3.4 聚合物 P1 P7 之光譜特性分析

材料的光電特性主要表現在 UV-visible 吸收光譜、光激發光光譜 (photoluminescence, PL)以及電激發光(electroluminecence, EL)中, 此外,為了要計算 HOMO-LUMO 等能帶的相互關係,我們也進行了 循環電位伏安儀(cyclic voltage)的量測,以下各節茲將逐一分析所得 數據。

3.4.1 UV-Visible 吸收光譜分析

首先就吸收光譜來討論,高分子 P1 P7 有兩種狀態,一為溶液 狀態,分別溶於 THF 及 toluene 中,另一是薄膜狀態,其 UV-Visible 光譜分別見 Fig. 3-1 Fig. 3-7,這七個材料無論溶於 THF 或 toluene 中,其吸收位置皆沒有明顯的改變,顯示溶劑極性的不同並不改變這 系列材料的光學性質。在 Fig. 3-3~Fig. 3-7 長波長區域的吸收峰,推 論為加入了不同單體共聚後產生了新的能階,使得 P3~P7 因新能階的 產生而在較長波長的區域有吸收峰的出現,比較 Fig. 3-6 和 Fig. 3-7 的光譜亦能發現加入 M5 後 P7 在波長 444nm 的位置多出一側峰 (shoulder),亦為同樣的原理。

Fig. 3-2 UV-visible absorption spectrum of P2

Fig. 3-4 UV-visible absorption spectrum of P4

Fig. 3-6 UV-visible absorption spectrum of P6

Fig. 3-7 UV-visible absorption spectrum of P7 3.4.2 螢光(Fluorescence)光譜分析

本研究以螢光儀來量測各材料的螢光性質,實驗時以個別材料 之 UV -Visible 吸收光譜中的最長吸收波峰波長為激發波長,分別量 測各材料之薄膜及其分別溶在 THF 及 toluene 中的螢光放射光譜 (Photoluminecene, PL)見 Fig. 3-8 Fig. 3-14。P1 P7 這七個材料 所處的溶液狀態有兩種分別為 THF 及 toluene,而這兩種溶劑其極性 以 THF 明顯較 toluene 為高,故在 Fig. 3-8 Fig. 3-14 中顯示,P1 P7 這七個材料,THF 溶液的螢光放射光譜皆會較 toluene 溶液產生紅 位移。這是因為就一般的情況下,當增加溶劑的極性時溶劑與材料在 激發態的 diople-diople interaction 會增強,以致於使放射光譜產生紅 位移。

一般來說,在薄膜狀態的 PL 皆較溶液狀態 PL 產生紅位移,這 是因為一般高分子在薄膜狀態時其分子鏈堆積較緊密,這通常會造成

59

interchain 或 intrachain interaction 的增加故會導致有紅位移的現象產 生。 而本實驗所合成出來的這七個材料中, P1 P7 的 PL 性質表都 符合以上所說的現象,在薄膜狀態的 PL 皆較溶液狀態 PL 產生紅位 移。

Fig. 3-15 與 Fig. 3-16 則為 P1 材料與 P2 材料做薄膜(film)迴火 (annealing)實驗的螢光光譜,目的在於比較交聯後與未交聯薄在高溫 下的穩定度,根據文獻報導,以 fluorene 為主體的藍光高分子材料, 在高溫下常會堆疊或 keto defect⁽⁶⁷⁾等不穩定因素而產生綠色發光,因 此對於已交聯後的 P1 薄膜和未交聯的 P2 薄膜分別做了 150°C 和 200 °C 的迴火(annealing)實驗,經由 Fig. 3-15 與 Fig. 3-16 兩圖比較發現 P1 與 P2 材料的薄膜在 200°C 高溫下一樣都會產生類似文獻中 keto defect 效應的綠光側峰(shoulder),故在薄膜的熱穩定度方面交聯後的 薄膜相較於未交聯的薄膜似乎沒有太大的改變。

Fig. 3-8 PL spectrum of P1

Fig. 3-10 PL spectrum of P3

Fig. 3-12 PL spectrum of P5

Fig. 3-14 PL spectrum of P7

Fig. 3-16 UV-PL spectrum of P2 in film state

以下 Table. 3-3 為高分子 P1 P7 分別在 Film、THF、toluene 下之 UV-visible 吸收光譜與光激發光光譜(photoluminescence, PL)數據。

	$UV(\lambda_{max}(nm))$			$PL(\lambda_{max}(nm))$		
	THF	Toluene	Film	THF	Toluene	Film
P1	383	382	384	452	445	453
P2	383	381	379	451	443	456
P3	375、430	371、430	375、441	543	529	546
P4	375、433	371、432	383、448	545	529	544
P5	386、518	383、515	385、538	636	621	645
P6	385、519	381、518	383、548	636	623	641
P7	381、523	378、518	387、538	637	623	639

Table. 3-3 UV and PL properties of polymers P1 P7

3.4.3 循環伏安計量(Cyclic voltammetry)分析

為了瞭解發光材料於光激發光或電激發光過程中 HOMO 及 LUMO 等能帶的高低關係,我們對高分子 P1 P7 進行了循環伏安計 量分析,實驗時以濃度 0.1M 之 TBAHFP 的 acetonitrile 溶液為電解 質,高分子部分以塗覆在 Pt 電極上量測,量測時以 50 mV/sec 的速率 掃描記錄其氧化還原曲線。

發光材料之能帶結構會直接影響其 PL 及 EL 的光色,故這一方面的數據亦是評估發光材料的一項重要指標。對於發光材料之電子游離能(Ionization potential, IP)與電子親和力(Electronic affinity)數據的取得,最簡單的方法就是以 CV 數據配合 UV-visible 光譜之吸收波 長數據來計算。一般發光材料 IP、EA 及能隙(Energy gap, Eg)的標 準表示法如下:

$$IP = 4.4 + E_{ox,onset}$$
$$EA = 4.4 + E_{red,onset}$$
$$E_g = IP - EA$$

由於高分子材料在量測CV所表現出的還原曲線會因為有水或其 他物質的出現而變得非常雜亂,導致材料本身的還原曲線並不明顯, 因而無法直接得到 EA 值,故對於高分子能隙的取得一般藉由 UV-visible 光譜中的最長波長吸收峰的起始波長(λ_{onset})來計算:

 $E_g = 1240 / \lambda_{onset}$

其中 λ_{onset} 單位為 nm,而所得 Eg的單位為 eV

Fig. 3-17 Fig. 3-23 列出高分子 P1 P7 的 CV 圖及計算後的能帶圖。

Fig. 3-17 Cyclic voltammogram of the oxidation and energy band diagram of P1

Fig. 3-19 Cyclic voltammogram of the oxidation and energy band diagram of P3

Fig. 3-21 Cyclic voltammogram of the oxidation and energy band diagram of P5

Fig. 3-23 Cyclic voltammogram of the oxidation and energy band diagram of P7

Table. 3-4 列出高分子 P1 P7 的氧化電位(E_{ox,onset})、能階差(Energy gap, E_g)、與 HOMO、LUMO 電位的數據。

	E _g (eV)	$E_{ox.onset}(eV)$	HOMO(eV)	LUMO(eV)
P1	2.91	1.21	5.61	2.7
P2	2.917	1.24	5.63	2.71
P3	2.51	1.23	5.63	2.31
P4	2.608	1.18	5.58	2.97
P5	2.091	1.28	5.68	3.59
P6	2.087	1.15	5.55	3.46
P7	2.087	1.19	5.59	3.51

Table. 3-4Energy level of polymers P1P7

