length and non-prime 

length. Furthermore, for the long-length DSST’s designs, we combine the proposed 

design approach with the fast transform algorithms, such as Cooley-Tukey algorithm 

and prime factor algorithm, to achieve the low hardware cost. 

In the proposed bit-level design approach, we adopt the way of distributed 

arithmetic (DA) computation and exploit the good features of the cyclic convolution 

to facilitate an efficient DA realization of 1-D N-point DSST,s using a very small 

memory module, a barrel shifter, and N accumulators. The proposed GDA design is 

achieved by re-arranging the contents of the memory into few groups such that all 

the elements in a group can be accessed simultaneously in accumulating all the 

DSST’s outputs for increasing the memory utilization. This design reveals that the 

complexity of DA design is improved from )2( NO  to )22( 2log ++− NO NN . 

For the purpose of further reducing the hardware cost in DSST’s design, we 

exploit the symmetrical property of DFT coefficients with the proposed GDA design 

approach such that the DFT requires only half the contents to be stored, which 

further reduces the memory size by a factor of two. For the DCT design, we exploit 

the symmetry property of DCT coefficients, merge the elements in the matrix of 

DCT kernel, separate the kernel of DCT to be two perfect cyclic forms, and partition 

the content of memory into groups to facilitate an efficient realization of 1-D N-point 
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DCT kernel using (N-1)/2 adders or substractors, one small memory module, a 

(N-1)/2-bit barrel shifter, and (N-1)/2+1 accumulators. Compared with the existing 

systolic array designs and DA-based designs, the realizations of 1-D DFT, DHT, and 

DCT with the proposed GDA-based design approach reduce the delay-area product 

more than 29% according to Avanti 0.35 um CMOS cell library. However, observing 

the DCT and DHT in cyclic convolution algorithm with non-prime length, there 

exists the inherent overhead for handling the issue of numerical instability such that 

the proposed design approach is not efficient for design with this case. 

Finally, combining the proposed GDA design approach with the suggested 

long-length transform decomposition methodology, a variable-length DFT design has 

been proposed and implemented in our studies for the popular application of DFT 

with the length of power of two in the communication system. The proposed design 

can flexibly be used to compute the 1-D 64/128/256/512/1024/2048/4096-point DFT 

by cascading the 1-D short length DFTs and summing up the partitioned short length 

cyclic convolutions for each stage of the cascaded DFT. Besides, the proposed 

hardware efficient design approach can be applied to the design with any length 

beyond power of two. Compared with the existing long-length and variable-length 

FFT design, in addition to the advantages of short latency and high hardware 

utilization efficiency, the proposed power of two variable-length DFT design can 

achieve competitive hardware cost under the same throughput rate. 

5.2 Future Research Directions 

The presented GDA design approach involves cyclic convolution, its 

partitioning scheme, and hardware efficient GDA implementation. Since the linear 

convolution and correlation own similar characteristics to cyclic convolution, if any 

DSP algorithm can be expressed as cyclic convolution, we can apply the proposed 

GDA design approach to achieve efficient hardware cost for applications.  

On the power consumption point of view, with the approach of address 

grouping in the proposed GDA design, we will further explore how to decide the set 

of seed partial products for groups in the memory module of GDA design to have 

optimal transition activity on the bit-line of memory and achieve lower power 

consumption. However, since the optimal arrangement of these seed partial products 

depends on the characteristic of image sequences as well as the distribution of input 
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data, there should exist an optimal arrangement of seed partial products for each kind 

of image sequences. 

For the application of prime-length DCT, since the prime length cyclic 

convolution DCT algorithm has less overhead in the pre- and post- processing, the 

GDA-based variable-length DCT design should be an alternative hardware-efficient 

DA solution for the shape adaptive discrete cosine transform (SA-DCT) in MPEG-4 

codec application. However, since there exist more overhead in non-prime length 

cyclic convolution DCT, this part of realization in SA-DCT must be combined with 

the existing DA design or the other efficient design. 

Based on the derivation of DSST’s in cyclic convolution, a unified GDA-based 

design of DSST’s should be a considerable approach for the hybrid system with the 

requirements of multimedia and communication such as the portable devices. With a 

commonly used memory module in the GDA design, we can preload the 

corresponding partial products, and configure the design with different data flow for 

computations of the involved DSST’s. Actually, with the acceptable overhead in 

cyclic convolution algorithm, a unified DFT/IDFT should be the possible design for 

communication applications. However, for a long time, the approaches of general 

purpose design and dedicated design have been the traded-off between flexibility and 

hardware cost.  



 121

Bibliography 
 
[1] T. M. Pytosh and A. M. Magnasi, “A new parallel 2-D FFT architecture,” 

Proc. ICASSP1990, pp. 905-908, 1990. 

[2] J. Choi and V. Boriakoff, “A new linear systolic array for FFT computation,” 

IEEE Transaction on Circuits and Systems-II: Analog and Digital Signal 

Processing, Vol. 39, pp. 236-239, April 1992. 

[3] J. You and S. S. Wong, “Serial-parallel FFT array processor,” IEEE 

Transaction on Signal Processing, Vol. 41, pp. 1472-1476, March 1993. 

[4] V. Boriakoff, “FFT computation with systolic arrays, a new architecture,” 

IEEE Transactions on Circuits and Systems II: Analog and Digital Signal 

Processing, Vol. 41, pp. 278–284, April 1994. 

[5] H. E. Shousheng and M. Torkelson, “A new approach to pipeline FFT 

processor,” Proc. IPPS1996, pp. 766–770, 1996. 

[6] H. T. Kung, “Why systolic architectures?” Computer Magazines, 15, pp. 

37-45, Jan. 1982. 

[7] L. W. Chan and M. Y. Chen, “A new systolic array for discrete Fourier 

transform,” IEEE Transactions on Acoustics, Speech, and Signal Processing, 

36, pp. 1665-1666, Oct. 1988. 

[8] J. A. Beraldin, T. Aboulnasr, and W. Steenaart, “Efficient one-dimensional 

systolic array realization of the discrete Fourier transform,” IEEE Transactions 

on Circuits and Systems, Vol. 36, No. 1, pp. 95-100, Jan. 1989. 

[9] E. Chan and S. Panchanathan, “A VLSI architecture for DFT,” Proc. the 36th 

Midwest Symposium on Circuits and Systems, Vol. 1, pp. 292-295, 1993. 

[10] N. R. Murthy and M. N. S. Swamy, “On the real-time computation of DFT and 

DCT through systolic architectures,” IEEE Transactions on Signal Processing, 

Vol. 42, No. 4, pp. 988-991, Apr. 1994. 

[11] W. H. Fang and M. L. Wu, “An efficient unified systolic architecture for the 

computation of discrete trigonometric transforms,” Proc. ISCAS1997, Vol. 3, 

pp. 2092-2095, 1997. 



 122 

[12] C. H. Paik and M. D. Fox,”Fast Hartley transform for image processing,” 

IEEE Transactions on Med. Imaging, Vol. 7, No. 6, pp. 149-153, 1988. 

[13] P. Duhamel and M. Vetterli, “Improved Fourier and Hartley transform 

algorithms: application to cyclic convolution of real data,” IEEE Transactions 

on Acoustics, Speech, and Signal Processing, Vol. ASP-35, No. 6, pp. 

818-824, 1987. 

[14] R. N. Bracewell, “Discrete Hartley transform,” J. Opt. Soc. Amer., Vol.73, 

No.12, pp. 1832-1835, 1983. 

[15] R. N. Bracewell, “The fast Hartley transform,” Proc. IEEE, Vol. 72, No. 8, pp. 

1010-1018, 1984. 

[16] J. A. C. Bingham, “Multicarrier modulation for data transmission: An idea 

whose time has come,” IEEE Communications Magazine, pp. 5-14, May 1990. 

[17] J. S. Chow, J. C. Tu, and J. M. Cioffi, “A discrete multi-tone transceiver 

system for HDSL applications,” IEEE Journals on Selected Areas and 

Communications, Vol. 9, pp. 895-908, Aug. 1991. 

[18] C. L. Wang and C. H. Chang, “A Novel DHT-based FFT/IFFT Processor for 

ADSL Transceivers,” Proc. IEEE International Symposium on Circuits and 

Systems, Vol. 1, pp. 51-54, 1999. 

[19] C. L. Wang and C. H. Chang, “A DHT-based FFT/IFFT Processor for VDSL 

Transceivers,” Proc. IEEE International Conference on Acoustics, Speech, and 

Signal Processing, Vol. 2, pp. 1213-1216, 2001. 

[20] C. L. Wang, C. H. Chang, J. L. Fan, and J. M. Cioffi, ”Discrete Hartley 

transform based multicarrier modulation,” Proc. IEEE International 

Conference on Acoustics, Speech, and Signal Processing, Vol. 5, pp. 

2513-2516, 2000. 

[21] H. Bogucka, “Effective implementation of the OFDM/CDMA base station 

transmitter using joint FHT and IFFT,” Proc. IEEE Workshop on Signal 

Processing Advances in Wireless Communications, pp. 162-165, 1999. 

[22] K. J. R. Liu and C. T. Chiu, ”Unified parallel lattice structures for 

time-recursive discrete cosine/sine/Hartley transforms,” IEEE Transactions on 



 123

Acoustics, Speech, and Signal Processing, Vol. 41, No. 3, pp. 1357-1377, 

March 1993. 

[23] S. B. PAN and R. H. Park, ”Unified Systolic Arrays for computation of 

Discrete Hartley Transform,” IEEE Trans. on Circuits and Systems Video 

Technology, Vol. 7, No. 2, pp. 413-419, Apr. 1997. 

[24] J. H. Hsiao, L. G. Chen, T. D. Chiueh, and C. T. Chen, “Novel systolic array 

design for the discrete Hartley transform with high throughput rate,” Proc. 

IEEE International Conference on Circuits and Systems, Chicago, IL, U.S.A, 

pp. 1567-1570, 1993. 

[25] J. I. Guo, C. M. Liu, and C. W. Jen, ”A novel CORDIC-based array 

architecture for the multi-dimensional discrete Hartley transform,” IEEE 

Transactions on Circuits and Systems, Vol. 42, No. 5, pp. 349-355, 1995. 

[26] S. P. Kumar and K. M. M. Prabhu, “Novel CORDIC-based systolic arrays for 

the DFT and the DHT,” Proc. Asia High Performance Computing on the 

Information Superhighway, pp. 547-551, 1997. 

[27] A. S. Dhar and S. Banerjee, “An array architecture for fast computation of 

discrete Hartley transform,” IEEE Transactions on Circuits and Systems, Vol. 

38, No. 9, pp. 1095-1098, 1991. 

[28] W. H. Fang and J. D. Lee, “Efficient CORDIC-based systolic architectures for 

the discrete Hartley transform,” IEE Proceedings, Computers and Digital 

Techniques, Vol. 142, No. 3, pp. 201-207, May 1995. 

[29] L. W. Chang and S. W. Lee, “Systolic arrays for the discrete Hartley 

transform,” IEEE Transactions on Signal Processing, Vol. 39, No. 11, pp. 

2411-2418, 1991. 

[30] J. I. Guo, C. M. Liu, and C. W. Jen, “A novel VLSI array design for the 

discrete Hartley transform using cyclic convolution,” Proc. IEEE International 

Conference on Acoustics, Speech, and Signal Processing, Adelaide, SA, 

Australia, pp. II501-II504, 1994. 

[31] J. I. Guo, “A New DA-Based Array for One Dimensional Discrete Hartley 

Transform,” Proc. 2001 IEEE International Symposium on Circuits and 

Systems, Sydney, Australia, pp .IV662-IV665, May 2001. 



 124 

[32] J. I. Guo, “An Efficient Design for One Dimensional Discrete Hartley 

Transform Using Parallel Additions,” IEEE Transactions on Signal 

Processing, Vol. 48, No. 10, pp. 2806-2813, Oct. 2000. 

[33] J. I. Guo, C. M. Liu, and C. W Jen, “The efficient memory-based VLSI array 

designs for DFT and DCT,” IEEE Trans. Circuits Syst. II, Vol. 39, pp. 

723-733, Oct. 1992. 

[34] S.A. WHITE, “Applications of distributed arithmetic to digital sequence 

processing: a tutorial review,” IEEE ASSP Magazines, Vol. 6, No. 3, pp. 5-19, 

1989. 

[35] J. P. Choi, S. C. Shin, and J.G. Chung, “Efficient ROM size reduction for 

distributed arithmetic,” Proc. ISCAS2000, pp. II61-II64, May 2000. 

[36] K. Nourji and N. Demassieux, “Optimal VLSI Architecture for Distributed 

Arithmetic-based Algorithm,” ICASSP1994, Vol. 2, pp. 509-512, 1994. 

[37] M. T. SUN, T. C. Chen, and A. M. Gotlieb, “VLSI implementation of a 16 x 

16 discrete cosine transform,” IEEE Transactions on Circuits and Systems, 

CAS-36, pp. 610-617, Apr. 1989. 

[38] T. S. Chang, J. I. Guo, and C. W. Jen, “Hardware Efficient DFT Designs with 

Cyclic Convolution and Subexpression Sharing,” IEEE Transactions on 

Circuits and Systems II, Vol. 47, No. 9, pp. 886-892, Sep. 2000. 

[39] T. S. Chang, C. Chen, and C. W. Jen, “New distributed arithmetic algorithm 

and its application to IDCT,” IEE Proc. on Circuits, Devices, and Systems, 

Vol. 146, No. 4, pp. 159-163, 1999. 

[40] J. I. Guo, “An Efficient Parallel Adder Based Design for One Dimensional 

Discrete Fourier Transform,” Proceedings of the National Science Council, 

ROC, Part A, Vol. 24, No. 3, pp. 195-204, May 2000. 

[41] R. C. Agarwal and J. W. Cooley, “New Algorithms for Digital Convolution,” 

IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 

ASSP-25, pp. 392-410, Oct. 1977. 

[42] M. Teixeira and D Rodriguez, “A class of fast cyclic convolution algorithms 

based on block pseudocirculant,” IEEE Signal Processing Letters, Vol. 2, No. 

5, pp. 92-94, May 1995. 



 125

[43] AVANT “0.35 micron 3.3-volt high performance standard cell library,” 1996. 

[44] A. P. Chandrakasan and R. W. Brodersen, “Minimizing power consumption in 

digital CMOS circuit,” Proceeding of the IEEE, Vol. 83, No. 4, pp. 498-523, 

April, 1995. 

[45] T. Xanthopoulos and A. P. Chandrakasan, “A low power DCT core using 

adaptive bandwidth and arithmetic activity exploiting signal correlations and 

quantization,” IEEE Journal of Solid-State Circuits, Vol. 35, No. 5, pp. 

740-750, 2000. 

[46] H. K. Garg, “Digital signal processing algorithms - number theory, 

convolution, fast fourier transforms, and application,” CRC Press, 1998. 

[47] J. E. Volder, “The CORDIC trigometric compution technique,” IRE Tran. 

Electron. Comput., Vol. EC-8, pp. 330-334, Sep. 1959. 

[48] J. S. Walther, “A unified algorithm for elementary functions,” AFIPS Spring 

Joint Comput. Conf., pp. 379-385, 1971. 

[49] K. Hwang, “Computer Arithmetic principles, architecture, and design,” John 

Wiley & Sons, Inc., New York, 1979. 

[50] A. V. Oppenheim and R. W. Schafer, “Discrete-time Signal Processing,” 

Prentice-Hall, Englewood Cliffs, NJ, U.S.A, 1989. 

[51] Y. H. Chan and W. C. Siu, “Generalized approach for the realization of 

discrete cosine transform using cyclic convolution,” Proc. IEEE International 

Conference on Acoustics, Speech, and Signal Processing, Minneapolis, MN, 

U.S.A, Vol. 3, pp. III277-III280, 1993. 

[52] J. I. Guo, "Efficient parallel adder based design for one dimensional discrete 

cosine transform," IEE Proceedings Circuits, Devices, and Systems, Vol. 147, 

No. 5, pp. 276-282, Oct. 2000. 

[53] J. H. Mcclellan, and C. M. Rader, “Number Theory in Digital Signal 

Processing,” Prentice-Hall, 1979. 

[54] B. Arambepola, “Discrete Fourier transform processor based on the 

prime-factor algorithm,” IEE Proc., 130, Pt. G, No. 4, pp. 138-144, 1983. 



 126 

[55] H. Lim, and E. E. Swartzlander, “Multidimensional systolic arrays for the 

implementation of discrete Fourier transforms,” IEEE Transactions on Signal 

Processing, Vol. 47, No. 5, pp. 1359-1370, May 1999. 

[56] C. S. Burrus, “Index mappings for multidimensional formulation of the DFT 

and convolution,” IEEE Transactions on Acoustics, Speech, and Signal 

Processing, ASSP-25, pp. 239-242, 1977. 

[57] C. S. Burrus and T. W. Parks, “DFT/FFT and Convolution Algorithms,” John 

Wiley & Sons, 1985. 

[58] H. V. Sorensen, D. L. Jones, C. S. Burrus, and M. T. Heideman, “On 

Computing the Discrete Hartley Transform,” IEEE Transactions on Acoustics, 

Speech, and Signal Processing, Vol. ASSP-33, pp. 239-242, Oct. 1985. 

[59] C. Chakrabarti and J. Ja’Ja’, “Systolic Architectures for the Computation of the 

Discrete Hartley and the Discrete Cosine Transforms Based on Prime Factor 

Decomposition,” IEEE Transactions on Computer, Vol.39, No.11, pp. 

1359-1368, Nov. 1990. 

[60] B. G. Lee, ”Input and output mappings for a prime-factor-decomposed 

computation of discrete cosine transform,” IEEE Transactions on Acoustics, 

Speech, and Signal Processing, Vol. 37, No. 2, pp. 237-244, Feb. 1989 

[61] J. McClellan and C. M. Rader, “There is something much faster than the fast 

Fourier transform,” Seminar Notes, Oct. 21, 1976. 

[62] C. H. Chang, C. L. Wang, and Y. T. Chang, ”Efficient VLSI architectures for 

fast computation of the discrete Fourier transform and its inverse,” IEEE 

Transactions on Signal Processing, Vol. 48, No. 11, pp. 3206-3216, Nov. 

2000. 

[63] S. F. Hsiao and W. R. Shiue, ” Design of low-cost and high-throughput linear 

arrays for DFT computations: algorithms, architectures, and implementations,” 

IEEE Transactions on Circuits and Systems—II: Analog and Digital Signal 

Processing, Vol. 47, No. 11, pp.1188-1203, Nov. 2000. 

[64] L. R. Rabiner and B. Gold, Theory and Application of Digital Signal 

Processing, Prentice-Hall, Inc. 1975. 



 127

[65] E. H. Wold and A. M. Despain, “Pipeline and Parallel pipeline FFT processors 

for VLSI implementation,” IEEE Transaction on Computers, Vol. C-33, No. 5, 

pp. 414-426, 1984. 

[66] S. He and M. Torkelson, “Designing Pipeline FFT Processor for OFDM 

(de)Modulation,”1998 URSI International Symposium on Signals, Systems, 

and Electronics, pp. 257 -262, 1998. 

[67] E. Bidet, D. Castelain, C. Joanblanq, and P. Senn, “A fast single-chip 

implementation of 8192 complex point FFT,” IEEE Journal of Solid-State 

Circuits, Vol. 30, No. 3, pp. 300-305, Mar. 1995. 

[68] L. Jia, “A new VLSI-oriented FFT algorithm and implementation,” IEEE ASIC 

Conference, pp. 337-341, 1998. 

[69] J. C. Kuo, C. H. Wen, C. H. Lin, and A. Y. Wu, “VLSI Design of a 

Variable-Length FFT/IFFT Processor for OFDM-based Communication 

Systems,” in Special Issue on “Signal Processing for Broadband Access 

Systems: Techniques and Implementations,” EURASIP Journal on Applied 

Signal Processing, No. 13, pp. 1306-1316, Dec. 2003 

[70] T. C. Pao, C. C. Chang, and C. K. Wang, “A variable-length DHT-based 

FFT/IFFT processor for VDSL/ADSL systems,” IEEE Asia-Pacific 

Conference on Circuits and Systems, pp. 381-384, 2004. 

[71] Y. T. Lin, P. Y. Tsai, and T. D. Chiueh, “Low-power variable-length fast 

Fourier transform processor,” IEE Proc. Comput. Digit. Tech., Vol. 152, No. 4, 

pp. 499-506, 2005. 

[72] B. M. Bass, “A low-power high performance, 1024-point FFT processor,” 

IEEE Journal of Solid-State Circuit, Vol. 34, No. 3, pp. 380-387, Mar. 1999. 

 





 

 

VITA 
Hun-Chen Chen was born in Taiwan in 1961. He received the B.S. and M.S degrees, 

all in electronics engineering, from National Taiwan Technology University, and 

National Chiao-Tung University, Taiwan, in 1990 and 1998, respectively. He is 

currently pursuing the Ph.D. degree in low-cost bit-level DSP VLSI design and its 

applications to multimedia and communication systems. His research interests include 

VLSI digital signal processing and computer architecture. 

 


	Chapter 1  Introduction 
	1.1 Motivation 
	1.2 Current status of DSST’s designs 
	1.3 Review of DA-based designs 
	1.4 Overview of the proposed design approach 
	1.5 Considerations to the DSST’s designs 
	1.6 Outline of this dissertation 
	Chapter 2   The Group Distributed Arithmetic (GDA) Design Approach 
	2.1 Algorithm point of view  
	2.2 Architecture point of view  
	2.2.1 Memory-based Group Distributed Arithmetic design 
	2.2.2 Analysis of Barrel shifter 
	2.2.3 Evaluation of hardware cost 

	2.3 Consideration of low power design  
	2.3.1 Analysis of transition activity 
	2.3.2 Address morphing approach 
	2.3.3 Exploration of dynamic range of the input data 
	2.3.4 Low Power Design with pre-computation scheme 
	2.3.5 Evaluation of power cost 

	2.4 Partitioning of cyclic convolution 
	2.4.1 Agarwal-Cooley algorithm 
	2.4.2 Pseudocirculant matrix factorization algorithm 
	2.4.3 Long length cyclic convolution design 
	2.4.4 Evaluation of long length cyclic convolution GDA design 


	Chapter 3   GDA-based Design for 1-D DSST’s 
	3.1 Design of 1-D DFT 
	3.1.1 Cyclic Convolution Formulation 
	3.1.2 CORDIC (CO-ordinate Rotation Digital Computer) 
	3.1.3 Symmetry exploration of the DFT in cyclic convolution 
	3.1.4 Architecture design and evaluation 

	3.2 Design of 1-D DHT 
	3.2.1 Cyclic Convolution Formulation 
	3.2.2 Numerical stability 
	3.2.3 Symmetry exploration of the DHT in cyclic convolution 
	3.2.4 Architecture design and evaluation 

	3.3 Design of 1-D DCT 
	3.3.1 Cyclic Convolution Formulation 
	3.3.2 Numerical stability 
	3.3.3 Architecture design and evaluation 
	3.3.4 Chip implementation 


	Chapter 4   Long-length DSST’s designs  
	4.1 Decomposition of long-length DSST’s 
	4.1.1 Cooly-Tukey Algorithm 
	4.1.2 Prime Factor Algorithm 
	4.1.3 Rader’s Algorithm 

	4.2 Long length DHT Design and Evaluation  
	4.3 Variable-length DFT Design to Communication System Application 
	4.3.1 Overview of Communication system 
	4.3.2 Hardware Cost Analysis 
	4.3.3 GDA-based Variable Length DFT Design and Evaluation 


	Chapter 5   Conclusion 
	5.1 Contributions 
	5.2 Future Research Directions 

	 Bibliography 


