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ABSTRACT

Most of today’s materials require additional processing or modification steps in
order to obtain the properties that make them suitable for a particular application. As
an alternative to these traditional fabrication pathways, routes that use the
self-asseembly of polymeric building blocks are attracting increasing attention.

We have synthesized rod-coil diblock PPQ-b-PMMA copolymers by using the
versatile atom-transfer radical polymerization method and have characterized them by
differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy
(FTIR), and thermogravimetric analysis (TGA). A regularly porous,
honeycomb-structured film was prepared from the dichloromethane solution of the
diblock copolymers under a flow of moist air. The diameters of the spherical pores

can be controlled in the range from 0.8 to 3 um by modifying both the rod-coil



copolymers’ relative molecular weights and the casting conditions. The wall thickness
of the film is varied linearly with the relative molecular mass (M,).

The miscibility and specific interaction in polymer blends have been a topic of
intense interest in polymer science. The miscibility of an immiscible blend was
enhanced by introducing one component which can form hydrogen bonded with
another component. It is the one of the major achievements during last twenty years in
polymer blend. This type of interaction has been widely described in terms of Painter
& Coleman association model due to exactly prediction in most systems.

A series of poly(vinylphenol-co-methyl methacrylate) (PVPh-co-PMMA) block
and random copolymers were prepared through anionic and free radical
polymerizations, respectively, of 4-tertbutoxystyrene and methyl methacrylate and
subsequent selective hydrolysis.‘of the 4-tert-butoxystyrene protective groups.
Analysis of infrared spectra suggests that the random copolymer possesses a higher
fraction of hydrogen-bonded carbonyl-groups-and a larger interassociation equilibrium
constant relative to those of a block‘copelymer containing similar vinylphenol content
because of the different sequence distribution that may arise from the so-called
intramolecular screening effect. Furthermore, the ternary polymer blend of PVPh,
PMMA, and PEO with different sequence distribution was performed to study the
phase behavior. The miscibility and hydrogen bonding behavior of ternary hydrogen
bonded blend of phenolic/phenoxy/PVPh was also investigated. According to the
DSC analysis, every composition of the ternary blend shows single glass transition
temperature (Tg), indicting that this ternary hydrogen bonded blend is totally miscible

in the amorphous phase.
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