3-2.Ag-Sn-Bi-S 四元系統:

3-2-1. Ag-Sn-Bi-S 系統晶體結構分析:

本實驗合成出一個新穎的化合物 AgSnBi₃S₆,其構想來源是從 AgPb₄Sb₄S₁₀^[85],本實驗是將 Pb 與 Sb 以 Sn 與 Bi 取代,以 AgSn₄Bi₄S₁₀ 的比例 800℃的溫度燒結 12 小時。其整體燒結出來的顏色為塊狀的銀白 色,經由研玻磨碎後取其中一小塊菱形碎片,黏置於 fiber 上。經由實 驗室的單晶繞射儀初步分析其晶孢為:

a=4.056(4),b=13.303(3),c=20.109(6) α=β=γ=90° 晶系為 orthorhombic。

在單晶結構之分析中,利用 SHELXTL 軟體分析其繞射點之數據,由 系統相消(sysmatic absence)之模型中得知 Pna21 可得到最好之空間群,故 選用此空間群為模型的起始。而利用直接法獲得初步的模型,起初得到 的 R 值為 0.207,並不是非常理想,將其結果放入 atoms 軟體畫出原子位 置,如果原子間的距離小於兩原子之共價半徑或原子鍵結的位置不合理 時,則刪除不合理之原子,再經過數次的精算。精算的結果發現,有些 位置的電子密度比 Bi 小,卻又比 Sn 或 Ag 大,由此可以得知,某些部分 的空間有混合填充的情形,將此列入計算的條件後再次精算,得到最後 的結果,R1/wR2 值可以降到 3.69%/10.67%,得到一個最佳的結果。 表 4、表 5、表 6、表 7 分別詳細的說明 CCD 晶體數據的收集分析、各原 子位置、原子間鍵結的距離與熱振動參數等。

Empirical formula	$AgSnBi_3S_6$
Formula weight	1045.86
Temperature	273(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	Pna2 ₁ (No.33)
a	20.086(11) Å .
b	b = 13.310(7) Å
С	c = 4.054(2) Å
Volume	1083.7(10) Å ³
Ζ	4
Density (calculated)	4.808 mg/m ³
Absorption coefficient	40.267 mm ⁻¹
F(000)	1326
Crystal size	$0.1 \ge 0.1 \ge 0.3 \text{ mm}^3$
Independent reflections	2612 [R(int) = 0.0293]
Goodness-of-fit on F ²	0.814
Final R indices [I>2sigma(I)]	R1 = 3.69%, wR2 = 10.67%
Largest diff. peak and hole	2.402 and -2.623 e.Å ⁻³

 $R1=\Sigma \parallel F_0 \mid - \mid F_c \parallel / \Sigma \mid F_0 \mid \quad wR2= \{ \Sigma \mid (w(F_0^2 - F_c^2)^2) \mid / \Sigma \mid (w(F_0^2)^2) \}^{1/2}$

 原子	X	у	Z	sof	U(eq)*10 ³
Bi(1)	0.4497(1)	0.8865(1)	0.2276(5)	0.4	17(1)
Ag(1)	0.4497(1)	0.8865(1)	0.2276(5)	0.6	17(1)
Bi(2)	0.3617(1)	0.6651(1)	-0.2716(5)	0.265	22(1)
Ag(2)	0.3617(1)	0.6651(1)	-0.2716(5)	0.735	22(1)
Sn(3)	0.6296(1)	0.8342(1)	-0.2687(7)		26(1)
Sn(4)	0.4501(1)	0.3919(1)	-0.2691(8)		21(1)
S(6)	0.3316(1)	0.7978(2)	0.2160(20)		31(1)
S(7)	0.5916(2)	0.9872(2)	0.2190(30)		40(1)
S(8)	0.2454(1)	0.5727(2)	-0.2930(20)		34(1)
S(9)	0.3922(2)	0.5123(2)	0.2230(20)		40(1)
S(10)	0.6621(1)	0.7019(2)	0.2170(20)		32(1)
S (11)	0.4990(1)	0.7429(2)	0.7170(30)		41(1)
Sn(5)	0.2427(13)	0.4401(4)	-0.7520(20)	0.341	35(3)
Sn(6)	0.2667(3)	0.4341(4)	-0.7776(16)	0.659	25(1)

表 5、原子位置與熱參數 U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

表7、各原子之非均向熱參數

			-	1			
U11*	10^{3}	$U22 * 10^{3}$	U33*10 ³	$U23*10^{3}$	$U13*10^{3}$	$U12*10^{3}$	
			E	896			
Bi(1)	23(1)	14(1)	14(1)	-1(1)	-1(1)	1(1)	
Ag(1)	23(1)	14(1)	14(1)	-1(1)	-1(1)	1(1)	
Bi(2)	28(1)	20(1)	17(1)	0(1)	3(1)	2(1)	
Ag(2)	28(1)	20(1)	17(1)	0(1)	3(1)	2(1)	
Sn(4)	31(1)	26(1)	22(1)	0(1)	3(1)	3(1)	
Sn(5)	25(1)	20(1)	17(1)	-2(1)	-2(1)	0(1)	
S(6)	34(1)	28(1)	32(1)	5(3)	8(3)	2(1)	
S(7)	59(2)	31(1)	30(1)	5(4)	13(4)	12(1)	
S(8)	51(2)	31(1)	20(2)	7(2)	4(3)	0(1)	
S(9)	59(2)	29(1)	33(1)	-3(4)	-15(4)	6(1)	
S(10)	36(1)	30(1)	30(1)	1(4)	-2(3)	3(1)	
S(11)	49(2)	47(2)	26(2)	2(5)	0(4)	18(1)	
Sn(6)	60(7)	30(1)	15(3)	-6(2)	-2(3)	8(2)	
Sn(5)	23(1)	23(1)	28(1)	2(2)	6(2)	-8(1)	

Bi1/Ag		Distance	Sn4		Distance
1	S6	2.650(1)	1	S9	2.857(8)
2	S7	3.151(3)	2	S9	2.809(6)
3	S7	2.786(9)	3	S9	3.416(1)
4	S7	2.735(8)	4	S10	2.575(2)
5	S11	2.984(5)	5	S11	2.932(8)
6	S11	2.928(2)	6	S11	2.856(4)
	average	2.872(8)		average	2.806(4)
Bi2/Ag		Distance	Sn5		Distance
1	S6	2.792(2)	1	S6	3.376(8)
2	S6	2.718(6)	2	S6	3.345(8)
3	S8	2.640(7)	3	S8	2.821(3)
4	S9	2.951(8)	4	S8	2.727(1)
5	S9	2.919(4)	5	S9	2.726(6)
6	S11	2.947(1)	6	S10	3.085(4)
	average	2.828(3)	antifun	S10	3.056(1)
		S.		average	2.758(3)
Sn3		Distance	ESA	1 E	
1	S7	3.006(8)	-//	1	
2	S7	2.938(6)	1896	Ĩ	
3	S8	2.636(7)		a la	
4	S10	2.806(7)	- Manne	-	
5	S10	2.721(1)			
6	S11	2.892(1)			
	average	2.833(6)			

表 6、各陽離子原子與陰離子之鍵長(Å)

單晶數據分析後所得之結果顯示 Ag-Sn-Bi-S 結構與 AgPbBi₃S₆大致相 同,假設其分子式為 AgSnBi₃S₆,與原式 AgSn₄Bi₄S₁₀ 有蠻大的差距。 AgPbBi₃S₆為 1993 年 Bente K 等人在礦石中所發現^[86],其空間群為 Cmcm,另有一類似已知化合物其分子式為 AgPbSb₃S₆於 1987 年由 Sawada H 等人發表^[87](圖 42),AgPbSb₃S₆ 晶格大小、鍵結情形和 AgPbBi₃S₆看起 來不相,因此在這之後對 AgPbSb₃S₆並不做詳細的探討。而 AgSnBi₃S₆、 AgPbBi₃S₆之結構列於圖 40、圖 41,畫框處為結構上列為之不同。

圖 40、AgSnBi₃S₆之 Pna2₁結構

圖 41、AgPbBi₃S₆之 Cmcm 結構

圖 40 和圖 41 其大致結構是相同的,其主要的差異在於 AgSnBi₃S₆ 在晶格中的對稱性為 Primative, AgPbBi₃S₆在晶格中的對稱性為 C-center。由圖 40 可看到 AgSnBi₃S₆的 c 軸方向有一個 180°的滑面,沒 有鏡面;而圖 41 則可看到 AgPbBi₃S₆一鏡面與一滑面。

雖為非常略微的差異,但 AgPbBi₃S₆ 的對稱性的確比 AgSnBi₃S₆ 高 些,由圖 43 看見粉末繞射圖譜大部分繞射峰的位置都差不多,所以假設 兩空間群之結構差異的確不大。在 AgSnBi₃S₆ 結構解析時,若套用 Cmcm 的對稱性來當做起始模型,C-center 在 hkl 的消光條件為:h+k=2n 由表 8 得知此晶格是不合理的,而套用 Pna21的空間群則可得到較合理的消光條 件。因 AgSnBi₃S₆ 的晶體結構以 Cmcm 的空間群解釋有一些問題(表 8), 故由實驗中推測 AgPbBi₃S₆ 的空間群或許與 AgPbBi₃S₆ 相同,即 Pna21, 此假設必須再做實驗確認。

55

表 8、選擇 C-center 之模型消光條件

Lattice exceptions :	Р	А	В	С	Ι	F
N(total)	0	4791	4801	4828	4803	7210
N(int>3sigma)	0	3535	3519	3162	3644	5144
mean intensity	0	189.1	189.5	23.7	189.3	188.3
mean int/sigma	0	10.4	10.5	7.4	10.6	9.4

圖 43、上圖為 AgSnBi₃S₆之理論計算粉末圖譜,下圖為 AgPbBi₃S₆之理論計算 粉末圖譜。

從 AgSnBi₃S₆之鍵結來探討其中各個原子的鍵結情形(圖 44),Bi1/Ag 原子以六配位的方式鍵結,其鍵長平均等於 2.872(8) Å,如此的配位環境 在一些相關化合物是很常見的,如 AgBiS^[88]中混合填佔的 Ag 也是六配 位,其鍵長為 2.834(6) Å,由此得知 Bi1 在這個位置的鍵結和配位是合理 的。Bi2/Ag 也是以六配位的方式鍵結,鍵長約 2.828(3) Å,這樣的配位和 長度都很合理。而 Sn3 是以五配位的方式做鍵結,其 Sn3-S7 之長度約為 3.006(3) Å,可能有弱的部分的鍵結,故它的形式也偏向變形的六配位, 其他五個鍵結的平均長度約 2.833(6) Å,屬於合理的 Sn 配位環境。Sn4 的情況和 Sn3 相同也是以五配位的方式鍵結,其平均鍵長為 2.806(4) Å, Sn4-S9 之長度約 3.416(1) Å。而 Sn5 的環境是三配位,平均鍵長為 2.758(3) Å, Sn5-S10 距離 3.085(4) Å, Sn5-S6 距離 3.345(8) Å,可推測 Sn5-S10 可能有部分鍵結。

圖 44、AgSnBi₃S₆之鍵結說明

3-2-2. Ag-Sn-Bi-S 系統純化:

在AgPbBi₃S₆之結構中,Ag和Bi2是以50%的比例混合填佔的(圖 41所示),但在AgSnBi₃S₆的模型中混合填佔的原子位置與Ag-Pb-Bi-S 不太相同,Ag和Bi1、Bi2以超過50%的比例混合填充(表5所示),也就 是說AgSnBi₃S₆與AgPbBi₃S₆之結構原子位置的差異很大。

在AgSnBi₃S₆的粉末圖譜的比較上,如果用AgSnBi₃S₆的比例800°C 緩慢降溫的方式燒結,則會得到AgBi₃S₅和SnS₂的混合物(圖45),若以 AgSn₄Bi₄S₁₀的比例800°C緩慢降溫,則可得到AgSnBi₃S₆和些微SnS的混 合粉末圖(圖46),由此可以推測出AgSnBi₃S₆可能為一亞穩定的產物 (metastable),可能必須以急速降溫(quench)的方式來達到純化的效果。

圖 45、(a)為 AgSnBi₃S₆的燒結結果;(b)為 AgBi₃S₅之理論計算圖譜;(c)為 SnS₂之理論計算圖譜

由上述之結果所以針對 AgSn4Bi4S10 所燒結出來的產物(AgSnBi3S6和 SnS)進行熱差分析(DTA)的實驗,藉此希望瞭解此化合物更多的資訊, 圖 47 即為實驗之結果。由圖中可以看到 700℃到 900℃確實有蠻複雜的 變化,也就是說,當燒結 800℃緩慢降溫時,835℃、780℃、739℃的產 物都有可能出現,產物也一定是混合物。由此認知後再來設計接下來的 實驗將可能可以做到純化的目的。

3-2-3. Ag-Sn-Bi-S 系統物性測量:

在 Seebeck 係數的測量中,主要測量的溫度為 304K 到 580K,主要 是拿 AgSnBi₃S₆與 AgPbBi₃S₆兩種化合物。對 Ag-Sn-Bi-S 而言,現階段的 產物無法得到接近純相,所用的樣品含有少量的 SnS。其結果由圖 48 與 49 所示。由圖中發現,AgSn₄Bi₄S₁₀的產物數值約可到-175μV/K,溫度越 高數值越大,其最大值比 Bi₂Te₃(約-260μV/K)略小,屬於 n-type 的半導體。 AgPbBi₃S₆所測得的結果約在-800~-900μV/K 之間,溫度改變所產生的變 動似乎不大,在 540K 有個不穩定的曲線,推斷可能在此溫度有發生相變 化或不純物所造成的結果的緣故。這樣的 Seebeck 結果是一個好的開始, 導電度與熱傳導的測量待純相製備之後會有詳盡的量測。

圖 48、AgPbBi₃S₆之 Seebeck 係數測量

圖 49、AgSnBi₃S₆之 Seebeck 係數測量

肆、結論

本論文主主要的貢獻為成功的合成出三種新化合物,並對三種化合物做了一系列的分析,目前的研究結果可歸納出下列幾點:

- TaSnSe4由上述實驗中可以大概知道此產物可能是一個新化合物,因所 得皆為髮狀針狀物,只要在長晶方面有所突破,即可獲得較大的單晶來 分析此化合物的結構,目前目前正在進行有關鹽類長晶的實驗。
- 2. Bi₁₈Sn₁₀Se₃₇確定為一未知化合物,目前R值是由多晶數據所得到的結果(R1/wR2=12.41%/32.74%),後續會挑選更好單晶數據來確認。在DTA 實驗中發現此一比例之化合物中含有一種以上的未知物,因此在溫度的 調控,如急速降溫或微調比例等,將很有機會把不同的化合物結晶出來。
- 3. AgSnBi₃S₆其結構分析結果相當可信,R1/wR2值為 3.69%/10.67%。 然而在混合填佔的部分是否 Sn 有參與部分的填佔則無法從中得知, Ag 和 Sn 的電子數太相近,模型中填充哪一種結果都差不多,只能從化合物 的環境與原子配位鍵結的情形來推斷原子位置的可能性與正確性,在實 驗上可藉由將 Ag 原子改成 Cu 原子以合成出 Cu-Sn-Bi-S 的相,如果結構 沒有因此而改變的話,或許可由 Cu 和 Sn 的電子密度之不同來了解 Ag-Sn-Bi-S 含量的分佈。而在熱電性質的測量上,AgPbBi₃S₆有一個不錯 的 Seebcek 值,之後的導電度與導熱度測量仍須持續的進行。

本論文所發現的三元、四元化合物可能只是許多未發現新化合物的一小

部分,未來可能的研究方向可以由 AgSnBi₃S₆所延伸出來的比例: AgSnBi₃Se₆、AgSnSb₃S₆、AgSnSb₃Se₆、AgPbBi₃S₆、AgSnBi₃Se₆著手,此幾 種化合物的粉末繞射圖譜由比對後得知均為未知相,故這系列結構上的分析 仍需要持續的進行。

伍、反應列表:

編號	比例	升溫過程	結果
1	CaSn5Se11	840°C 6hr	CaSe, SnSe
2	Ca2Sn5Se12	840°C 6hr	CaSe, SnSe
3	Ca3Sn5Se13	840°C 6hr	CaSe, SnSe
4	Ca4Sn5Se14	840°C 6hr	CaSe, SnSe
5	Ca5Sn5Se15	840°C 6hr	CaSe, SnSe
6	Ca6Sn5Se16	840°C 6hr	CaSe, SnSe
7	Ca7Sn5Se17	840°C 6hr	CaSe, SnSe
8	Ca8Sn5Se18	840°C 6hr	CaSe, SnSe
9	Ca9Sn5Se19	840°C 6hr	CaSe, SnSe
10	Mg15Sn5Se25	800°C 6hr	amorphous
11	Mg17Sn5Se27	800°C 6hr	amorphous
12	Mg19Sn5Se29	800°C 6hr	MgSe
13	Mg20Sn5Se30	800°C 6hr	amorphous
14	SrSn5Se11	800°C 6hr	SnSe (major), unknown
15	Sr3Sn5Se13	800°C 6hr	SnSe2(major), Se
16	Sr5Sn5Se15	E S 800°C 6hr	SnSe2(major), Se
17	Sr7Sn5Se17	800°C 6hr	amorphous
18	Sr9Sn5Se19	тв9800°С 6hr	amorphous
19	Ca2Sn5Te12	845°C 12hr	SnTe(major), Te, CaTe
20	Ca4Sn5Te14	845°C 12hr	SnTe(major), Te, CaTe
21	Ca6Sn5Te16	845°C 12hr	SnTe(major), Te, CaTe
22	Mg2Sn1Te4	845°C 12hr	空氣反應且 amorphous
23	Mg3Sn2Te7	845°C 12hr	空氣反應且 amorphous
24	Mg4Sn3Te10	845°C 12hr	和空氣反應,Te,SnTe
25	Sr2Sn1Te4	845°C 12hr	Te, SrTe(major), SnTe
26	Sr3Sn2Te7	845°C 12hr	Te, SrTe(major), SnTe
27	Sr4Sn3Te10	845°C 12hr	SnSr2(major), Sn2O3, ??
28	TaSnSe2	950°C 12h	TaSe(major), SnSe, Sn
29	TaSnSe4	950°C 12h	???
30	TaSnTe2	950°C 12h	Ta2Te3(major)
31	TaSnTe4	950°C 12h	TaTe2(major), Ta
32	NbSnSe2	950°C 12h	Sn???
33	NbSnSe4	950°C 12h	???

編號	比例	升溫過程	結果
34	NbSnTe2	950°C 12h	SnTe (major), Nb3Te4
35	NbSnTe4	950°C 12h	NbTe4(major), SnTe
36	BaTaSnSe5	950°C 12h	Ba, TaSnSe4(major)
37	Ba2TaSnSe5	970°C 12h	Ba2Sn, BaTaSe3(major)
38	Ba2TaSnTe5	1000°C 12h	TaTe2(major), SnTe, BaTe
39	BaNbSnTe5	1000°C 12h	NbTe2(major), SnTe, BaTe
40	Ba2NbSnSe5	970°C 12h	reaction with SiO2, not clear
41	BaAg2SnSe3	970°C 12h	SnSe, SnSe2(major),AgBa ,Se
42	BaAg2SnTe3	1000°C 12h	amorphous
43	Ba2SnSe8	970°C 12h	SnSe ??
44	BaTaSn2Se7	970°C 12h	like TaSnSe4???
45	BaTaSn2Te7	1000°C 12h	Ba2Sn(major), SnTe, Te
46	BaAg2Sn2Te5	1000°C 12h	和管壁反應
47	TaSnSe4	950°C 12h	???
48	NbSnSe2	950°C 12h	???
49	NbSnSe4	950°C 12h	???
50	Cu4SnSe4	850°C 12h	Cu2SnSe4(major),Cu2Se
51	Cu4SnTe4	E 962°C 12h	Cu2Te(major),Cu7Te5,Cu5.6Sn
52	Ag4SnSe4	850°C 12h	AgSnSe(major)2,Ag8SnSe6
53	Ag4SnTe4	962°C 12h	AgTe3
54	Ba2NbSnSe5	850°C 12h	和管壁反應
55	TaSnSe4+I2	950°C 12h	???
56	NbSnSe4+I2	950°C 12h	???
57	WSnSe3	950°C 12h	WSe2(major),SnSe2
58	MoSnSe3	950°C 12h	MoSe2
59	MnSnSe2	950°C 12h	MnSe,SnSe
60	SnBi2Se4	950°C 12h	Bi2Se3,SnSe,BiSe
61	Ta2SnSe7	950°C 12h	???
62	TaSnSe4	950°C 12h	????
63	Ta0.75Sn0.25Se3	950°C 12h	TaSe3
64	TaPbSe4	950°C 12h	PbSe(major),TaSe3
65	Ta3Sn1.2Se12	950°C 12h	???
66	Ta3Sn1.5Se12	950°C 12h	????
67	Ta3Sn1.8Se12	950°C 12h	????
68	Ta3Sn2.1Se12	950°C 12h	????
69	Ta3Sn2.4Se12	950°C 12h	????

編號	比例	升溫過程	結果
70	Ta3Sn2.7Se12	950°C 12h	???
71	Ni3Sn2Se2	800°C 12h	SnSe(major)+NiSe+Ni
72	Ni3Sn2Te2	800°C 12h	SnTe(major)+Ni3Sn3Te5
73	Mo6SnSe8	800°C 12h	Mo15Se19(major)+SnSe+MoSe2??
74	Mo6SnTe8	800°C 12h	MoTe2(major)+Sn+Mo
75	Sn5Sb6Se14	800°C 6h	Sn2Sb4Se8(major)+SbSn
76	Sn5Sb6S14	800°C 6h	Sn4Sb6S13
77	Sn5Sb6Te14	800°C 6h	SnSb2Te4(major)+SnTe
78	Sn5Bi6S14	800°C 6h	Bi2S3(major)+SnS2+Sn
79	Sn5Bi6Se14	800°C 6h	???
80	Sn5Bi6Te14	800°C 6h	Bi2Te3(major),SnTe
81	InSnSe2	800°C 12h	InSe(major)+SnSe
82	In4SnTe3	800°C 12h	InTe(major)+/j>peak
83	In6SnTe10	800°C 12h	In2Te3(major)+SnTe
84	Sn2Bi3Ni5	800°C 8h	Bi+Ni3Sn(major)+Sn+Ni
85	Sn2Sb3Ni5	800°C 8h	NiSb+Ni5Sb2
86	BaNi2Sn2	800°C 8h	Ni3Sn2?? amorphous
87	SrNi2Sn2	E 800°C 8h	Ni3Sn+Sn+/J>peak
88	Ni8Sn2In3	800°C 8h	amorphous
89	Ni8Sn2A13	-800°C 8h	AlNi+Ni3Sn2+AlNi3
90	SmNiSn3	800°C 12h	Sn+NiSm
91	SmInSn	800°C 12h	In+/J> peak
92	SmRuSn	800°C 12h	Sn+Sm+Ru2Sn3+Sm2Sn3
93	SmMnSn	800°C 12h	Mn3Sn+Sm, amorphous
94	SmCo2Sn2	800°C 12h	Co3Sn2(major)+Sm2Sn3+Sn
95	SmNi3Sn3	800°C 12h	Ni3Sn(major)+NiSm, amorphous
96	Sm3In9Sn	800°C 24h	In+/J> peak
97	Ho2Co3Sn5	800°C 24h	Ho 未反應
98	HoCuSn	800°C 24h	Ho 未反應
99	HoAgSn	800°C 24h	Ho 未反應
100	HoCr6Sn6	800°C 24h	Ho 未反應
101	HoMo6Sn6	800°C 24h	Ho 未反應
102	HoW6Sn6	800°C 24h	Ho 未反應
103	HoTiSn	800°C 24h	Ho 未反應
104	HoZrSn	800°C 24h	Ho 未反應
105	HoRuSn	800°C 24h	Ho 未反應

編號	比例	升溫過程	結果
106	Sn5Bi6Se14	800°C 12h	???
107	Sn5Bi6Se14	800°C 12h	???
108	Sn4Bi6Se14	800°C 12h	???
109	Sn4Bi6Se14	800°C 12h	???
110	AgSnBi3S6	800°C 12h	AgBi3S5(major)+SnS2
111	AgSn4Bi4S10	800°C 12h	SnS2?+unknow?
112	CuSnBiS3	800°C 12h	Bi2S3(major)+/J>peak
113	AgSn4BiS6	800°C 12h	SnS+SnS2??
114	Ag3Sn6Bi11S24	800°C 12h	AgBi3S5(major)+SnS2
115	CuSn13Bi7S24	800°C 12h	Bi2S3(major)+SnS
116	AgSn3Bi7S24	800°C 12h	Bi2S3(major)+SnS
117	Sn4In2Bi4S13	800°C 12h	???
118	Sn4In3Bi7S13	800°C 12h	???
119	Cu3Sn3Bi7S15	800°C 12h	Bi2S3(major)+Cu
120	CuSnBi5S9	800°C 12h	Bi2S3
121	Cu2Sn6Bi8S19	800°C 12h	SnS2(major)+CuBi5S8
122	FeCu4SnBiS6	800°C 8h	Cu3BiS3(major)+Cu2FeSnS4
123	FeAg4SnBiS6	E 800°C 8h	Ag8SnS6(major)+AgBiS2
124	RuCu4SnBiS6	800°C 8h	Cu4SnS4(major)+Bi+RuS2
125	RuAg4SnBiS6	1 -800°C 8h	Ag8SnS6(major)+RuS2+Bi
126	MnCu4SnBiS6	800°C 8h	Cu3BiS3(major)+Cu2MnSnS4
127	MnAg4SnBiS6	800°C 8h	Ag8SnS6(major)+AgBiS2+SnS2+Mn2SnS4
128	Sn10Bi18Se37	800°C 12h	Sn10Bi18Se37
129	SnBiSe+Sn(flux)	800°C 12h	未處理
130	Mo6SnSe8	800°C 12h	???
131	SnBi3Ni5	800°C 12h	Ni3Sn,Sn
132	AgSn4Bi4S10	800°C 12h	???
133	Sn4In2Bi4S13	800°C 12h	???
134	Sn4In3Bi7S18	800°C 12h	???
135	Bi0.49Sn0.265Se(quench)	800°C 24h	Sn10Bi18Se37
136	Bi0.45Sn0.31Se(quench)	800°C 24h	Sn10Bi18Se37
137	Bi0.46Sn0.31Se(quench)	800°C 24h	Sn10Bi18Se37
138	Bi0.49Sn0.265Se	800°C 24h	Sn10Bi18Se37
139	Bi0.45Sn0.31Se	800°C 24h	Sn10Bi18Se37
140	Bi0.46Sn0.31Se	800°C 24h	Sn10Bi18Se37

編號	比例	升溫過程	結果
141	Bi18Sn10Se37(氫氧焰 quench)	800°C 24h	Sn10Bi18Se37
142	Bi18Sn10Se37(quench)	800°C 24h	Sn10Bi18Se37
143	Mo6SnSe8	800°C 24h	???
144	Bi8Sn3Se15	800°C 24h	Sn10Bi18Se37
145	AgSnBi3S6	800°C 24h	AgBi3S5+SnS2
146	AgSnBi3Se6	800°C 24h	???
147	AgPbBi3S6	800°C 24h	???
148	AgPbBi3Se6	800°C 24h	和管壁反應
149	AgPbSb3Se6	800°C 24h	???
150	AgPbSb3S6	800°C 24h	???
151	AgSnSb3S6	800°C 24h	???
152	AgSnSb3Se6	800°C 24h	???
153	AgPbBi3S6	700°C 12h	???
154	AgSnBi3S6(quench)	700°C 12h	???
155	AgPbBi3Se6	800°C 12h	和管壁反應

參考文獻:

- [1] C. Wood, Energy Convers. Manage., 24, 1984.
- [2] E. T.Caillat, *EnergyConversion Engineering Conference* **1996**, *2*, 905.
- [3] Cermak, Paul, Annalen der Physik (Weinheim, Germany) 1909, 26, 521.
- [4] N. Kh. Abrikosov, A. M. Vasserman, L. V.Poretskaya, *Doklady Akademii Nauk* SSSR. 1958, 123, 279
- [5] Machonis, Alvin A. E. Pan, B. Irving, Cadoff, *Thermoelectric materials*. **1963**, *40 pp*.
- [6] G. B. Abdullaev, Ya N. Nasirov, S. Ya , Feiziev, *Dokl. Akad. Nauk* 1966, 22, 12.
- [7] K. K. Zhilik, Fiz. Met. Metalloved. 1967, 23, 187
- [8] G. S. Nolas, H. Takizawa, T. Endo, H. Sellinschegg, D. C Johnson, *Appl. Phys. Lett.* 2000, 77, 52
- [9] D. R. Kammler, T. O. Mason, D. L. Young, T. J. Coutts, D. Ko, K. R. Poeppelmeier, D. L. Williamson, J. Appl. Phys. 2001, 90,5979
- [10] Mercouri G. Kanatzidis, Choi Kyoung-Shin, Chung Duck-Young, antje Mrotzek, Paul Brazis, Carl R. Kannewurf, Ctirad Uher, Chen Wei, Tim Hogan, *Chem. Mater.* 2001, 13, 756.
- [11] P. W. Zhu, L. X. Chen, X. Jia, H. A. Ma, G. Z. Ren, W. L. Guo, H. J. Liu, G. T. Zou, J. Phys.: Condens. Matter. 2002, 14, 11011.
- [12] Kim, Sung Wng, Kimura, Yoshisato, Mishima, Yoshinao, Advanced Materials for Energy Conversion II, Proceedings of a Symposium held during the TMS Annual Meeting, 2nd, Charlotte, NC, United States, Mar. 14-18, 2004, pp 337.
- [13] T. J. Seebeck, Abhandlungen der Deutschen Akademie Wissenschaften zu Berlin 1823, 265.
- [14] B. S. Gerald Mahan, and Jeff Sharp, *Physics Today* 1997, 42.
- [15] G. S. Nolas, H. J. Goldsmid, "*Thermoelectrics, Basic Principles and New Materials Developments*".
- [16] D. D. Pollock, Ameriacan Society for Testing and Materials, Philadelphia, PA 1985, 852.
- [17] F. T.Caillat, J.Phys.Chem Solids 1997, 58, 1119.
- [18] T. J. Seebeck, *Uber deen magnetismus der gavenische kette, Vol. 289*, Abh. K. Akad. Wiss. Berlin, **1821**.
- [19] T. J. Seebeck, *Methode*, *Platinatiegel auf ihr chemische*.
- [20] P. carier, *Sctbnord*, Joint Stock company, 109383 Moscow, Russia,, **1999**.
- [21] T. J. Seebeck, Ann. Phys. 1826, 2, 1.
- [22] B. C. Sales, *MRS BULLETIN*, Electron crystals and phonon glasses: a new path to improved thermoelectric materials, , **1998**.

- [23] *Thermoelectricity: Science and Engineering*, Interscience, New York, **1961**.
- [24] D. D.Pollock, CRC handbook of thermoelectrics, 1995.
- [25] W. Thomson, Proc. R. Soc. Edinburgh 1849, 16, 541.
- [26] W. Thomson, On a mechanical theory of thermo-electric currents, Vol. 3, Philos. Mag., 1852.
- [27] S. K. W. D.G. Cahill, R.O. Pohl, Phys. Rev. B. 1992, 46, 6131.
- [28] G. A. Slack, *Solid State Physics*, Academic Press, New York, 1979.
- [29] G. A. Slack, *CRC Handbook of thermoelectrics*, Boca Raton, 1995.
- [30] V. T. G.A. Slack, J. Appl. Phys. 1994, 76, 1665.
- [31] G. A. S. G.S. Nolas, D.T. Morelli, T.M. Tritt, A.C. Ehrlich, *J. Appl. Phys.* **1996**, *79*, 4002.
- [32] D. M. B.C. Sales, B.C. Chakoumakos, V. Keppens, J.R. Thompson, *Phys. Rev. B* 1997, 56, 15801.
- [33] Iversen, B. B.; Palmqvist, A. E. C.; Cox, D. E.; Nolas, G. S.; Stucky, G. D.; Blake, N.
 P.; Metiu, H. In *J. Solid State Chem.*, 2000; Vol. 149, pp 455-458.
- [34] Latturner, S.; Bu, X.; Blake, N.; Metiu, H.; Stucky, G. In J. Solid State Chem., 2000;
 Vol. 151, pp 61-64.
- [35] F. Franks, *Water, A Comprehensive Treatise*, Plenum Press, New York, 1973.
- [36] M. P. C. Cros, P. Hagenmuller, C.R. Acad. Sc. Paris 1965, 260, 4764.
- [37] M. P. C. Cros, P. Hagenmuller, J.S. Kasper, Bull. Soc. Chim. 1968, 7, 2737.
- [38] P. H. J.S. Kasper, M. Pouchard, C. Cros, Science 1965, 150, 1713.
- [39] J. D. G. Ramachandran, J. Diefenbacher, J. Gryko, R. Marzke, O.Sankey, P. McMillan, J. Solid State Chem. 1999, 145, 716.
- [40] T. J. R. W. G.S. Nolas, J.L. Cohn, R.Sharma, *Phys. Rev. B* 2000, *61*, 3845.
- [41] H. S. B. Einsenmann, J. Zagler, *J Less Common Metals* **1986**, *118*, 43.
- [42] B. C. S. B.C. Chakoumakos, D.G. Mandrus, G.S. Nolas, J. Alloys Comp. 1999, 296, 801.
- [43] G. S. N. J.L. Cohn, V. Fessatidis, T.H. Metcalf, G.A. Slack, *Phys. Rev. Lett.* 1999, 82, 779.
- [44] W. Rontgen, "Eine neue Art von Strahlen", 1895
- [45] G. C. Stock C, Reimers W, Mater. Sci. Forum. 2002, 404-4, 13.
- [46] 科儀新知第二十二卷第二期 2000, 10
- [47] O. K. OHMASA M, Acta Crystallogr., Sect. A: Found. Crystallogr. 1995, 51, 87.
- [48] W. AJC, Z. Kristallogr. 1993, 208, 199.
- [49] A. K. Suzuki H, Misawa H, *Mater. Sci. Res. Int.* 2000, *6*, 255.
- [50] H. P. K. a. L. E. Alexander, X-ray Diffraction Procedures, Wiley, New York, 1974.
- [51] Z. H. Jansen J, Ultramicroscopy . 2002, 90, 291.
- [52] T. D. Jansen J, Zandbergen HW, Schenk H, Acta Crystallogr., Sect. A: Found.

Crystallogr. 1998, 54, 91.

- [53] A. I. a. I. Furusato, J. Am. Ceram. Soc. 1995, 78, 225.
- [54] W. R. Blumenthal and D. S. Philips, J. Am. Ceram. Soc. 1996, 79, 1047.
- [55] I. M. Medina ME, Gutierrez-Puebla E, Monge MA, *J. Mater. Chem.* 2004, *14*, 845.
- [56] H. H. Viertelhaus M, Anson CE, Powell AK, *Eur. J. Inorg. Chem.* 2003, *12*, 2283.
- [57] D. Myers, *Surfactant Science and Tecnology*, VCH, New York, **1998**.
- [58] R. P. Rao, J. Electrochem. Soc. 1996, 143, 189.
- [59] X. H. Chen HB, Wang JH, Zhang JL, Zhang XM, Xu JY, Fan SJ, *Mater. Lett.* 2003, 57, 1441.
- [60] W. S. Yi ST, Le XH, J. Inorg. Mater. 2002, 17, 1048.
- [61] L. J. Yang PZ, Shen BF, Shao PF, Ni HH, Yin ZW, J. Cryst. Growth. 2002, 236, 589.
- [62] B. J. Kumar A, Muralidhar K, J. Sci. Ind. Res. 2002, 61, 607.
- [63] H. M. Imanaka N, Tamura S, Adachi G, Dabkowska H, Dabkowski A, J. Cryst. Growth. **1999**, 200, 169.
- [64] O. M. Okada S, Shishido T, Iizumi K, Kudou K, Kanari H, Nakajima K, Rogl P, J. *Cryst. Growth* . **2002**, *236*, 617.
- [65] S. D. Gong SM, Zhou GE, Cai CB, Fu YX, Zhang H, Physica C. 1997, 282, 469.
- [66] D. P. ROY SN, BASU RN, MAITI HS, J. Mater. Sci. Lett. 1994, 13, 1582.
- [67] H. H. Sha JB, Tabaru T, Kitahara A, Ueno H, Hanada S, J. Jpn. Inst. Met. 2000, 64, 331.
- [68] L. J. Farrugia, J. Appl. Cryst, 32, 837.
- [69] G. M. Sheldrick, Madison, WI,, **2000**.
- [70] SMART Version 5.054 Data Collection and SAINT-Plus Version 6.22 Data Processing Software for the SMART System, Madison, WI,, **2000**.
- [71] R. A. Sparks, *Computational Crystallography.Edited by D. Sayre. Clarendon Press*, Oxford, **1982**.
- [72] B. H. Toby, J. Appl. Cryst. 2001, 34, 210.
- [73] L. Y. Y. Li J, MacAdams L A, Chen F, Mulley S, Proserpio D M, Chem. Mater. 1996, 8, 598.
- [74] K. Susa, H. Steinfink, J. Solid State Chem. 1971, 3, 75.
- [75] J. C. Jumas, M. Ribes , E. Philippot, *Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences.* **1971**, *273*, 1356.
- [76] S. del Bucchia, J. C. Jumas, M. Maurin, Acta Crystallogr., Sect. B: Struct. Sci. 1980, 36, 2985
- [77] J. E. Iglesias, H. Steinfink, Acta Crystallogr., Sect. B: Struct. Sci. 1973, 29, 1480

- [78] Von.G.Rocktaschel, W.Ritter, A.Weiss, Z. Naturforsch. B, **1964** Volume 19b, Part ?, 958-958.
- [79] K. K, Z. Naturforsch. B: Chem. Sci. Anorganische Chemie, Organische Chemie. 1992, 411.
- [80] J L Hodeau, M Marezio, C Roucau, R Ayroles, A Meerschaut, J Rouxel, P Monceau, J. Phys. C, 1978, 11, 4117
- [81] M. G. K. Antje Mrotzek, Acc. Chem. Res. 2003, 36, 111.
- [82] A. I. Mrotzek, L.; Kanatzidis, M.G., Inorg. Chem. 2001, 40, 6204.
- [83] D.-Y. C. Chung, K.-S.; Iordanidis, L.; Schindler, J.L.; Brazis, P.W.; Kannewurf,
 C.R.; Chen, B.-X.; Hu, S.-Q.; Uher, C.; Kanatzidis, M.G., *Chem. Mater.* 1997, *9*, 3060.
- [84] P. K. P. Smith, J.B., Acta Crystallogr., Sect. B: Struct. Sci. 1985, 41, 84.
- [85] D. R. L.Megarskaya, Z.Taborsky, Am. Mineral. 1987, 72, 227.
- [86] E. M. Bente K, Steins M, Z. Kristallogr. 1993, 205, 327.
- [87] I. K. H.Sawada, E.Hellner, M.Tokonami, Z.Kristallogr 1987, 180, 141.
- [88] W. J. H. Geller S, Acta Crystallogr., Sect. B: Struct. Sci.. 1959, 12, 46.

附註: 參考文獻 13~43 為"Thermoelectrics, Basic Principles and New Materials Developments" 書中所引用之相關文獻

