圖目錄

頁次

Fig. 1. The instrument of capillary Electrophoresis
Fig. 2. Electrophoretic mobility of analyte53
Fig. 3. The choice of on-line concentration techniques
Fig. 4. Field-Amplified Sample Stacking55
Fig. 5. The schematic of steps of CZE with LVSS under reversed polarity
conditions56
Fig. 6. The schematic of steps of CZE with dynamic pH junction57
Fig. 7. Evolution of micelles and neutral analyte molecules during
sweeping58
Fig. 8. Sweeping of a charged analyte in electrokinetic chromatography
with a neutral pseudostationary phase
Fig. 9. Schematic diagram of a stacking mechanism by sweeping using a
cationic surfactant60
Fig. 10. Schematic diagram of a stacking mechanism by sweeping using a
anionic surfactant
Fig. 11. Schematic illustration of the anionic sample stacking mechanism
of the ASEI-sweeping-MEKC model62
Fig. 12. Evolution of analyte zones in CSEI-sweep-MEKC63
Fig. 13. Evolution of analyte zones in LVSS-sweeping-MEKC64
Fig. 14. The structure of preservatives
Fig. 15. Effect of the proportion of methanol in running buffer
Fig. 16. Effect of the concentration of SDS in separation running buffer67
Fig. 17. Effect of the pH of separation running buffer68
Fig. 18. Effect of the concentration of citric acid/disodium hydrogen
phosphate running buffer69
Fig. 19. Effect of the concentration of sample matrix70
Fig. 20. Effect of injection time71
Fig. 21. Detection sensitivity of analytes measured under two different
separation conditions72
Fig. 22. The structure of phenolic acids73
Fig. 23. The current of stacking and separation74
Fig. 24. Effect of the stacking time75
Fig. 25. Effect of the concentration of SDS in running buffer76

 Fig. 27. Effect of the concentration of micellar buffer	Fig.	26.	Effect of the pH of micellar buffer and nonmicellar buffer	.77
 Fig. 28. Effect of the concentration of nonmicellar buffer	Fig.	27.	Effect of the concentration of micellar buffer	.78
 Fig. 29. Effect of the proportion of methanol in sample matrix	Fig.	28.	Effect of the concentration of nonmicellar buffer	.79
 Fig. 30. Effect of the proportion of salt in sample matrix	Fig.	29.	Effect of the proportion of methanol in sample matrix	.80
 Fig. 31. Detection sensitivity of analytes measured under three different separation conditions	Fig.	30.	Effect of the proportion of salt in sample matrix	81
separation conditions	Fig.	31.	Detection sensitivity of analytes measured under three different	
Fig. 31. Detection sensitivity of analytes measured under two different separation conditions			separation conditions	.82
separation conditions83	Fig.	31.	Detection sensitivity of analytes measured under two different	
			separation conditions	83

