第三章 結果與討論

3.1 單體 M1~M7 的結構鑑定

本實驗所合成之單體M1~M7的流程圖見Scheme 1~7,其結構 鑑定主要以FT-IR(Fig. 3-1~Fig.3-8),¹H-NMR光譜圖(附錄:圖 1~7) 與¹³C-NMR光譜圖(附錄:圖 8~14),質譜圖(附錄:圖 15~20)結果為依 據來確認單體M1~M7的結構無誤。

3.2 聚合物 P1~P3 及 POSS-P1~POSS-P3 的合成與鑑 定

在高分子 P1~P3 及 POSS-P1~POSS-P3 的鑑定上,本實驗主要 利用 FT-IR 光譜圖(Fig.3-1~Fig.3-8)及 X 射線(X-ray)繞射(Fig.3-9)來 確認其結構無誤並以 GPC 來量測其分子量大小(Table 3-1)。

3.2.1 聚合物 P1~P3 及 POSS-P1~POSS-P3 的 FT-IR 光譜鑑定

1896

Fig.3-1~Fig.3-4 為POSS,M3,P1和 POSS-P1 之FT-IR光譜圖, 從POSS上可看到三根主要的peak, 2250 cm⁻¹ (Si-H stretching), 1120 cm⁻¹ (Si-O-Si stretching)和 1256 cm⁻¹ (Si-CH₃ stretching)。在M3 的光譜上看不到 2250 cm⁻¹,且¹H-NMR光譜圖上Si-H bond (δ=4.23ppm) 也消失了,證實 4-bromostyrene和POSS完全接上。在POSS-P1 的光譜 上,比P1 多出 1120 cm⁻¹的peak(Si-CH₃ stretching)和 1256 cm⁻¹ (Si-CH₃ stretching)的peak,確定成功地將P1 接在M3 上,形成以POSS為中心 核的星狀(star-like)結構。在POSS-P2 和POSS-P3 的FT-IR光譜圖中 (Fig.3-6, Fig.3-8),分別也都具有 1120 cm⁻¹ (Si-O-Si stretching)和 1256 cm⁻¹ (Si-CH₃ stretching)的peak,證實POSS-P2,POSS-P3 也都是以 POSS為中心核的星狀結構。

Fig.3-6 The FT-IR spectra of POSS-P2

Fig.3-8 The FT-IR spectra of POSS-P3

polymer	Mn	\overline{Mw}	PDI $(\overline{Mw}/\overline{Mn})$	Average arm number (a)	
P1	4540	7210	1.58		
POSS-P1	2.59×10 ⁴	9.57×10 ⁴	3.69	5.7	
P2	7970	1.4×10^{4}	1.87		
POSS-P2	2.86×10 ⁴	8.49×10 ⁴	2.96	3.5	
Р3	9870	2.09×10 ⁴	2.12		
POSS-P3	3.06×10 ⁴	9.79×10^4	3.2	3.1	
a:以Mn of POSS-Pn / Mn of Pn 計算					

Table 3-1. Molecular weight and polydispersity of polymers P1~P3 and POSS-P1~POSS-P3

3.2.2 POSS-P1~POSS-P3 的 X 射線(X-ray)繞射鑑定

如果射至晶體表面的入射波能量不大,則晶體表面對此波為完全 的反射面,入射波會被反射。但是當入射波為能量很大的 X 射線時, 只有波長適合布拉格定律的才能被反射,這就是布拉格反射。對於 X 射線的繞射,布拉格角為入射線或反射線與晶體表面(布拉格平面)所 形成的夾角;假設布拉格角為 θ,原子平面(布拉格平面)間的距離為 d,λ是 X 射線的波長,則布拉格反射定律為:

 $n\lambda = 2d \cdot \sin\theta$

Fig.3-9為POSS、POSS-P1、POSS-P2和POSS-P3的X射線(X-ray) 繞射圖,當POSS還沒接上高分子P1~P3之前,其為一個六邊形的 規則結構(hexagonal),具有很好的結晶態,所測得的X-ray peak 會較 sharp,而當POSS接上高分子P1~P3形成POSS-P1、POSS-P2和 POSS-P3後,原本角度20=8.032的peak均向小角度的方向位移, 且其peak均較broad尤其是角度20=10以後的peak都不是很明顯, 為一個很broad的繞射峰。從布拉格反射定律n λ =2d·sin θ =常數可 知,當布拉格角 θ 變小,原子平面間的距離d會變大,此結果主要是 因為高分子P1~P3為一非結晶態(amorphous),當具結晶態的POSS 接上非結晶態的高分子P1~P3後改變了原本POSS的晶格排列,使 POSS的層與層距離變大,且使其非結晶態區域變大。其布拉格角 θ 和原子平面(布拉格平面)間的距離d之關係如下表所示:

	2θ	d-spacing(Å)
POSS	8.02	11.04
POSS-P1	7.34	12.03
POSS-P2	7.56	11.68
POSS-P3	7.34	12.03

3.3.1 熱性質分析

一個好的發光材料除了色彩飽和度要夠外,材料本身的結構穩定 性也要夠,這個穩定性可分為化學性的穩定及物理性的穩定,所謂化 學性的穩定即材料本身的化學結構是否易產生化學鍵的斷裂,通常發 光元件在電壓操作下溫度會不斷上升,若材料在低溫就產生化學鍵的 斷裂,那麼材料本質便發生改變進而造成元件壽命減短,而所謂物理 性的穩定即材料是否易有規則的排列,在發光元件中材料愈易有規則 的排列,則會有局部結晶現像產生造成缺陷(defect),就高分子材料而 言,其玻璃轉移溫度(Tg,glass transition temperature)是指在Tg點以下 時,高分子被凍結無法再運動而變成硬固體(rigid)。當溫度升高至Tg點 以上時,其高分子鏈主鏈便開始蠕動,也就是由玻璃態(Glass State) 轉變到橡膠態(Rubbery State),如此一來,高分子鏈便有機會做規則 排列,所以為了要得到發光材料這兩個穩定性指標,我們測量TGA 及DSC來獲得這方面的資訊,高分子P1~P3 及POSS-P1~POSS-P3 的TGA及DSC圖譜見於附錄:圖 21~26,而Td及Tg值見於Table 3-2。

annun .

Table 3-2. Thermal transitions and thermal degradation temperatures of polymers P1~P3 and POSS-P1~POS-P3

$T_d(^{\circ}C)$	T _g (°C)
372	81.57
413	110.36
410	107.54
427	120.78
414	106.04
428	127.86
	T _d (°C) 372 413 410 427 414 428

如Table 3-2.所,P2,P3 和POSS-P1~POSS-P3 其熱裂解溫度都 在 400℃以上,顯示其熱穩定度都不錯。唯獨P1,其熱裂解溫度為 372 ℃,其原因可能是分子量比較小所致。且以POSS為中心核的POSS-P1 (T_d =413℃),其熱裂解溫度高於P1(T_d =372℃),顯示出含有POSS之 星狀高分子可增加高分子的熱穩定性。就玻璃轉移溫度 T_g 而言,文獻 中曾報導具有 spiro-linked⁽⁶⁷⁾或 cross-linked⁽⁶⁸⁾結構可提高 T_g 點溫 度。如Table 3-2.所示POSS-P1 的玻璃轉移溫度(T_g =110.36℃)比P1 的 玻璃轉移溫度(T_g =81.57℃)還高,顯示出中心核的POSS可抑制 polymer chain的mobility,且具有三維立體空間結構的POSS-P1,其P1 接在POSS上,並以放射狀往向四面八方連接,故也可降低高分子的 堆疊。相同現象也於綠光高分子材料的P2,POSS-P2,和紅光高分子 材料的P3,POSS-P3 中表現出來。

3.3.2 熱穩定性分析

一般元件在加高電壓後,溫度會不斷上升,所以高分子在不同 溫度下所表現出的色彩和亮度的穩定性是很重要的。本實驗將不含 POSS基團的高分子材料P1~P3和以POSS基團為中心的星狀高分子 POSS-P1~POSS-P3 做薄膜(film)時的迴火(annealing)實驗。Fig.3-10 ~ Fig.3-12 分別為藍光的高分子材料 P1 和 POSS-P1,綠光的高分子 材料 P2 和 POSS-P2,及紅光的高分子材料 P3 和 POSS-P3 在室溫、 100℃、150℃、200℃下的迴火實驗。在 Fig.3-10 中發現,P1 和 POSS-P1 的最大 UV 吸收在加熱前和加熱後沒有明顯改變,表示在加熱後高分 子鏈本身的共軛並沒有改變。當加熱到 200℃時,P1 的 PL 螢光放射 光譜在 540nm 開始出現綠光的放射峰,然而 POSS-P1 在 540nm 放射 峰的強度比 P1 小,這個結果證明星狀結構的 POSS-P1 可降低堆疊 (aggregation)/激子(excimer)或酮化缺陷(keto defect)的產生。

從文獻上可知,以fluorene為主體的共軛高分子材料,其在高溫下所產生的綠色發光是由堆疊/excimer或keto defect所造成的⁽⁶⁶⁾。對於Fluorene所產生的keto defect最直接證據為其會在FT-IR的 1721 cm⁻¹有酮基(C=O)的peak出現。Fig.3-13~Fig.3-15 分別為P1~P3 和POSS-P1 ~POSS-P3 經迴火後所測得的FT-IR,當溫度達 200℃以後,P1~P3 和POSS-P1~POSS-P3 便開始產生keto defect,但POSS-P1~POSS-P3 其酮基的peak分別均比P1~P3 小,證明星狀結構的POSS-P1~ POSS-P3 除了可以降低高分子的堆疊外,也可抑制部份keto defect的 產生,增加高分子材料的熱穩定性。

文獻上曾報導,在fluorene 上所產生的 keto defect 又稱 fluorenone defect,此 keto defect 結構稱為 fluorenone,其結構如下所示:

fluorenone 為低能量(low-energy) 的電子電洞 trapping,其HOMO為-5.67eV,LUMO為-3.14eV,其能階(energy level)為一綠光材料,會使 藍光高分子材料的polyfluorene產生能量轉移(energy transfer),使 polyfluorene在綠光的波長範圍出現放射峰,當fluorenone越多,所產 生的綠光放射峰也就越明顯,且會造成元件效率的降低⁽⁷⁵⁾。因此,雖 然綠光高分子材料的P2 和POSS-P2 及紅光的高分子材料P3 和 POSS-P3 在 200℃時有keto defect的產生,但其所產生的fluorenone會 產生能量轉移使綠光高分子材料在PL螢光放射光譜所呈現出來的光 色仍為綠光,紅色高分子材料所呈現出來的仍為紅光,但其元件效率 會降低。

(a) Fresh films

(c)Annealed Films (150°C,1h)

Fig.3-10 Normalized UV-vs absorption and photoluminescence(PL) spectra of P1(solid line) and poss-P1 (dotted line) spin-coated film after the following treatment: (a) fresh film,annealed at (b)100 (c)150 (d)200°C For 1h each .

(a) Fresh films

(c)Annealed Films (150°C,1h)

Fig.3-11 Normalized UV-vs absorption and photoluminescence(PL) spectra of P2(solid line) and poss-P2 (dotted line) spin-coated film after the following treatment: (a) fresh film,annealed at (b)100 (c)150 (d)200°C For 1h each .

(c)Annealed Films (150°C,1h)

Fig.3-12 Normalized UV-vs absorption and photoluminescence(PL) spectra of P3(solid line) and poss-P3 (dotted line) spin-coated film after the following treatment: (a) fresh film,annealed at (b)100 (c)150 (d)200 $^{\circ}$ C For 1h each .

Fig.3-13 FT-IR spectra of P1 and POSS-P1 film after baking at 100, 150, 200°C for 1 hr. The spectra shows the magnified >C=O stretching mode at 1721cm⁻¹.

Fig.3-14 FT-IR spectra of P2 and POSS-P2 film after baking at $100,150,200^{\circ}$ C for 1 hr.The spectra shows the magnified >C=O stretching mode at 1721 cm⁻¹.

Fig.3-15 FT-IR spectra of P3 and POSS-P3 film after baking at 100,150,200°C for 1 hr. The spectra shows the magnified >C=O stretching mode at 1721cm⁻¹.