### 奈米級硫氧化釓螢光體水熱法合成與發光特性之研究

研究生:林盈志

指導教授:陳登銘 博士

國立交通大學應用化學研究所

#### 摘要

本研究利用簡易的水熱法裝置配合高溫(500-1000℃)的硫化退火 兩階段製程,成功地合成三系列稀土離子(如:Tb<sup>3+</sup>,Pr<sup>3+</sup>,Eu<sup>3+</sup>)激活 Gd<sub>2</sub>O<sub>2</sub>S 奈米螢光體,並利用 X 射線繞射、螢光光譜儀和掃描、穿透 式電子顯微鏡鑑定其發光與微結構特性。

研究結果顯示水熱合成 Gd(OH)3 前驅物時之反應,pH 值和溫度 分別是決定產物 Gd<sub>2</sub>O<sub>2</sub>S:R 晶粒型態和粒徑大小之重要製程參數。當 將水熱溶液中之 pH 值從 8 增加到 10 時,可觀測到奈米前驅物 Gd(OH)3 晶粒轉變為奈米棒之不尋常變化。本研究所合成奈米 Gd 2O<sub>2</sub>S:R 晶粒之直徑約 80 nm,而奈米 Gd<sub>2</sub>O<sub>2</sub>S:R 棒則具有 10 之長寬 比,其長度與直徑分別為 200nm 和 20 nm。

另一方面,本研究也利用傳統固態法製備微米級 Gd<sub>2</sub>O<sub>2</sub>S:R 螢光 體,並和水熱與退火兩階段製程所合成之奈米 Gd<sub>2</sub>O<sub>2</sub>S:R 比較,以探 討發光特性與微結構間之相互關係。

I

### A Study on the Hydrothermal Synthesis and Luminescent Properties of Gadolinium Oxysulfide Nanophosphors

Student : Ying-Chih Lin

Advisor : Dr. Teng-Ming Chen

Institute of Applied Chemistry National Chiao-Tung University

#### Abstract

In this research we have successfully synthesized three series of  $Gd_2O_2S$ :R ( $R = Tb^{3+}$ ,  $Pr^{3+}$ ,  $Eu^{3+}$ ) nanophosphors via a two-step process by utilizing simple hydrothermal apparatus at 140-200 , followed by a annealing under H<sub>2</sub>S atmosphere at 500-1000 . The correlation between phase purity, photoluminescence and microstructure of  $Gd_2O_2S$ :R nanophosphors were then characterized by X-ray diffraction, spectrofluorimeter, scanning microscope (SEM) and transmission microscope (TEM) techniques.

Our research indicates that the pH values and temperature adopted in the hydrothermal synthesis to form nanocrystalline  $Gd(OH)_3$  precursor are the most important processing parameters in determining the grain morphology and sizes of  $Gd_2O_2S$ :R nanophosphors. The morphology of nanocrystalline  $Gd(OH)_3$  precursor was observed to change from granular to rod-shaped when pH was allowed to vary from 8 to 10. The average diameter of granular  $Gd_2O_2S$ :R was found to be *ca*. 80 nm, whereas the aspect ratio (*c/a*) for  $Gd_2O_2S$ :R nano-rods was found to be 10 with length and diameter of 200 nm and 20 nm, respectively, as indicated by TEM investigations. On the other hand, the luminescence and microstructure for bulk and nano-crystalline  $Gd_2O_2S$ :R phosphors prepared from solid-state and two-step hydrothermal routes, respectively, were also compared.



#### 誌謝

這兩年的碩士學程中,讓學生辛苦萬分,但卻也獲益良多。相當 感謝恩師 陳登銘教授的悉心指導與栽培,使學生在知識以及實驗技 巧上均有所突破與成長,並順利的完成學業。同時感謝裘性天老師、 莊振益老師、李積琛老師在百忙之中撥空對本論文給予指導。

此外,Laskar 讓我知道我的英文有待加強; 弘偉學長大方的個性 讓人敬佩; 曉雯學姊對人的關心以及親切的笑容讓人感覺愉快; 德 茹學姊阿莎力的作風; 伯昌學長認真有自信的態度; 信甫學長對布 袋戲的熱忱; 映萱學姊對美食的研究均讓我的學習不再只侷限於課 業,還有日常生活中的形形色色。

我的好同學創弘,開朗的性格,總是能迅速的跟大家打成一片; 好同學康權,沈穩又不失赤子之心,真是個名符其實的少女殺手阿。 好朋友明芳,雖然處於不同實驗室,但對於你實驗上的幫忙,小弟永 記於心,並隨時接受你保齡球的挑戰;好朋友淑惠,妳人太好了,小 心被欺負吶,並感謝妳教我微乳液法。

馨怡、婉甄、靜萍、怡今學妹,你們實力都相當不錯,未來實驗 室就有賴你們哩,謝謝你們一路上陪伴我成長。

感謝志豪、子厚、文昭、嘉興教我使用 SEM,以及幫我拍 TEM 圖,並教我許多奈米相關知識。

最後要特別感謝父母對我的栽培,他們總能不辭辛勞的從台南上 來看我,並給予我最佳的學習環境,還有兩位哥哥在背後的支持與肯 定,給予我最大的鼓勵。

# 總目錄

| 頁              | 次  |
|----------------|----|
| 中文摘要           | Ι  |
| 英文摘要           | II |
| 誌謝             | IV |
| 總目錄            | V  |
| 表目錄            | IX |
| 圖目錄            | Х  |
| 第一章 緒論         | 1  |
| 第二章 螢光體基本理論    | 3  |
| 2-1 發光原理       | 3  |
| 2-2 螢光材料的組成及設計 | 6  |
| 2-2-1 主體晶格之選擇  | 6  |
| 2-2-2 主體晶格之影響  | 7  |
| 2-2-3 活化劑之選擇   | 8  |
| 2-2-4 抑制劑      | 8  |
| 2-2-5 增感劑      | 9  |
| 2-3 螢光材料之製備方法  | 9  |
| 2-3-1 固態合成法1   | 0  |
| 2-3-2 溶膠-凝膠法1  | 0  |

| 2-3-3 共沉澱法                 | 11 |
|----------------------------|----|
| 2-3-4 膠體共沈法                | 11 |
| 2-3-5 氣溶膠熱解法               | 12 |
| 2-3-6 微乳液法                 | 12 |
| 2-3-7 水熱法                  | 12 |
| 2-3-8 其他製程                 | 13 |
| 2-4 螢光體光學特性的量測             | 14 |
| 2-4-1 輝度的量測                | 14 |
| 2-4-2 激發或放射光譜之量測           | 14 |
| 2-4-3 餘輝光譜的量測              | 15 |
| 2-4-4 量子效率的量测              | 15 |
| 2-4-5 光色的判别                | 15 |
| 2-5 能量傳遞的機制探討              | 17 |
| 2-6 奈米材料                   | 20 |
| 第三章 文獻回顧、研究動機及晶體結構         | 27 |
| 3-1 文獻回顧                   | 27 |
| 3-2 研究動機                   | 29 |
| 3-3 Gd(OH)3與 Gd2O2S 主體結構描述 | 30 |
| 第四章 實驗方法                   | 31 |
| 4-1 實驗藥品                   | 31 |
| 4-2 儀器設備                   | 32 |

| 4-3 實驗步驟                                                                                                                  | 34 |
|---------------------------------------------------------------------------------------------------------------------------|----|
| 4-3-1 奈米Gd <sub>2</sub> O <sub>2</sub> S:R(R=Eu <sup>3+</sup> , Pr <sup>3+</sup> , Tb <sup>3+</sup> )螢光體之合成               | 34 |
| 4-3-2 微米級Gd <sub>2</sub> O <sub>2</sub> S:R (R=Eu <sup>3+</sup> , Pr <sup>3+</sup> , Tb <sup>3+</sup> )螢光體之合成.            | 36 |
| 4-3-2-1 雙坩堝石墨還原合成實驗流程圖                                                                                                    | 36 |
| 4-3-2-2 硫化氫退火製程流程圖                                                                                                        | 38 |
| 第五章 结果與討論                                                                                                                 | 39 |
| 5-1 奈米 Gd(OH)3 合成之研究                                                                                                      | 39 |
| 5-1-1 水熱法所合成 Gd(OH)3 之 X 光繞射圖譜分析                                                                                          | 39 |
| 5-1-2 奈米 Gd(OH)3表面微結構之分析                                                                                                  | 41 |
| 5-2 奈米與微米級 G <sub>2</sub> O <sub>2</sub> S 合成之研究                                                                          | 42 |
| 5-2-1 奈米 Gd <sub>2</sub> O <sub>2</sub> S X 光繞射圖譜之分析                                                                      | 43 |
| 5-2-2 奈米 Gd2O2S 表面微結構之分析                                                                                                  | 43 |
| 5-2-3 奈米與微米級 Gd2O2S X 光繞射圖譜之比較                                                                                            | 44 |
| 5-2-4 微米級 Gd2O2S 表面微結構之分析                                                                                                 | 45 |
| 5-3 奈米(Gd <sub>2-x</sub> R <sub>x</sub> )O <sub>2</sub> S(R=Tb <sup>3+</sup> 、Pr <sup>3+</sup> 、Eu <sup>3+</sup> )系列螢光體發光 | k  |
| 特性之研究                                                                                                                     | 45 |
| 5-3-1 主體 Gd <sub>2</sub> O <sub>2</sub> S 之自身活化                                                                           | 46 |
| 5-3-2 濃度效應與機制探討                                                                                                           | 46 |
| 5-3-2-1 奈米 Gd <sub>2</sub> O <sub>2</sub> S:Tb <sup>3+</sup> 螢光體 PL 光譜之研究                                                 | 47 |
| 5-3-2-2 奈米 Gd <sub>2</sub> O <sub>2</sub> S:Pr <sup>3+</sup> 螢光體 PL 光譜之研究                                                 | 48 |
| 5-3-2-3 奈米 Gd <sub>2</sub> O <sub>2</sub> S:Eu <sup>3+</sup> 螢光體 PL 光譜之研究                                                 | 50 |

| 5-3-3 温度效應之探討                                                                                                             | 51 |
|---------------------------------------------------------------------------------------------------------------------------|----|
| 5-3-3-1 水熱法溫度的影響                                                                                                          | 51 |
| 5-3-3-2 高溫退火溫度的影響                                                                                                         | 52 |
| 5-3-3-3 色度座標之探討                                                                                                           | 53 |
| 5-3-4 不同釓來源為反應物對發光特性之影響                                                                                                   | 54 |
| 5-3-5 溶劑填充率                                                                                                               | 55 |
| 5-3-6 不同鹼液的影響                                                                                                             | 55 |
| 5-4 奈米與微米級(Gd <sub>2-x</sub> R <sub>x</sub> )O <sub>2</sub> S(R=Tb <sup>3+</sup> 、Pr <sup>3+</sup> 、Eu <sup>3+</sup> )系列螢 |    |
| 光體發光特性與色度之研究                                                                                                              | 55 |
| 5-4-1 奈米與微米級發光特性之比較                                                                                                       | 56 |
| 5-4-2 奈米與微米級色度之比較                                                                                                         | 57 |
| 第六章 結論                                                                                                                    | 58 |
| 參考文獻                                                                                                                      | 60 |

### 表目錄

|     |                                                                        | 頁 次  |
|-----|------------------------------------------------------------------------|------|
| 表1  | 週期表中可作為螢光體主體之陰離子團                                                      | . 64 |
| 表 2 | 週期表中可作為螢光體主體之陽離子                                                       | . 65 |
| 表 3 | 週期表中可作為螢光體活化劑之陽離子                                                      | . 65 |
| 表 4 | 週期表中可作為螢光體發光抑制劑之陽離子                                                    | . 66 |
| 表 5 | 化合物 A <sub>2</sub> BWO <sub>6</sub> -U 與螢光淬滅溫度(T <sub>q</sub> )、△R 的關係 | 66   |
| 表 6 | 一些螢光體的螢光淬滅溫度(Tq)                                                       | . 67 |
| 表 7 | R 與活化劑、被取代之主體晶格陽離子和螢光淬滅溫度                                              | -    |
|     | (T <sub>q</sub> )的關係                                                   | . 67 |



# 圖目錄

|   |       |                                                    | 頁  | 次 |
|---|-------|----------------------------------------------------|----|---|
| 圖 | 1     | 激發能量在固體中的吸收和轉換                                     | 68 |   |
| 圖 | 2     | 螢光體發光過程中能量傳遞示意圖                                    | 68 |   |
| 圖 | 3     | 螢光及磷光放光機制示意圖                                       | 69 |   |
| 圖 | 4     | 組態座標圖                                              | 69 |   |
| 圖 | 5     | R 對不同電子組態螢光體能量傳遞的效應                                | 70 |   |
| 圖 | 6     | Stokes Shift 示意圖                                   | 70 |   |
| 圖 | 7     | 不同耦合作用對放射峰寬度變化之影響:(a)弱耦合作用                         |    |   |
|   |       | (b)中度耦合作用(c)強耦合作用                                  | 71 |   |
| 圖 | 8     | 電子組態為 $d^3$ 與 $d^5$ 之過渡金屬離子之 Tanabe-Sugano         |    |   |
|   |       | diagram                                            | 72 |   |
| 圖 | 9     | 自由態三價稀土離子能量分佈圖                                     | 73 |   |
| 圖 | 10    | 螢光體中主體、活化劑與增感劑三者交互作用示意圖                            | 74 |   |
| 圖 | 11    | 氣溶膠熱解儀器構造圖                                         | 75 |   |
| 圖 | 12    | 微乳液法奈米反應器示意圖                                       | 76 |   |
| 圖 | 13(a) | 高壓反應容器(Parr Acid Digestion Bomb)                   | 77 |   |
| 圖 | 13(b) | 高壓反應容器側面透視圖                                        | 77 |   |
| 圖 | 14    | 1931 C.I.E 色度座標圖                                   | 78 |   |
| 圖 | 15    | C.I.E 三刺激曲線函數圖                                     | 78 |   |
| 圖 | 16    | 螢光焠滅溫度(Tq)示意圖                                      | 79 |   |
| 圖 | 17    | 描述非輻射能量遷移的組態座標圖                                    | 79 |   |
| 圖 | 18    | 高活化劑濃度造成之濃度淬滅成因示意圖                                 | 80 |   |
| 圖 | 19    | 理想中(a)巨相(b)量子井(c)量子線(d)量子點之能量與                     |    |   |
|   |       | 量子狀態密度之關係                                          | 80 |   |
| 圖 | 20(a) | 前驅物 Gd(OH)3 之 3D 晶體結構示意圖                           | 81 |   |
| 圖 | 20(b) | $Gd_2O_2S$ 主體之 3D 晶體結構示意圖                          | 81 |   |
| 圖 | 21    | 美國 Lindberg 公司製造之程式控溫箱型爐                           | 82 |   |
| 啚 | 22    | 美國 Lindberg 公司製造之 51442 型程式控溫管狀爐                   | 82 |   |
| 圖 | 23    | Bruker AXS D8 advance 機型 X 光繞射儀                    | 83 |   |
| 圖 | 24    | 美國 Jobin Yvon-Spex Instruments S. A. Inc.公司所製 Spex |    |   |
|   |       | Fluorolog-3 螢光光譜儀                                  | 84 |   |
| 圖 | 25    | 日本 LAIKO 所製 DT-100 Color Analyzer                  | 84 |   |
| 圖 | 26    | Hitachi S-4000 型場發射掃瞄式電子顯微鏡                        | 85 |   |
| 圖 | 27    | 日本 Hitachi 公司所製型號 U-3010 紫外可見光譜儀配備                 |    |   |
|   |       | 積分球                                                | 85 |   |

| <ul> <li>(b) 160 , (c) 180 , (d) 200 (Gd<sub>2</sub>O<sub>3</sub> / Thiourea /pH=6) 86</li> <li>圖 29 在 140 、不同含釓反應物與硫脲合成条米 Gd(OH)<sub>3</sub> XRD<br/>圖 譜之比較: (a)Gd<sub>2</sub>O<sub>3</sub>, (b)Gd(NO<sub>3</sub>)<sub>3</sub> 6H<sub>2</sub>O(pH&lt;9),<br/>(c)Gd(NO<sub>3</sub>)<sub>3</sub> 6H<sub>2</sub>O(pH&gt;10)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 圖 | 28    | 不同溫度所合成奈米 Gd(OH)3 XRD 圖譜之比較:(a)140 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>圖 29 在 140 ,不同含釓反應物與硫脲合成条米 Gd(OH)<sub>3</sub> XRD<br/>圖 譜之比較: (a)Gd<sub>2</sub>O<sub>3</sub>, (b)Gd(NO<sub>3</sub>)<sub>3</sub> 6H<sub>2</sub>O(pH&lt;9),<br/>(c)Gd(NO<sub>3</sub>)<sub>3</sub> 6H<sub>2</sub>O(pH&gt;10), (d)GdCl<sub>3</sub> 6H<sub>2</sub>O(pH&lt;9) 與<br/>(e)GdCl<sub>3</sub> 6H<sub>2</sub>O(pH&gt;10), (d)GdCl<sub>3</sub> 6H<sub>2</sub>O(pH&lt;9) 與<br/>(e)GdCl<sub>3</sub> 6H<sub>2</sub>O(pH&gt;10), (d)GdCl<sub>3</sub> 6H<sub>2</sub>O(r=a) µ<br/>或服反應所合成条米 Gd(OH)<sub>3</sub> 2 SEM 影像(Gd<sub>2</sub>O<sub>3</sub><br/>/ Thiourea / pH=6)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |       | (b) 160 , (c) 180 , (d) 200 (Gd <sub>2</sub> O <sub>3</sub> / Thiourea /pH=6) 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <ul> <li>圖 譜之比較: (a)Gd<sub>2</sub>O<sub>3</sub>, (b)Gd(NO<sub>3</sub>)<sub>3</sub> 6H<sub>2</sub>O(pH&lt;9),<br/>(c)Gd(NO<sub>3</sub>)<sub>3</sub> 6H<sub>2</sub>O(pH&gt;10), (d)GdCl<sub>3</sub> 6H<sub>2</sub>O(pH&lt;9) 與<br/>(e)GdCl<sub>3</sub> 6H<sub>2</sub>O(pH&gt;10)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 圖 | 29    | 在140 ,不同含釓反應物與硫脲合成奈米 Gd(OH) <sub>3</sub> XRD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ul> <li>(c)Gd(NO<sub>3</sub>)<sub>3</sub> 6H<sub>2</sub>O(pH&gt;10), (d)GdCl<sub>3</sub> 6H<sub>2</sub>O(pH&lt;9) 與</li> <li>(e)GdCl<sub>3</sub> 6H<sub>2</sub>O(pH&gt;10)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |       | 圖譜之比較:(a)Gd <sub>2</sub> O <sub>3</sub> , (b)Gd(NO <sub>3</sub> ) <sub>3</sub> 6H <sub>2</sub> O(pH<9),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <ul> <li>(e)GdCl<sub>3</sub> 6H<sub>2</sub>O(pH&gt;10)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |       | (c)Gd(NO <sub>3</sub> ) <sub>3</sub> 6H <sub>2</sub> O(pH>10), (d)GdCl <sub>3</sub> 6H <sub>2</sub> O(pH<9) 與                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ul> <li>圖 30 以不同水熱溫度所合成条米 Gd(OH)<sub>3</sub>之 SEM 影像(Gd<sub>2</sub>O<sub>3</sub><br/>/ Thiourea / pH=6)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |       | (e)GdCl <sub>3</sub> $6H_2O(pH>10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>/ Thiourea / pH=6)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 圖 | 30    | 以不同水熱溫度所合成奈米 Gd(OH)3之 SEM 影像(Gd2O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>圖 31 以 Gd(NO<sub>3</sub>)<sub>3</sub> 6H<sub>2</sub>O(上二圖)或 GdCl<sub>3</sub> 6H<sub>2</sub>O(下二圖)與<br/>硫脲反應所合成条米 Gd(OH)<sub>3</sub>之 SEM 影像</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |       | / Thiourea / pH=6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>硫脲反應所合成条米 Gd(OH)<sub>3</sub>之 SEM 影像</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 圖 | 31    | 以 Gd(NO <sub>3</sub> ) <sub>3</sub> 6H <sub>2</sub> O(上二圖)或 GdCl <sub>3</sub> 6H <sub>2</sub> O(下二圖)與                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <ul> <li>圖 32 前驅物 A 於 H<sub>2</sub>S 氣氛中,不同退火溫度所合成条米 Gd<sub>2</sub>O<sub>2</sub>S<br/>XRD 圖譜之比較: (a) 400 ,(b) 500 ,(c) 600 ,(d) 700 ,<br/>(e) 800 ,(f) 900 與 (g) 1000</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |       | 硫脲反應所合成奈米 Gd(OH)3之 SEM 影像 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| XRD 圖譜之比較: (a) 400 , (b) 500 , (c) 600 , (d) 700 ,         (c) 800 , (f) 900 與 (g) 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 圖 | 32    | 前驅物 A 於 $H_2S$ 氣氛中,不同退火溫度所合成奈米 $Gd_2O_2S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <ul> <li>(e) 800 , (f) 900 與 (g) 1000</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |       | XRD圖譜之比較:(a)400,(b)500,(c)600,(d)700,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <ul> <li>圖 33 不同含釓反應物所得之前驅物,於 600 H₂S 氣氛中所合成奈米 Gd₂O₂S XRD 圖譜之比較:(a)前驅物 A (b)前驅物 B (c)前驅物 C (d)前驅物 D (e)前驅物 E</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |       | (e) 800 , (f) 900 與 (g) 1000 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>■ 3.5 小雨客記及總納所用之雨龜納不放 600 H25 氣気中所書<br/>成奈米 Gd<sub>2</sub>O<sub>2</sub>S XRD 圖譜之比較:(a)前驅物 A (b)前驅物 B<br/>(c)前驅物 C (d)前驅物 D (c)前驅物 E</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 呂 | 33    | 不同今年反瘫物所得之前眶物,於600 HaS 氨氨中所合                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1       回 34       前 驅物 A 於 600       H <sub>2</sub> S 氣気中反應所合成奈米 Gd <sub>2</sub> O <sub>2</sub> S 之         1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 圓 | 55    | ホト日記人恐物所有之前遍初 $\pi$ 000 $\Pi_{20}$ 紀元 $\pi$ $\pi$ $\Pi_{20}$ 紀元 $\pi$ $\pi$ $\Pi_{20}$ 紀元 $\pi$ $\pi$ $\Pi_{20}$ 紀元 $\pi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <ul> <li>(C) 新遍物 C (G) 新遍物 D (C) 新遍物 C (C) S (C)</li></ul> |   |       | $(c)$ 前 輕物 $\Gamma$ (d) 前 輕物 $\Gamma$ (e) 前 輕物 $\Gamma$ (b) 前 輕物 $\Gamma$ (b) 前 輕物 $\Gamma$ (c) 前 輕物 $\Gamma$ (d) $\Gamma$ (d |
| <ul> <li>■ 34 崩纏物 A か, 600 Hob 和5 和3, 中反應所合成杂 + Gd<sub>2</sub>O<sub>2</sub>S 之<br/>SEM 影像</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 呂 | 34    | 前驅物 $\Delta$ 於 600 H S 気気中反應所人式 太半 Gd O S 之                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <ul> <li>B 35 前驅物 A 於 600 H<sub>2</sub>S 氟氯中反應所合成条米 Gd<sub>2</sub>O<sub>2</sub>S 之<br/>TEM 影像與電子繞射環圖譜</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 凹 | 7     | $ N @ 7 R R 000 R 25 采 3 + 反恐所自成  \pi R 0 20 25 2  SFM 影像 92$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ul> <li>■ 35 前驅物 A 於 600 H25 氣氛(不同温度)中反應所合成奈米 Gd<sub>2</sub>O<sub>2</sub>S SEM 影像之比較</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 晑 | 35    | 前驅物 A 於 $600$ H S 每 5 中 反 應 所 今 成 本 $32$ 分                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>圖 36 前驅物 A 於 H<sub>2</sub>S 氣氛(不同溫度)中反應所合成奈米<br/>Gd<sub>2</sub>O<sub>2</sub>S SEM 影像之比較</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 凹 | 55    | TFM 影像 崩雪子 $結 $ 射環圖 $5$ $6$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li> Gd<sub>2</sub>O<sub>2</sub>S SEM 影像之比較</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 晑 | 36    | 前驅物 A 於 HoS 每気(不同溫度)中反 雇 所会 成 本 光                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <ul> <li>圖 37</li> <li>前驅物 B 於 600 H<sub>2</sub>S 氣氛中反應所合成奈米 Gd<sub>2</sub>O<sub>2</sub>S 之</li> <li>SEM 影像</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | 50    | $Gd_O_{\alpha}S$ SEM 影像之比較 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ul> <li>前驅物 B 於 600 H<sub>2</sub>S 氣氛中反應所合成奈米 Gd<sub>2</sub>O<sub>2</sub>S 之</li> <li>SEM 影像</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 晑 | 37    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SEM 影像                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | 57    | 前驅物 B 於 600 H <sub>2</sub> S 氣氛中反應所合成奈米 Gd <sub>2</sub> O <sub>2</sub> S 之                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>圖 38 前驅物 C 於 600 H<sub>2</sub>S 氣氛中反應所合成奈米 Gd<sub>2</sub>O<sub>2</sub>S 之<br/>SEM 影像</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |       | SEM 影像                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <ul> <li>SEM 影像</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 圖 | 38    | 前驅物 C 於 600 H <sub>2</sub> S 氣氛中反應所合成 奈米 Gd <sub>2</sub> O <sub>2</sub> S 之                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <ul> <li>圖 39(a) 前驅物 C 於 600 H<sub>2</sub>S 氣氛中反應所合成奈米 Gd<sub>2</sub>O<sub>2</sub>S 之<br/>TEM 影像</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - |       | SEM 影像                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <ul> <li>TEM 影像</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 圖 | 39(a) | 前驅物 C 於 600 H <sub>2</sub> S 氣氛中反應所合成奈米 Gd <sub>2</sub> O <sub>2</sub> S 之                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>圖 39(b) 前驅物 C 於 600 H<sub>2</sub>S 氣氛中反應所合成奈米 Gd<sub>2</sub>O<sub>2</sub>S 之<br/>電子繞射環圖譜</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - |       | TEM 影像                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <ul> <li>電子繞射環圖譜</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 圖 | 39(b) | 前驅物 C 於 600 H <sub>2</sub> S 氣氛中反應所合成奈米 Gd <sub>2</sub> O <sub>2</sub> S 之                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>圖 40 不同製程於 1000 熱處理所合成 Gd<sub>2</sub>O<sub>2</sub>S XRD 圖譜之比<br/>較: (a)水熱法-前驅物 A (b)固態(H<sub>2</sub>S) 與 (c)固態(石墨) 99</li> <li>圖 41 固態法於 H<sub>2</sub>S 氣氛中,1000 所合成 Gd<sub>2</sub>O<sub>2</sub>S 之 SEM 影像 100</li> <li>圖 42 在石墨所提供還原氣氛於 1000 以固態法合成 Gd<sub>2</sub>O<sub>2</sub>S 之<br/>SEM 影像</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |       | 電子繞射環圖譜                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 較: (a)水熱法-前驅物 A (b)固態(H <sub>2</sub> S) 與 (c)固態(石墨) 99<br>圖 41 固態法於 H <sub>2</sub> S 氣氛中,1000 所合成 Gd <sub>2</sub> O <sub>2</sub> S 之 SEM 影像 100<br>圖 42 在石墨所提供還原氣氛於 1000 以固態法合成 Gd <sub>2</sub> O <sub>2</sub> S 之<br>SEM 影像                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 圖 | 40    | 不同製程於1000 熱處理所合成 Gd2O2S XRD 圖譜之比                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 較: (a)水熱法-前驅物 A (b)固態(H <sub>2</sub> S) 與 (c)固態(石墨) 99<br>圖 41 固態法於 H <sub>2</sub> S 氣氛中,1000 所合成 Gd <sub>2</sub> O <sub>2</sub> S 之 SEM 影像 100<br>圖 42 在石墨所提供還原氣氛於 1000 以固態法合成 Gd <sub>2</sub> O <sub>2</sub> S 之<br>SEM 影像                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>圖 41 固態法於 H<sub>2</sub>S 氣氛中,1000 所合成 Gd<sub>2</sub>O<sub>2</sub>S 之 SEM 影像 100</li> <li>圖 42 在石墨所提供還原氣氛於 1000 以固態法合成 Gd<sub>2</sub>O<sub>2</sub>S 之<br/>SEM 影像</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |       | 較:(a)水熱法-前驅物 A(b)固態(H <sub>2</sub> S) 與 (c)固態(石墨) 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 圖 42 在石墨所提供還原氣氛於 1000 以固態法合成 Gd <sub>2</sub> O <sub>2</sub> S 之<br>SEM 影像                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 圖 | 41    | 固態法於 H <sub>2</sub> S 氣氛中,1000 所合成 Gd <sub>2</sub> O <sub>2</sub> S 之 SEM 影像 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SEM 影像101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 圖 | 42    | 在石墨所提供還原氣氛於1000 以固態法合成 Gd2O2S 之                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |       | SEM 影像101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| 圖  | 43         | 固態(H <sub>2</sub> S)法合成之 $Gd_2O_2S$ 主體自身活化光譜圖(a) $\lambda_{em}$ =                           | 100 |
|----|------------|---------------------------------------------------------------------------------------------|-----|
| _  |            | $625 \text{nm}, (b)\lambda_{ex} = 264 \text{nm}.$                                           | 102 |
| 圖  | 44         | 固態( $H_2S$ )法合成之微米多晶 $Gd_2O_2S$ 粉末全反射光譜:<br>實驗値(-△-) 的一次方線州回歸(一)                            | 103 |
| 回  | 15         | 貝殼 $\mu(-\Delta -)$ 兴 八 泳 任 口 師 ( )                                                         | 105 |
| 回  | 43         | 當个问 $10$ 疹椎 振 及 $< $ $ \pi \cdot (Ou_{2-x} I U_x) O_2 S                                  $  |     |
|    |            | 譜·X = (a) 0.5%, (b) 1%, (c) 2%, (d) 3%與(e) 4% (前驅物<br>A·Tb 於 600 退火)                        | 104 |
| িছ | 16         | A.10 $\%$ 000 些人)                                                                           | 104 |
| 回  | 40         | 當个问 10 疹雜                                                                                   |     |
|    |            | A·Th 於 600 退火)                                                                              | 104 |
| 晑  | <i>4</i> 7 | 今不同 Pr 操雜濃度之本光(Gd. Pr)O.S 系列樣品對發光                                                           |     |
| 回  | т/         | iii: x = (a) 0.5%, (b) 1%, (c) 2%,與(d) 3% (前驅物 A:Pr                                         |     |
|    |            | 於 600 退火)                                                                                   | 105 |
| 圖  | 48         | 含不同 Pr 掺雜濃度之奈米(Gd2, Prx)O2S 系列樣品放射光                                                         |     |
|    |            | 譜: x = (a) 0.5%, (b) 1%, (c) 2%,與(d) 3% (前驅物 A:Pr                                           |     |
|    |            | 於 600 退火)                                                                                   | 105 |
| 圖  | 49         | 含不同Eu掺雜濃度之奈米(Gd2,Eux)O2S系列樣品激發光                                                             |     |
|    |            | 譜: x = (a) 0.5%, (b) 1%, (c) 2%,與(d) 3% (前驅物 A:Eu                                           |     |
|    |            | 於 600 退火)                                                                                   | 106 |
| 圖  | 50         | 含不同 Eu 掺雜濃度之奈米(Gd, Eux)O2S 系列樣品放射光                                                          |     |
|    |            | 譜: x = (a) 0.5%, (b) 1%, (c) 2%,與(d) 3% (前驅物 A:Eu                                           |     |
|    |            | 於 600 退火)                                                                                   | 106 |
| 圖  | 51         | 不同水熱法溫度+600 H <sub>2</sub> S 退火合成奈米(Gd <sub>1.97</sub> Tb <sub>0.03</sub> )O <sub>2</sub> S |     |
|    |            | 激發光譜之比較:(a)140 ,(b)160 ,(c)180 與 (d)200                                                     |     |
|    |            | (Gd <sub>2</sub> O <sub>3</sub> /Thiourea/pH=6)                                             | 107 |
| 圖  | 52         | 不同水熱法溫度+600 H <sub>2</sub> S 退火合成奈米(Gd <sub>1.97</sub> Tb <sub>0.03</sub> )O <sub>2</sub> S |     |
|    |            | 放射光譜之比較:(a)140 ,(b)160 ,(c)180 與 (d)200                                                     |     |
|    |            | (Gd <sub>2</sub> O <sub>3</sub> /Thiourea/pH=6)                                             | 107 |
| 圖  | 53         | 前驅物 A:Tb 於不同退火溫度所合成之(Gd <sub>1.97</sub> Tb <sub>0.03</sub> )O <sub>2</sub> S                |     |
|    |            | 激發光譜之比較:(a) 600 , (b)700 , (c)800 , (d)900                                                  | 100 |
| _  |            | 與 (e)1000                                                                                   | 108 |
| 啚  | 54         | 前驅物 A:Tb 於不同退火溫度所合成之 $(Gd_{1.97}Tb_{0.03})O_2S$                                             |     |
|    |            | 激發光譜之比較:(a) 600 , (b) / 00 , (c) 800 , (d) 900                                              | 100 |
| ы  | ~ ~        |                                                                                             | 108 |
| 宣  | 22         | 則驅物 A:Pr 於个 同 退火 温度所 合成之 $(Gd_{1.98}Pr_{0.02})O_2S$                                         |     |
|    |            | 激發光譜之比較: (a) 600 , (b) /00 , (c) 800 , (d) 900                                              | 100 |
| F  |            |                                                                                             | 109 |
| 旨  | 56         | <b></b> 丽驅物 A:Pr 於不同退火溫度所合成之(Gd <sub>1.98</sub> Pr <sub>0.02</sub> )O <sub>2</sub> S        |     |

|      | 激發光譜之比較: (a) 600 , (b)700 , (c)800 , (d)900<br>與 (e)1000                                                                 |
|------|--------------------------------------------------------------------------------------------------------------------------|
| 圖 57 | 前驅物 A:Eu 於不同退火溫度所合成之(Gd <sub>1.98</sub> Eu <sub>0.02</sub> )O <sub>2</sub> S<br>激發光譜之比較: (2) 600 (b) 700 (c) 800 (d) 900 |
|      | 激發光譜之比較·(a) 000 ,(b) 700 ,(c) 800 ,(d) 900<br>與 (e) 1000                                                                 |
| 圖 58 | 前驅物 A:Eu 於不同退火溫度所合成之(Gd <sub>1.98</sub> Eu <sub>0.02</sub> )O <sub>2</sub> S                                             |
|      | 激發光譜之比較: (a) 600 , (b)700 , (c)800 , (d)900<br>與 (a)1000 110                                                             |
| 圖 59 | x = (C) = 0000                                                                                                           |
|      | 濃度關係圖(a)Tb <sup>3+</sup> , (b)Pr <sup>3+</sup> , (c)Eu <sup>3+</sup> (前驅物 A:R 於 600                                      |
| 7 () | 退火溫度)                                                                                                                    |
| 圖 60 | 奈米( $Gd_{2-x}R_x$ ) $O_2S$ 系列樣品之放射峰相對強度與退火溫度<br>關係圖(a)Tb <sup>3+</sup> (b) $Pr^{3+}$ (c)Fu <sup>3+</sup> (前更物 A:B 国定按強濃度 |
|      | 腳 际 圖 (a) 10 , (b) 11 , (c) Lu ( ៣ 遍初 A.K 固 足 珍 維 處 反<br>於 不 同 退 火 溫 度 ) 111                                             |
| 圖 61 | (Gd <sub>1-x</sub> R <sub>x</sub> )O <sub>2</sub> S 螢光體 (a-c)R = Tb, 600、800、900°C, (d-g)                                |
|      | $R = Pr, 600 \cdot 700 \cdot 800 \cdot 1000$ , $(h-k)R = Eu, 600 \cdot 700 \cdot$                                        |
|      | 800、1000 之 CIE 色度座標之比較 (前驅物 A:R 固定                                                                                       |
| 同 (1 | 掺雜濃度於不同退火溫度)                                                                                                             |
| 圖 62 | 不同釓米源所得之前驅物於 $600$ CH <sub>2</sub> S 退火所合成奈米                                                                             |
|      | $(Ou_{1.97} I O_{0.03})O_2S 激發元譜之比較·(a) 削繩彻 A. IO (0) 削繩 物 C. Th (c) 前驅物 B. Th (d) 前驅物 E. Th (e) 前驅物 D. Th 113$          |
| 圖 63 | 不同釓來源所得之前驅物於 600℃H2S 退火所合成奈米                                                                                             |
|      | (Gd <sub>1.97</sub> Tb <sub>0.03</sub> )O <sub>2</sub> S 放射光譜之比較:(a)前驅物 A:Tb (b)前驅                                       |
|      | 物 C:Tb, (c)前驅物 B:Tb, (d)前驅物 E:Tb, (e)前驅物 D:Tb 113                                                                        |
| 圖 64 | 不同釓來源所得之前驅物於 600℃H2S 退火所合成奈米                                                                                             |
|      | $(Gd_{1.98} Pr_{0.02})O_2S$ 激發光譜之比較: (a)前驅物 A:Pr (b)前驅                                                                   |
| 圖 65 | 物 C.PF, (C) 削驅物 B.PF                                                                                                     |
| 回 05 | $(Gd_{1,00} Pr_{0,02})O_{2}S$ 放射光譜之比較:(a)前驅物 A:Pr (b)前驅                                                                  |
|      | 物 C:Pr, (c)前驅物 B:Pr                                                                                                      |
| 圖 66 | 不同釓來源所得之前驅物於 600℃H2S 退火所合成奈米                                                                                             |
|      | (Gd <sub>1.98</sub> Eu <sub>0.02</sub> )O <sub>2</sub> S 激發光譜之比較:(a)前驅物 A:Eu (b)前驅                                       |
|      | 物 C:Eu, (c)前驅物 B:Eu115                                                                                                   |
| 圖 67 | 不同釓來源所得之前驅物於 $600$ °CH <sub>2</sub> S退火所合成奈米                                                                             |
|      | (Uu <sub>1.98</sub> Eu <sub>0.02</sub> )U <sub>2</sub> O                                                                 |
| 圖 68 | 7/1 C.Lu, (C)刖 № /0 D.Lu                                                                                                 |
| 四 00 | ·····································                                                                                    |

|   |    | 之比較:(a)30%與(b) 60% (前驅物 A:Tb 於 600 退火) 116                                     |
|---|----|--------------------------------------------------------------------------------|
| 圖 | 69 | 以不同溶劑填充量所合成奈米(Gd <sub>1.97</sub> Tb <sub>0.03</sub> )O <sub>2</sub> S 放射光譜     |
|   |    | 之比較:(a)30%與(b) 60% (前驅物 A:Tb 於 600 退火) 116                                     |
| 圖 | 70 | 以不同鹼液所合成奈米(Gd <sub>1.97</sub> Tb <sub>0.03</sub> )O <sub>2</sub> S 激發光譜之比較     |
|   |    | :(a)NaOH 與 (b) KOH (前驅物 A:Tb 於 600 退火)117                                      |
| 圖 | 71 | 以不同鹼液所合成奈米(Gd197 Tb0.03)O2S 激發光譜之比較                                            |
|   |    | :(a)NaOH 與 (b) KOH (前驅物 A:Tb 於 600 退火)117                                      |
| 圖 | 72 | 於 1000 熱處理,不同方法所合成 (Gd <sub>197</sub> Tb <sub>0.03</sub> )O <sub>2</sub> S 激發  |
|   |    | 光譜之比較: (a)水熱法-前驅物 A:Tb, (b)固態(H <sub>2</sub> S) 與                              |
|   |    | (C)固態(石墨)                                                                      |
| 圖 | 73 | 於1000 熱處理,不同方法所合成 (Gd <sub>1.97</sub> Tb <sub>0.03</sub> )O <sub>2</sub> S 放射  |
|   |    | 光譜之比較:(a)水熱法-前驅物 A:Tb, (b)固態(H <sub>2</sub> S) 與                               |
|   |    | (C)固態(石墨)118                                                                   |
| 圖 | 74 | 於1000 熱處理,不同方法所合成 (Gd <sub>1.98</sub> Pr <sub>0.02</sub> )O <sub>2</sub> S 激發  |
|   |    | 光譜之比較:(a)水熱法-前驅物 A:Pr, (b)固態(H <sub>2</sub> S) 與                               |
|   |    | (C)固態(石墨)                                                                      |
| 圖 | 75 | 於1000 熱處理,不同方法所合成 (Gd <sub>1.98</sub> Pr <sub>0.02</sub> )O <sub>2</sub> S 放射  |
|   |    | 光譜之比較:(a)水熱法-前驅物 A:Pr, (b)固態(H <sub>2</sub> S) 與                               |
|   |    | (C)固態(石墨)                                                                      |
| 圖 | 76 | 於1000 熱處理,不同方法所合成 (Gd <sub>1.98</sub> Eu <sub>0.02</sub> )O <sub>2</sub> S 激發  |
|   |    | 光譜之比較:(a)水熱法-前驅物 A:Eu, (b)固態(H <sub>2</sub> S) 與                               |
|   |    | (C)固態(石墨)                                                                      |
| 圖 | 77 | 於1000 熱處理,不同方法所合成 (Gd <sub>1.98</sub> Eu <sub>0.02</sub> )O <sub>2</sub> S 放射  |
|   |    | 光譜之比較:(a)水熱法-前驅物 A:Eu, (b)固態(H2S) 與                                            |
|   |    | (C)固態(石墨)                                                                      |
| 圖 | 78 | 以(a)水熱法-前驅物 A:Tb, (b)固態(H <sub>2</sub> S) 與(c)固態(石墨)                           |
|   |    | 等製程於 900 或 1000℃熱處理所合成(Gd <sub>1.97</sub> Tb <sub>0.03</sub> )O <sub>2</sub> S |
|   |    | 螢光體之CIE 色度座標之比較121                                                             |
| 圖 | 79 | 以(a)水熱法-前驅物 A:Pr, (b)固態(H <sub>2</sub> S) 與(c)固態(石墨)                           |
|   |    | 等製程於 1000℃熱處理所合成(Gd <sub>1.98</sub> Pr <sub>0.02</sub> )O <sub>2</sub> S 螢光體之  |
|   |    | CIE 色度座標之比較122                                                                 |
| 圖 | 80 | 以(a)水熱法-前驅物 A:Eu, (b)固態(H <sub>2</sub> S) 與(c)固態(石墨)                           |
|   |    | 等製程於1000℃熱處理所合成(Gd <sub>1.98</sub> Eu <sub>0.02</sub> )O <sub>2</sub> S 螢光體之   |
|   |    | CIE 色度座標之比較123                                                                 |